Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5045
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐立中(Li-Chung Hsu)
dc.contributor.authorChia-I Lienen
dc.contributor.author連佳儀zh_TW
dc.date.accessioned2021-05-15T17:51:16Z-
dc.date.available2019-10-09
dc.date.available2021-05-15T17:51:16Z-
dc.date.copyright2014-10-09
dc.date.issued2014
dc.date.submitted2014-08-15
dc.identifier.citationAdhikari, A., M. Xu, and Z.J. Chen. 2007. Ubiquitin-mediated activation of TAK1 and IKK. Oncogene. 26:3214-3226.
Akira, S., S. Uematsu, and O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell. 124:783-801.
Anwar, M.A., S. Basith, and S. Choi. 2013. Negative regulatory approaches to the attenuation of Toll-like receptor signaling. Experimental & molecular medicine. 45:e11.
Bhoj, V.G., and Z.J. Chen. 2009. Ubiquitylation in innate and adaptive immunity. Nature. 458:430-437.
Boone, D.L., E.E. Turer, E.G. Lee, R.C. Ahmad, M.T. Wheeler, C. Tsui, P. Hurley, M. Chien, S. Chai, O. Hitotsumatsu, E. McNally, C. Pickart, and A. Ma. 2004. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nature immunology. 5:1052-1060.
Carpenter, S., and L.A.J. O'Neill. 2009. Recent insights into the structure of Toll-like receptors and post-translational modifications of their associated signalling proteins. Biochem J. 422:1-10.
Carrick, D.M., W.S. Lai, and P.J. Blackshear. 2004. The tandem CCCH zinc finger protein tristetraprolin and its relevance to cytokine mRNA turnover and arthritis. Arthritis research & therapy. 6:248-264.
Chau, T.L., R. Gioia, J.S. Gatot, F. Patrascu, I. Carpentier, J.P. Chapelle, L. O'Neill, R. Beyaert, J. Piette, and A. Chariot. 2008. Are the IKKs and IKK-related kinases TBK1 and IKK-epsilon similarly activated? Trends in biochemical sciences. 33:171-180.
Cusson-Hermance, N., S. Khurana, T.H. Lee, K.A. Fitzgerald, and M.A. Kelliher. 2005. Rip1 mediates the Trif-dependent toll-like receptor 3- and 4-induced NF-{kappa}B activation but does not contribute to interferon regulatory factor 3 activation. The Journal of biological chemistry. 280:36560-36566.
Deng, L., C. Wang, E. Spencer, L. Yang, A. Braun, J. You, C. Slaughter, C. Pickart, and Z.J. Chen. 2000. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell. 103:351-361.
Drexler, S.K., and B.M. Foxwell. 2010. The role of toll-like receptors in chronic inflammation. The international journal of biochemistry & cell biology. 42:506-518.
Fitzgerald, K.A., S.M. McWhirter, K.L. Faia, D.C. Rowe, E. Latz, D.T. Golenbock, A.J. Coyle, S.M. Liao, and T. Maniatis. 2003. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nature immunology. 4:491-496.
Garner, T.P., J. Strachan, E.C. Shedden, J.E. Long, J.R. Cavey, B. Shaw, R. Layfield, and M.S. Searle. 2011. Independent interactions of ubiquitin-binding domains in a ubiquitin-mediated ternary complex. Biochemistry. 50:9076-9087.
Gay, N.J., M. Gangloff, and L.A.J. O'Neill. 2011. What the Myddosome structure tells us about the initiation of innate immunity. Trends in immunology. 32:104-109.
Gohda, J., T. Matsumura, and J. Inoue. 2004. Cutting edge: TNFR-associated factor (TRAF) 6 is essential for MyD88-dependent pathway but not toll/IL-1 receptor domain-containing adaptor-inducing IFN-beta (TRIF)-dependent pathway in TLR signaling. J Immunol. 173:2913-2917.
Hacker, H., P.H. Tseng, and M. Karin. 2011. Expanding TRAF function: TRAF3 as a tri-faced immune regulator. Nature reviews. Immunology. 11:457-468.
Han, K.J., X. Su, L.G. Xu, L.H. Bin, J. Zhang, and H.B. Shu. 2004. Mechanisms of the TRIF-induced interferon-stimulated response element and NF-kappaB activation and apoptosis pathways. The Journal of biological chemistry. 279:15652-15661.
He, G., D. Sun, Z. Ou, and A. Ding. 2012. The protein Zfand5 binds and stabilizes mRNAs with AU-rich elements in their 3'-untranslated regions. The Journal of biological chemistry. 287:24967-24977.
Hishiya, A., S.-i. Iemura, T. Natsume, S. Takayama, K. Ikeda, and K. Watanabe. 2006. A novel ubiquitin-binding protein ZNF216 functioning in muscle atrophy. EMBO J. 25:554-564.
Hishiya, A., K. Ikeda, and K. Watanabe. 2005. A RANKL-inducible gene Znf216 in osteoclast differentiation. Journal of receptor and signal transduction research. 25:199-216.
Hou, B., B. Reizis, and A.L. DeFranco. 2008. Toll-like receptors activate innate and adaptive immunity by using dendritic cell-intrinsic and -extrinsic mechanisms. Immunity. 29:272-282.
Huang, J., L. Teng, L. Li, T. Liu, D. Chen, L.G. Xu, Z. Zhai, and H.B. Shu. 2004. ZNF216 Is an A20-like and IkappaB kinase gamma-interacting inhibitor of NFkappaB activation. The Journal of biological chemistry. 279:16847-16853.
Kang, J.Y., and J.O. Lee. 2011. Structural biology of the Toll-like receptor family. Annual review of biochemistry. 80:917-941.
Kawai, T., and S. Akira. 2007. Signaling to NF-kappaB by Toll-like receptors. Trends in molecular medicine. 13:460-469.
Kawai, T., and S. Akira. 2009. The roles of TLRs, RLRs and NLRs in pathogen recognition. International immunology. 21:317-337.
Komander, D., and M. Rape. 2012. The ubiquitin code. Annual review of biochemistry. 81:203-229.
Krishna, S.S., I. Majumdar, and N.V. Grishin. 2003. Structural classification of zinc fingers: survey and summary. Nucleic acids research. 31:532-550.
Kurt-Jones, E.A., L. Popova, L. Kwinn, L.M. Haynes, L.P. Jones, R.A. Tripp, E.E. Walsh, M.W. Freeman, D.T. Golenbock, L.J. Anderson, and R.W. Finberg. 2000. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nature immunology. 1:398-401.
Laity, J.H., B.M. Lee, and P.E. Wright. 2001. Zinc finger proteins: new insights into structural and functional diversity. Current opinion in structural biology. 11:39-46.
Lin, S.C., Y.C. Lo, and H. Wu. 2010. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature. 465:885-890.
Lu, Y.C., W.C. Yeh, and P.S. Ohashi. 2008. LPS/TLR4 signal transduction pathway. Cytokine. 42:145-151.
Medzhitov, R. 2007. Recognition of microorganisms and activation of the immune response. Nature. 449:819-826.
Medzhitov, R. 2008. Origin and physiological roles of inflammation. Nature. 454:428-435.
Miller, J., A.D. Mclachlan, and A. Klug. 1985. Repetitive Zinc-Binding Domains in the Protein Transcription Factor Iiia from Xenopus Oocytes. Embo Journal. 4:1609-1614.
O'Neill, L.A., and A.G. Bowie. 2007. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nature reviews. Immunology. 7:353-364.
Rassa, J.C., J.L. Meyers, Y. Zhang, R. Kudaravalli, and S.R. Ross. 2002. Murine retroviruses activate B cells via interaction with toll-like receptor 4. Proceedings of the National Academy of Sciences of the United States of America. 99:2281-2286.
Sasai, M., M. Tatematsu, H. Oshiumi, K. Funami, M. Matsumoto, S. Hatakeyama, and T. Seya. 2010. Direct binding of TRAF2 and TRAF6 to TICAM-1/TRIF adaptor participates in activation of the Toll-like receptor 3/4 pathway. Molecular immunology. 47:1283-1291.
Schattgen, S.A., and K.A. Fitzgerald. 2011. The PYHIN protein family as mediators of host defenses. Immunological reviews. 243:109-118.
Scott, D.A., J.H. Greinwald, Jr., J.R. Marietta, S. Drury, R.E. Swiderski, A. Vinas, M.M. DeAngelis, R. Carmi, A. Ramesh, M.L. Kraft, K. Elbedour, A.B. Skworak, R.A. Friedman, C.R. Srikumari Srisailapathy, K. Verhoeven, G. Van Gamp, M. Lovett, P.L. Deininger, M.A. Batzer, C.C. Morton, B.J. Keats, R.J. Smith, and V.C. Sheffield. 1998. Identification and mutation analysis of a cochlear-expressed, zinc finger protein gene at the DFNB7/11 and dn hearing-loss loci on human chromosome 9q and mouse chromosome 19. Gene. 215:461-469.
Seong, S.Y., and P. Matzinger. 2004. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nature reviews. Immunology. 4:469-478.
Skaug, B., X. Jiang, and Z.J. Chen. 2009. The role of ubiquitin in NF-kappaB regulatory pathways. Annual review of biochemistry. 78:769-796.
Takeuchi, O., and S. Akira. 2010. Pattern recognition receptors and inflammation. Cell. 140:805-820.
Tanimura, N., S. Saitoh, F. Matsumoto, S. Akashi-Takamura, and K. Miyake. 2008. Roles for LPS-dependent interaction and relocation of TLR4 and TRAM in TRIF-signaling. Biochemical and biophysical research communications. 368:94-99.
Tseng, P.H., A. Matsuzawa, W. Zhang, T. Mino, D.A. Vignali, and M. Karin. 2010. Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nature immunology. 11:70-75.
Wang, C., L. Deng, M. Hong, G.R. Akkaraju, J. Inoue, and Z.J.J. Chen. 2001. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature. 412:346-351.
Wertz, I.E., K.M. O'Rourke, H. Zhou, M. Eby, L. Aravind, S. Seshagiri, P. Wu, C. Wiesmann, R. Baker, D.L. Boone, A. Ma, E.V. Koonin, and V.M. Dixit. 2004. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature. 430:694-699.
Wright, S.D., R.A. Ramos, P.S. Tobias, R.J. Ulevitch, and J.C. Mathison. 1990. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 249:1431-1433.
Yamamoto, M., S. Sato, H. Hemmi, K. Hoshino, T. Kaisho, H. Sanjo, O. Takeuchi, M. Sugiyama, M. Okabe, K. Takeda, and S. Akira. 2003. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science. 301:640-643.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5045-
dc.description.abstract先天性免疫系統是宿主體內抵禦外來病原體侵犯或是偵測體內細胞組織傷害的第一道防線。先天性免疫反應可藉由活化體內包括Toll like receptors (TLRs)在內各種不同的pattern recognition receptors (PRRs)偵測到病原體或壞死細胞釋放特有的分子結構(稱為pathogen associated-molecular patterns, PAMPs 或damage associated-molecular patterns, DAMPs),啟動生物體內的發炎反應和抗病毒功能。然而發炎反應的失衡也會造成身體的損害,因此TLR所傳遞的訊息路徑需要受到精細的調控。我們實驗室先前發現了一個新的含有鋅指的蛋白質ZFAND5,其在巨噬細胞內的表現量會受到lipopolysaccharide (LPS)的刺激而增加。然而我們對於ZFAND5在TLRs訊息傳遞路徑內的功能還不甚清楚。在這篇研究中,我們欲釐清ZFAND5的在TLR4訊息路徑內的功能及機制。我們發現在ZFAND5表現量降低的情況下施予LPS刺激,轉錄因子IRF-3的活化有減少的趨勢,而另一個轉錄因子NF-κB的第二波活化也同樣有減低的情形。除此之外,我們發現TRAF3和ZFAND5之間有交互作用,且ZFAND5是利用其N端的A20-like Zinc finger部分和TRAF3產生交互作用。我們更進一步發現降低ZFAND5的表現量會造成LPS引發TRAF3的K63- linked polyubiquitin減少。綜合我們及先前的研究 ,ZFAND5在TLR4訊息路徑是扮演正向調控的功能。zh_TW
dc.description.provenanceMade available in DSpace on 2021-05-15T17:51:16Z (GMT). No. of bitstreams: 1
ntu-103-R01448002-1.pdf: 2518481 bytes, checksum: 2bd9d8f12d3bef721c59b6b14903eb45 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 ........................................................................................ i
中文摘要 ...................................................................................................... iii
Abstract ........................................................................................................ iv
Introduction ................................................................................................... 3
Innate immunity .................................................................................... 3
Toll- Like Receptors.............................................................................. 4
TLRs signaling pathways: ..................................................................... 6
TIR-domain-containing adaptor proteins ...................................... 6
MyD88-dependent pathway .......................................................... 6
TRIF-dependent pathway .............................................................. 8
TLR4 signaling .............................................................................. 9
Ubiquitination in TLRs signaling........................................................ 10
Zinc finger containing proteins ........................................................... 12
Zinc finger containing proteins induced by TLRs signaling ...... 12
ZFAND5 ...................................................................................... 13
Specific aim ................................................................................................. 15
Material and Method ................................................................................... 16
Antibodies and reagents ...................................................................... 16
Plasmids............................................................................................... 17
Cell culture .......................................................................................... 18
Transfection ......................................................................................... 19
Generation of stable ZFAND5 knockdown cells ................................ 19
Preparation of whole cell lysate .......................................................... 20
Preparation of bone marrow derived macrophages (BMDMs)........... 21
Immunoblotting ................................................................................... 22
Immunoprecipitation ........................................................................... 23
Results ......................................................................................................... 24
ZFAND5 depletion reduced activation of late phase of NF-κB and IRF3. .................................................................................................... 24
TRAF3 was identified as a new ZFAND5-interacting protein. .......... 25
ZFAND5 interacted with TRAF3 through its A20-like Zinc finger domain. ................................................................................................ 26
2
ZFAND5 depletion resulted in decreased K63-linked ubiquitination of TRAF3 in 264.7 macrophages after LPS stimulation. ........................ 26
Figures ......................................................................................................... 28
Figure 1. Depletion of ZFAND5 in RAW264.7 macrophages resulted in decreased activation of IRF3 and late phase of IKK after LPS stimulation. .......................................................................................... 29
Figure 2. Depletion of ZFAND5 in BMDMs decreased activation of IRF3 and late phase of IKK after LPS stimulation. ............................ 31
Figure 3. LPS-induced MAPKs activation was similar in control and ZFAND5-depleded Raw 264.7 cells. .................................................. 32
Figure 4. ZFAND5 interacted with TRAF3, but not MyD88 or TRIF ............................................................................................................. 35
Figure 5. ZFAND5 did not associate with TBK1 or TRAF2. ............ 36
Figure 6. ZFAND5 interacted with TRAF3 through its A20-like Zinc finger domain. ..................................................................................... 39
Figure 7. ZFAND5 depletion reduced LPS-induced K63-linked ubiquitination of TRAF3 in Raw 264.7 macrophages. ....................... 40
Figure 8. A proposed model for the role of ZFAND5 in the regulatation of TLR4-mediated response. ........................................... 41
Supplementary Figure 1. ZFAND5 depletion did not affect LPS-induced MAPKs activation. ........................................................ 43
Discussion ................................................................................................... 44
References ................................................................................................... 51
dc.language.isoen
dc.subject鋅指蛋白zh_TW
dc.subjectZinc finger proteinen
dc.title一個新穎的鋅指蛋白於TLR4所調控的免疫反應中所扮演的功能探討zh_TW
dc.titleThe functional role of a novel Zinc finger protein in the regulation of TLR4-mediated immune responsesen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡孟君,盧主欽
dc.subject.keyword鋅指蛋白,zh_TW
dc.subject.keywordZinc finger protein,en
dc.relation.page55
dc.rights.note同意授權(全球公開)
dc.date.accepted2014-08-18
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf2.46 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved