請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50476
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王勝德(Sheng-De Wang) | |
dc.contributor.author | Ting-Wei Zhang | en |
dc.contributor.author | 張廷維 | zh_TW |
dc.date.accessioned | 2021-06-15T12:42:21Z | - |
dc.date.available | 2020-08-25 | |
dc.date.copyright | 2020-08-25 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-11 | |
dc.identifier.citation | [1]Chuxu Zhang, Dongjin Song, Yuncong Chen, Xinyang Feng, Cristian Lumezanu, Wei Cheng, Jingchao Ni, Bo Zong, Haifeng Chen, and Nitesh Chawla. A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data. Proceedings of the AAAI Conference on Artificial Intelligence, 33:1409–1416, 07 2019. [2]M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed. Deepant: A deep learning approach for unsupervised anomaly detection in time series. IEEE Access, 7:1991– 2005, 2019. [3]Mohammad Braei and Sebastian Wagner. Anomaly detection in univariate timeseries: A survey on the state-of-the-art, 2020. [4]V. Hautamaki, I. Karkkainen, and P. Franti. Outlier detection using k-nearest neighbour graph. In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., volume 3, pages 430–433 Vol.3, 2004. [5]Markus Breunig, Hans-Peter Kriegel, Raymond Ng, and Joerg Sander. Lof: Identifying density-based local outliers. volume 29, pages 93–104, 06 2000. [6]Haakon Ringberg, Augustin Soule, Jennifer Rexford, and Christophe Diot. Sensitivity of pca for traffic anomaly detection. SIGMETRICS Perform. Eval. Rev., 35(1):109–120, June 2007. [7]Larry M. Manevitz and Malik Yousef. One-class svms for document classification. J. Mach. Learn. Res., 2:139–154, March 2002. [8]R. Laxhammar, G. Falkman, and E. Sviestins. Anomaly detection in sea traffic - a comparison of the gaussian mixture model and the kernel density estimator. In 2009 12th International Conference on Information Fusion, pages 756–763, 2009. [9]Peter Brockwell and Richard Davis. An Introduction to Time Series and Forecasting, volume 39. 01 2002. [10]Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and Haifeng Chen. Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In International Conference on Learning Representations, 2018. [11]Chengwei Chen, Pan Chen, Lingyu Yang, Jinyuan Mo, Haichuan Song, Yuan Xie, and Lizhuang Ma. Acoustic anomaly detection via latent regularized gaussian mixture generative adversarial networks, 2020. [12]Samet Akcay, Amir Atapour-Abarghouei, and Toby P. Breckon. Ganomaly: Semisupervised anomaly detection via adversarial training, 2018. [13]Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom Söderström. Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery Data Mining, 2018. [14]G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504–507, 2006. [15]Subutai Ahmad, Alexander Lavin, Scott Purdy, and Zuha Agha. Unsupervised realtime anomaly detection for streaming data. Neurocomputing, 262:134 – 147, 2017. Online Real-Time Learning Strategies for Data Streams. [16]Weimin Li, Jianwei Liu, Jia-Jin Le, and Xiang-Rong Wang. The financial time series forecasting based on proposed arma-grnn model. pages 2005 – 2009 Vol. 4, 09 2005. [17]F. T. Liu, K. M. Ting, and Z. Zhou. Isolation forest. In 2008 Eighth IEEE International Conference on Data Mining, pages 413–422, 2008. [18]Zhong-Qiu Zhao, Peng Zheng, Shou tao Xu, and Xindong Wu. Object detection with deep learning: A review, 2018. [19]Mahbubul Alam, Manar D. Samad, Lasitha Vidyaratne, Alexander Glandon, and Khan M. Iftekharuddin. Survey on deep neural networks in speech and vision systems, 2019. [20]Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. Recent trends in deep learning based natural language processing, 2017. [21]Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde- Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014. [22]Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin. Training confidencecalibrated classifiers for detecting out-of-distribution samples. In International Conference on Learning Representations, 2018. [23]Jinghui Chen, Saket Sathe, Charu Aggarwal, and Deepak Turaga. Outlier Detection with Autoencoder Ensembles, pages 90–98. 06 2017. [24]Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1, NIPS’12, page 1097–1105, Red Hook, NY, USA, 2012. Curran Associates Inc. [25]Xiao Wang, Quan Zhou, Jacob Harer, Gavin Brown, Shangran Qiu, Zhi Dou, John Wang, Alan Hinton, Carlos Aguayo Gonzalez, and Peter Chin. Deep learning-based classification and anomaly detection of side-channel signals. In Igor V. Ternovskiy and Peter Chin, editors, Cyber Sensing 2018, volume 10630, pages 37 – 44. International Society for Optics and Photonics, SPIE, 2018. [26]Serkan Kiranyaz, Onur Avci, Osama Abdeljaber, Turker Ince, Moncef Gabbouj, and Daniel J. Inman. 1d convolutional neural networks and applications: A survey, 2019. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50476 | - |
dc.description.abstract | 物聯網中的傳感器設備常以時間序列的形式提供數據,例如橋樑振動,溫度,人體生理數據和空氣品質。本文提出了一種可以同時考慮時間序列的重建特徵和時間依賴性之異常檢測模型。所提出的模型基於帶有預測網絡的自動編碼器,該網絡可以即時計算每個時間戳上的異常分數。此外,考慮到每個時間序列之間的異常分數可能會根據環境因素而變化,我們設計了一個動態閾值演算法來為每個單變量時間序列提供一個個別的動態閾值。我們所提出帶有動態閾值演算法的深度學習模型在YahooWebscope數據集中的A1真實基準和Numenta異常基準(NAB)數據集上取得了良好的結果。 | zh_TW |
dc.description.abstract | Sensor devices in Internet of Things often provide data in the form of time series, such as bridge vibrations, temperatures, human physiological data and air quality. The thesis proposes an anomaly detection model that can simultaneously considers the reconstruction feature and temporal dependence oftime series. The proposed model is based on an auto encoder with a prediction network, which can instantly calculate the anomaly score at each time stamp. In addition, to consider that the anomaly scores among each time series may vary according to environmental factors, we designed a dynamic threshold algorithm to provide an individual dynamic threshold for each univariate time series. The proposed deep learning model with the dynamic threshold algorithm has been shown to achieve good results on the A1 real benchmark in the Yahoo Webscope dataset and Numenta Anomaly Benchmark (NAB) dataset. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T12:42:21Z (GMT). No. of bitstreams: 1 U0001-1108202013085300.pdf: 2951782 bytes, checksum: 4894abc976dfaee438c5ed46b020cb34 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | Contents 口試委員會審定書iii 誌謝v 摘要vii Abstract ix 1 Introduction 1 2 Related Work 5 2.1 Traditional Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Deep Learning Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Approach 9 3.1 Time Series Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1.2 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Dynamic Thresholding Detector . . . . . . . . . . . . . . . . . . . . . . 13 4 Experiments 17 4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1.2 Hyperparameter . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.2.1 Experiment with Yahoo Data Set . . . . . . . . . . . . . . . . . . 20 4.2.2 Experiment with NAB Data Set . . . . . . . . . . . . . . . . . . 21 4.2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5 Conclusion 25 Bibliography 27 | |
dc.language.iso | en | |
dc.title | 自編碼器與動態閾值用於單變量時間序列之異常偵測 | zh_TW |
dc.title | Anomaly Detection in Univariate Time Series with An Autoencoder and Dynamic Thresholding | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 雷欽隆(Chin-Laung Lei),于天立(Tian-Li Yu),呂欣澤(Hsin-Tse Lu) | |
dc.subject.keyword | 異常偵測,時間序列,動態閾值,自編碼器,非監督, | zh_TW |
dc.subject.keyword | Anomaly Detection,Time Series,Dynamic Threshold,Autoencoder,Unsupervised, | en |
dc.relation.page | 30 | |
dc.identifier.doi | 10.6342/NTU202002924 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-11 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
顯示於系所單位: | 電機工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1108202013085300.pdf 目前未授權公開取用 | 2.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。