Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50447
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor閔明源
dc.contributor.authorYun-Lin Chuen
dc.contributor.author朱韻琳zh_TW
dc.date.accessioned2021-06-15T12:41:08Z-
dc.date.available2021-08-03
dc.date.copyright2016-08-03
dc.date.issued2016
dc.date.submitted2016-07-27
dc.identifier.citationAghajanian, G. K., Young, W. S., Bird, S. J., & Kuhar, M. J. (1977). Iontophoresis of methionine-enkephalin in the locus coeruleus area. Brain Research, 129(2), 366-370.
Aghajanian, G. K. (1978). Tolerance of locus coeruleus neurones to morphine and suppression of withdrawal response by clonidine. Nature, 276(9), 186-188.
Allan, H. J., & Robert, M. (1997). The brain as a dream state generator: an activation-synthesis hypothesis of the dream process. Am J Psychiatr, 134, 1335-1348.
Amaral, D. G., & Sinnamon, H. M. (1977). The locus coeruleus: neurobiology of a central noradrenergic nucleus. Progress in neurobiology, 9(3), 147-196.
Aston-Jones, G., & Bloom, F. E. (1981). Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. The Journal of Neuroscience, 1(8), 876-886.
Aston Jones G (2004) Locus ceoruleus, A5and A7 noradrenline In Rat Nervous System, 3rd edn, ed. London.
Belujon, P., Baufreton, J., Grandoso, L., Boue-Grabot, E., Batten, T. F., Ugedo, L. & Taupignon, A. I. (2009). Inhibitory transmission in locus coeruleus neurons expressing GABAA receptor epsilon subunit has a number of unique properties. Journal of neurophysiology, 102(4), 2312-2325.
Borbély, A. A., Tobler, I., & Hanagasioglu, M. (1984). Effect of sleep deprivation on sleep and EEG power spectra in the rat. Behavioural brain research, 14(3), 171-182.
Boucetta, S., Cissé, Y., Mainville, L., Morales, M., & Jones, B. E. (2014). Discharge Profiles across the Sleep–Waking Cycle of Identified Cholinergic, GABAergic, and Glutamatergic Neurons in the Pontomesencephalic Tegmentum of the Rat. The Journal of Neuroscience, 34(13), 4708-4727.
Bouvier, M. (2001). Oligomerization of G-protein-coupled transmitter receptors.Nature Reviews Neuroscience, 2(4), 274-286.
Bowery, N. G. (2006). GABA B receptor: a site of therapeutic benefit. Current opinion in pharmacology, 6(1), 37-43.
Brown, J. T., Davies, C. H., & Randall, A. D. (2007). Synaptic activation of GABAB receptors regulates neuronal network activity and entrainment.European Journal of Neuroscience, 25(10), 2982-2990.
Bushnell, M. C., Goldberg, M. E., & Robinson, D. L. (1981). Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. Journal of Neurophysiology, 46(4), 755-772.
Cahn, B. R., & Polich, J. (2006). Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychological bulletin, 132(2), 180.
Carter, M. E., Yizhar, O., Chikahisa, S., Nguyen, H., Adamantidis, A., Nishino, S. & de Lecea, L. (2010). Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nature neuroscience, 13(12), 1526-1533.
Carter, M. E., Brill, J., Bonnavion, P., Huguenard, J. R., Huerta, R., & de Lecea, L. (2012). Mechanism for Hypocretin-mediated sleep-to-wake transitions. Proceedings of the National Academy of Sciences, 109(39), E2635-E2644.
Cintra, L., Di, S., Kemper, T., & Morgane, P. J. (1982). Nucleus locus coeruleus: a morphometric Golgi study in rats of three age groups. Brain research, 247(1), 17-28.
Clark, T. K. (1979). The locus coeruleus in behavior regulation: evidence for behavior-specific versus general involvement. Behavioral and neural biology,25(3), 271-300.
Dascal, N. (1997). Signalling via the G protein-activated K+ channels. Cellular signalling, 9(8), 551-573.
de Andrés Díaz, R. (1986). Las fiestas de caballería en la Castilla de los Trastámara. En la España medieval, 8, 81.
D. Gervasoni, L. Darracq. (1998) Electrophysiological evidence that noradrenergic neurons of the rat locus coeruleus are tonically inhibited by GABA during sleep, European Journal of Neuroscience, 10, 964-970.
Dutar, P., & Nicoll, R. A. (1988). A physiological role for GABAB receptors in the central nervous system.
Egan, T. M., Henderson, G., North, R. A., & Williams, J. T. (1983). Noradrenaline-mediated synaptic inhibition in rat locus coeruleus neurones. The Journal of physiology, 345, 477.
Empson, J. (1986). The History and Origin of the EEG. In Human Brainwavesb(pp. 1-20). Macmillan Education UK.
Ennis, M., & Aston-Jones, G. (1989). GABA-mediated inhibition of locus coeruleus from the dorsomedial rostral medulla. The Journal of neuroscience,9(8), 2973-2981.
Farrant, M., & Nusser, Z. (2005). Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors. Nature Reviews Neuroscience, 6(3), 215-229.
Fleming, G. W. T. H. (1930). Sleep as a Problem of Localization. (Journ of Nerv. and Ment. Dis., March, 1930.) Von Economo, C. The British Journal of Psychiatry, 76(314), 563-564.
Gabor, D. (1946). Theory of communication. Part 1: The analysis of information. Electrical Engineers-Part III: Radio and Communication Engineering, Journal of the Institution of, 93(26), 429-441.
Giotti, A., Luzzi, S., Spagnesi, S., & Zilletti, L. (1983). Homotaurine: a GABAB antagonist in guinea‐pig ileum. British journal of pharmacology, 79(4), 855-862.
Green, S. (2011). Biological rhythms, sleep and hypnosis. Palgrave Macmillan.
Guyenet, P. G., & Aghajanian, G. K. (1977). Excitation of neurons in the nucleus locus coeruleus by substance P and related peptides. Brain research,136 (1), 178-184.
Harley, C. W., & Milway, J. S. (1986). Glutamate ejection in the locus coeruleus enhances the perforant path-evoked population spike in the dentate gyrus. Experimental brain research, 63(1), 143-150.
Harley, C., Milway, J. S., & Lacaille, J. C. (1989). Locus coeruleus potentiation of dentate gyrus responses: evidence for two systems. Brain research bulletin,22(4), 643-650.
Hentall, I. D., Mesigil, R., Pinzon, A., & Noga, B. R. (2003). Temporal and spatial profiles of pontine-evoked monoamine release in the rat's spinal cord.Journal of neurophysiology, 89(6), 2943-2951.
Hill, D. R. (1985). GABAB receptor modulation of adenylate cyclase activity in rat brain slices. British journal of pharmacology, 84(1), 249.
Hobson, J. A., McCarley, R. W., & Wyzinski, P. W. (1975). Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science, 189(4196), 55-58.
Hobson, J. A. (1997). Consciousness as a state-dependent phenomenon.Scientific approaches to consciousness, 379-396.
Hobson, J. A. (2009). REM sleep and dreaming: towards a theory of protoconsciousness. Nature Reviews Neuroscience, 10(11), 803-813.
Horne, J. (2013). Why REM sleep? Clues beyond the laboratory in a more challenging world. Biological psychology, 92(2), 152-168.
Howorth, P. W., Thornton, S. R., O'Brien, V., Smith, W. D., Nikiforova, N., Teschemacher, A. G., & Pickering, A. E. (2009). Retrograde viral vector-mediated inhibition of pontospinal noradrenergic neurons causes hyperalgesia in rats. The Journal of Neuroscience, 29(41), 12855-12864.
Hu, F. Y., Hanna, G. M., Han, W., Mardini, F., Thomas, S. A., Wyner, A. J., & Kelz, M. B. (2012). Hypnotic hypersensitivity to volatile anesthetics and dexmedetomidine in dopamine β-hydroxylase knockout mice. The Journal of the American Society of Anesthesiologists, 117(5), 1006-1017.
Jacobs, B. L. (1986). Single unit activity of locus coeruleus neurons in behaving animals. Progress in neurobiology, 27(2), 183-194.
Joel H. Benington, Susheel K. Kodali and H. Craig Heller (1993). Scoring transitions to REM sleep in rats based on the EEG phenomena of pre-REM sleep: an improved analysis of sleep structure. Sleep. 17, 28.
Jones, B. E., & Moore, R. Y. (1977). Ascending projections of the locus coeruleus in the rat. II. Autoradiographic study. Brain research, 127(1), 23-53.
Asan, E. (2013). The catecholaminergic innervation of the rat amygdala (Vol. 142). Springer Science & Business Media.
Jones, B. E. (1991). The role of noradrenergic locus coeruleus neurons and neighboring cholinergic neurons of the pontomesencephalic tegmentum in sleep-wake states. Progress in brain research, 88, 533-543.
Jones, S. L. (1991). Descending noradrenergic influences on pain. Progress in brain research, 88, 381-394.
Jones, S. L., & Gebhart, G. F. (1986). Quantitative characterization of ceruleospinal inhibition of nociceptive transmission in the rat. Journal of neurophysiology, 56(5), 1397-1410.
Kaur, S., Saxena, R. N., & Mallick, B. N. (1997). GABA in locus coeruleus regulates spontaneous rapid eye movement sleep by acting on GABA A receptors in freely moving rats. Neuroscience letters, 223(2), 105-108.
Keberle, H., & Faigle, J. W. (1972). Synthesis and structure-activity relationship of the gamma-aminobutyric acid derivatives. In Spasticity—A topical survey. Hans Huber Vienna.
Ledonne, A., Berretta, N., Davoli, A., Rizzo, G. R., Bernardi, G., & Mercuri, N. B. (2011). Electrophysiological effects of trace amines on mesencephalic dopaminergic neurons. Front Syst Neurosci (2011); 5, 56(0,000).
Loughlin, S. E., Foote, S. L., & Bloom, F. E. (1986). Efferent projections of nucleus locus coeruleus: topographic organization of cells of origin demonstrated by three-dimensional reconstruction. Neuroscience, 18(2), 291-306.
Luczak, A., Barthó, P., Marguet, S. L., Buzsáki, G., & Harris, K. D. (2007). Sequential structure of neocortical spontaneous activity in vivo. Proceedings of the National Academy of Sciences, 104(1), 347-352.
Luppi, P. H., Charlety, P. J., Fort, P., Akaoka, H., Chouvet, G., & Jouvet, M. (1991). Anatomical and electrophysiological evidence for a glycinergic inhibitory innervation of the rat locus coeruleus. Neuroscience letters, 128(1), 33-36.
Malenka, R. C., Nestler, E. J., Hyman, S. E., Sydor, A., & Brown, R. Y. (2009). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience. New York: McGrawHill Medical. Book.
Mann, E. O., Kohl, M. M., & Paulsen, O. (2009). Distinct roles of GABAA and GABAB receptors in balancing and terminating persistent cortical activity. The Journal of Neuroscience, 29(23), 7513-7518.
Maquet, P. (2010). Understanding non rapid eye movement sleep through neuroimaging. The World journal of biological psychiatry, 11(sup1), 9-15.
Marescaux, C., Vergnes, M., & Bernasconi, R. (1992). GABAB receptor antagonists: potential new anti-absence drugs. In Generalized Non-Convulsive Epilepsy: Focus on GABA-B Receptors (pp. 179-188). Springer Vienna.
Marzo, A., Totah, N. K., Neves, R. M., Logothetis, N. K., & Eschenko, O. (2014). Unilateral electrical stimulation of the rat Locus Coeruleus elicits bilateral response of norepinephrine neurons and sustained activation of the mPFC. Journal of neurophysiology, jn-00920.
McCormick, J. (1991). Reclaiming paradise: the global environmental movement (Vol. 660). Indiana University Press.
McNamara, P., McLaren, D., & Durso, K. (2007). Representation of the Self in REM and NREM Dreams. Dreaming, 17(2), 113.
Metherate, R., & Ashe, J. H. (1993). Ionic flux contributions to neocortical slow waves and nucleus basalis-mediated activation: whole-cell recordings in vivo. The Journal of neuroscience, 13(12), 5312-5323.
Miller, J. F., & Proudfit, H. K. (1990). Antagonism of stimulation-produced antinociception from ventrolateral pontine sites by intrathecal administration of α-adrenergic antagonists and naloxone. Brain research, 530(1), 20-34.
Min, M. Y., Wu, Y. W., Shih, P. Y., Lu, H. W., Lin, C. C., Wu, Y., ... & Yang, H. W. (2008). Physiological and morphological properties of, and effect of substance P on, neurons in the A7 catecholamine cell group in rats.Neuroscience, 153(4), 1020-1033.
Mitchell, S. J., & Silver, R. A. (2003). Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron, 38(3), 433-445.
Niedermeyer, E (1997). 'Alpha rhythms as physiological and abnormal phenomena'. International Journal of Psychophysiology 26 (1–3): 31–49.
Niedermeyer E.; da Silva F.L. (2004). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincot Williams & Wilkins.
Nitz, D., & Siegel, J. M. (1997). GABA release in the dorsal raphe nucleus: role in the control of REM sleep. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 273(1), R451-R455.
Nitz, D., & Siegel, J. M. (1997). GABA release in the locus coeruleus as a function of sleep/wake state. Neuroscience, 78(3), 795-801.
Olpe, H. R., Karlsson, G., Pozza, M. F., Brugger, F., Steinmann, M., Van Riezen, H., ... & Bittiger, H. (1990). CGP 35348: a centrally active blocker of GABAB receptors. European journal of pharmacology, 187(1), 27-38.
Oppenheim, A. V., & Schafer, R. W. (1975). Digital signal processing.
Pacey, L. K., Heximer, S. P., & Hampson, D. R. (2009). Increased GABAB receptor-mediated signaling reduces the susceptibility of fragile X knockout mice to audiogenic seizures. Molecular pharmacology, 76(1), 18-24.
Parmeggiani, P. L. (2011). Systemic homeostasis and poikilostasis in sleep. London: Imperial College Press.
Pertovaara, A. (2006). Noradrenergic pain modulation. Progress in neurobiology, 80(2), 53-83.
Pfurtscheller, G., & Da Silva, F. L. (1999). Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical neurophysiology, 110(11), 1842-1857.
Pratt, G. D., Knott, C., Davey, R., & Bowery, N. G. (1989). Characterisation of 3-aminopropyl phosphinic acid (3-APPA) as a GABAB agonist in rat brain tissue. Br. J. Pharmacol, 96, 141.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1996).Numerical recipes in C (Vol. 2). Cambridge: Cambridge university press.
Ramm, P. (1979). The locus coeruleus, catecholamines, and REM sleep: a critical review. Behavioral and neural biology, 25(4), 415-448.
Rasch, B., & Born, J. (2013). About sleep's role in memory. Physiological reviews, 93(2), 681-766.
Rush, J. M., & Gibberd, F. B. (1990). Baclofen-induced epilepsy. Journal of the Royal Society of Medicine, 83(2), 115.
Samuels, E. R., & Szabadi, E. (2008). Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part II: physiological and pharmacological manipulations and pathological alterations of locus coeruleus activity in humans. Current neuropharmacology, 6(3), 254-285.
Saper, C. B., Chou, T. C., & Scammell, T. E. (2001). The sleep switch: hypothalamic control of sleep and wakefulness. Trends in neurosciences,24(12), 726-731.
Saper, C. B., Scammell, T. E., & Lu, J. (2005). Hypothalamic regulation of sleep and circadian rhythms. Nature, 437(7063), 1257-1263.
Sara, S. J., & Bouret, S. (2012). Orienting and reorienting: the locus coeruleus mediates cognition through arousal. Neuron, 76(1), 130-141.
Seabrook, G. R., Howson, W., & Lacey, M. G. (1990). Electrophysiological characterization of potent agonists and antagonists at pre‐and postsynaptic GABAB receptors on neurones in rat brain slices. British journal of pharmacology, 101(4), 949-957.
Shefner, S. A., & Osmanović, S. S. (1991). GABA A and GABA B receptors and the ionic mechanisms mediating their effects on locus coeruleus neurons.Progress in brain research, 88, 187-195.
Snead, O. C. (1996). Antiabsence seizure activity of specific GABA B and γ-hydroxybutyric acid receptor antagonists. Pharmacology Biochemistry and Behavior, 53(1), 73-79.
Soltesz, I., Haby, M., Leresche, N., & Crunelli, V. (1988). The GABAB antagonist phaclofen inhibits the late K+-dependent IPSP in cat and rat thalamic and hippocampal neurones. Brain research, 448(2), 351-354.
Soltesz, I., & Crunelli, V. (1992). GABA A and pre-and post-synaptic GABA B receptor-mediated responses in the lateral geniculate nucleus. Progress in brain research, 90, 151-169.
Steriade, M. M., & McCarley, R. W. (2013). Brainstem control of wakefulness and sleep. Springer Science & Business Media.
Sugiyama, D., Hur, S. W., Pickering, A. E., Kase, D., Kim, S. J., Kawamata, M., ... & Furue, H. (2012). In vivo patch‐clamp recording from locus coeruleus neurones in the rat brainstem. The Journal of physiology, 590(10), 2225-2231.
Swett, C. P., & Hobson, J. A. (1968). The effects of posterior hypothalamic lesions on behavioral and electrographic manifestations of sleep and waking in cats. Archives italiennes de biologie, 106(3), 283.
Takahashi, T., Kajikawa, Y., & Tsujimoto, T. (1998). G-Protein-coupled modulation of presynaptic calcium currents and transmitter release by a GABAB receptor. The Journal of neuroscience, 18(9), 3138-3146.
Tatum, W. O. (2014). Ellen r. grass lecture: Extraordinary eeg. The Neurodiagnostic Journal, 54(1), 3-21.
Terrence, C. F., & Fromm, G. H. (1981). Complications of baclofen withdrawal. Archives of Neurology, 38(9), 588-589.
Tobler, I., & Borbely, A. A. (1986). Sleep EEG in the rat as a function of prior waking. Electroencephalography and clinical neurophysiology, 64(1), 74-76.
van Bree, J. B., Heijligers-Feijen, C. D., de Boer, A. G., Danhof, M., & Breimer, D. D. (1991). Stereoselective transport of baclofen across the blood–brain barrier in rats as determined by the unit impulse response methodology. Pharmaceutical research, 8(2), 259-262.
Van Hese, P., Martens, J. P., Boon, P., Dedeurwaerdere, S., Lemahieu, I., & Van de Walle, R. (2003). Detection of spike and wave discharges in the cortical EEG of genetic absence epilepsy rats from Strasbourg. Physics in medicine and biology, 48(12), 1685.
Vazey, E. M., & Aston-Jones, G. (2014). Designer receptor manipulations reveal a role of the locus coeruleus noradrenergic system in isoflurane general anesthesia. Proceedings of the National Academy of Sciences, 111(10), 3859-3864.
Vyazovskiy, V. V., Olcese, U., Lazimy, Y. M., Faraguna, U., Esser, S. K., Williams, J. C., ... & Tononi, G. (2009). Cortical firing and sleep homeostasis. Neuron, 63(6), 865-878.
Walling, S. G., & Harley, C. W. (2004). Locus ceruleus activation initiates delayed synaptic potentiation of perforant path input to the dentate gyrus in awake rats: a novel β-adrenergic-and protein synthesis-dependent mammalian plasticity mechanism. The Journal of neuroscience, 24(3), 598-604.
Walling, S. G., Brown, R. A., Milway, J. S., Earle, A. G., & Harley, C. W. (2011). Selective tuning of hippocampal oscillations by phasic locus coeruleus activation in awake male rats. Hippocampus, 21(11), 1250-1262.
Wang, H. Y., Kuo, Z. C., Fu, Y. S., Chen, R. F., Min, M. Y., & Yang, H. W. (2015). GABAB receptor‐mediated tonic inhibition regulates the spontaneous firing of locus coeruleus neurons in developing rats and in citalopram‐treated rats. The Journal of physiology, 593(1), 161-180.
Wen-Yi Wu, Wei-Chen Hung, Chen-Tung Yen, Ming-Yuan Min, & Meng-Li Tsai (2016) A Simple Method to Fabricate a Slender Infusion-Recording Assembly in a 30-gauge Syringe Needle. Journal of Medical and Biological Engineering, unpublish.
West, W. L., Yeomans, D. C., & Proudfit, H. K. (1993). The function of noradrenergic neurons in mediating antinociception induced by electrical stimulation of the locus coeruleus in two different sources of Sprague-Dawley rats. Brain research, 626(1), 127-135.
Wu, Y., Wang, H. Y., Lin, C. C., Lu, H. C., Cheng, S. J., Chen, C. C., ... & Min, M. Y. (2011). GABAB receptor-mediated tonic inhibition of noradrenergic A7 neurons in the rat. Journal of neurophysiology, 105(6), 2715-2728.
Xie, X., & Smart, T. G. (1992). γ-Hydroxybutyrate hyperpolarizes hippocampal neurones by activating GABA B receptors. European journal of pharmacology,212(2), 291-294.
Xi, M. C., Morales, F. R., & Chase, M. H. (1999). Evidence that wakefulness and REM sleep are controlled by a GABAergic pontine mechanism. Journal of Neurophysiology, 82(4), 2015-2019.
Xi, M. C., Morales, F. R., & Chase, M. H. (2001). Induction of wakefulness and inhibition of active (REM) sleep by GABAergic processes in the nucleus pontis oralis. Archives italiennes de biologie, 139(1), 125-145.
Yamada, M., Inanobe, A., & Kurachi, Y. (1998). G protein regulation of potassium ion channels. Pharmacological reviews, 50(4), 723-757.
Yang H-W, Lu H-W, Wu Y, Min M-Y (2008) Orexin-A depolarizes noradrenergic neurons through activation of transient receptor potential (TRP) V1 channels in A7 catecholamine cell group. FENS Abstr., vol.4, 180.40, 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50447-
dc.description.abstract藍斑核(Locus Coeruleus)大部分是由去甲腎上腺素神經元(noradrenergic neurons)所組成,是主要提供正腎上腺素(norepinephrine)至前腦(forebrain)的腦區,它調控了許多生理行為作用如焦慮、記憶、學習及清醒等等。之前我們實驗室的鼠腦片(brain slice)電生理的研究顯示,伽瑪-氨基丁酸乙型接受器(γ-Aminobutyric acid B receptors,GABAB receptors)是只要主要調控藍斑核的強直性抑制(tonic inhibition)的神經傳導物質接受器,並且可以藉由調控環境中的伽瑪-氨基丁酸可以調控藍斑核的神經放電速率(firing rate)。在本實驗中,我們測試了伽瑪-氨基丁酸乙型接受器是否也能夠在生物體的藍斑核中擁有調控其強直性抑制及神經放電速率的功能。
首先,在測試實驗中,我們先以伽瑪-氨基丁酸乙型接受器促效劑(agonist)經由外管直接注入至活動大鼠(Sprague-Dawley Rats)的藍斑核,在不同天的同一時間測試其睡眠以及清醒的時間比例差別,結果發現在藥物給予後的大鼠其睡眠時間有顯著性的增加(P=0.020526,N=4)。故我們推斷伽瑪-氨基丁酸對於藍斑核的抑制作用確實會影響生物體的睡醒比例。為了確定是伽瑪-氨基丁酸乙型接受器的作用造成此結果,我們將外管植入至藍斑核,在由異氟烷(isoflurane)氣體麻醉的誘導全身麻醉(general anesthesia)之下,將實驗老鼠四腳朝天以翻正反射(return of righting reflex)以及腦電波(Electroencephalography,EEG)來判定其由麻醉轉至清醒所需的時間。我們的結果顯示,在異氟烷停止給予後,經由內管對藍斑核的直接局部灌注伽瑪-氨基丁酸乙型接受器拮抗劑(antagonist)藥物CGP35348能夠降低結束麻醉至翻正反射的時間(845.89±98.73 seconds,N=9),其數據顯著低於控制組(灌注人工腦脊髓液)(N=9),以及沒有注射至藍斑核的組別(N=10)。
但是在局部灌注下,無法確定該行為上的改變是由於藍斑核或是其他鄰近藍斑核區域例如中腦三叉感覺核區(mesencephalic trigeminal nucleus neurons,Me5)等受到藥物影響而產生,故我們使用能夠同時記錄單一神經元神經放電速率以及注射藥物的電極,記錄在聚氨脂(urethane)或三氯乙醛(Chloral hydrate)麻醉下的老鼠其在緩慢注射伽瑪-氨基丁酸乙型接受器拮抗劑藥物CGP35348之前後藍斑核神經元神經放電速率的變化。此實驗數據顯示,藍斑核神經放電速率在藥物注射前300秒之神經放電速率為2.9158±0.9422Hz,在藥物注射後300秒則為9.8599±2.5460Hz,其神經放電速率在藥物注射後明顯高於注射前(P=0.01497,N=6),而在其他型態染色上非位於藍斑核之神經元放電速率紀錄統計,其神經放電速率在藥物注射前以及注射後並無顯著差異(N=29)。且在藍斑核位置注射控制組磷酸根緩衝液生理食鹽水(phosphate buffer saline,PBS)之前後也並無顯著變化(N=6)。綜合上述實驗,我們的結果證實伽瑪-氨基丁酸乙型接受器對藍斑核的強直性抑制的確會對於生物體的睡醒調控有一定影響。
zh_TW
dc.description.abstractIn mammalian brain, locus coeruleus (LC) provides most of norepinephrine (NE) for the whole brain. LC-NE system is involved in many brain behaviors, such as nociception, attention and wake-sleep cycle. We have previously shown a tonic inhibition of LC neurons mediated by GABAB receptor in acute brain slice, and that manipulating it by varying ambient GABA could effectively tune LC neuron firing rate. Furthermore, we predict that GABAB receptor-mediated tonic inhibition could play an important role in the wake-sleep cycle behavior. Here we tested whether GABAB receptor tonic inhibition of LC neurons also occurs in vivo.
Since ambient GABA in LC is reported to be higher in sleep than in wakefulness, we tested the role of GABAB receptor tonic inhibition of LC neurons in hypnosis induced by isoflurane. To investigate the hypothesis, righting reflex behavior test were made in SD (Sprague-Dawley) rats (male, 8-10 weeks) which implanted a cannula for drug injection and electrodes for EEG (electroencephalography) and EMG (electromyography) recording under isoflurane anesthesia. Righting reflex occurs during the position out of upright, was used to define emergence from general anesthesia. Local infusion of CGP35348 but not the vehicle into LC significantly reduced recovery latency from hypnosis. We found that the latency of righting reflex behavior decreased after GABAB receptor antagonist injection. A custom-made probe consisting of microwires and a fine cannula was implanted into LC to allow recording of LC single- unit and local drug application in rats. After application of CGP35348, a neutral GABAB receptor antagonist, robustly increases firing rate of LC single-unit about 3.382 times higher (n = 6 units; P=0.01497, paired-t test); In contrast, vehicle infusion did not have an effect. Above all, we suggest that not only the firing rate of LC neurons is inhibited by GABAB receptor in vivo, but also the activity of GABAB receptor on LC neurons play an important role in sleep-wakefulness regulation.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:41:08Z (GMT). No. of bitstreams: 1
ntu-105-R02b21033-1.pdf: 3496936 bytes, checksum: e681d247d6fd7cc566472eeb10b4ffda (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 1
中文摘要 3
ABSTRACT 5
CONTENTS 7
Chapter 1 Introduction 9
1.1 The theory of wake-sleep cycle 9
1.2 Different waves of electroencephalography 10
1.3 Different stages of sleep 11
1.3.1 NREM sleep stages 12
1.3.2 REM sleep stage 13
1.4 Introduction of locus coeruleus 14
1.5 The function of LC-NE system 15
1.6 Introduction of GABA receptor 16
1.6.1 Introduction of GABAA receptor 17
1.6.2 Introduction of GABAB receptor 17
1.7 The relationship between LC, EEG and wake-sleep cycle 19
1.8 The relationship between LC and GABA receptor 20
1.9 Aim of this study 21
Chapter 2 Materia and Methods 22
2.1 Surgery 22
2.2 The experiment of GABAB receptor agonist 22
2.3 The RORR experiment of GABAB receptor antagonist 23
2.4 The experiment of LC neurons in vivo single unit recording 25
2.5 Data analysis 27
Chapter 3 Results 29
3.1 Behavior effects of GABAB receptor agonist on LC 29
3.2 Changing the LC-NE neurotransmission affected arousal by isoflurane anesthesia 30
3.3 The firing rate of LC neurons was increased due to the GABAB receptor antagonist 32
Chapter 4 Discussion 34
Chapter 5 Reference 40
TABLES 53
Table1 53
Table2 54
FIGURES 55
Figure1 55
Figure2 56
Figure3 57
Figure4 58
Figure5 59
Figure6 60
Figure7 61
Figure8 63
Figure9 65
dc.language.isoen
dc.title伽瑪-氨基丁酸乙型接受器調控藍斑核強直性抑制實驗及在大鼠睡醒調控中所扮演的角色zh_TW
dc.titleGABAB Receptors Mediated Tonic Inhibition of Locus Coeruleus Neuron in Vivo and Its Role in Sleep-wakefulness Regulation in Ratsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊琇雯,蔡孟利,楊素卿
dc.subject.keyword藍斑核,伽瑪-氨基丁酸乙型接受器,睡-醒調控,zh_TW
dc.subject.keywordLocus coeruleus,GABAB receptors,sleep-wakefulness regulation,en
dc.relation.page65
dc.identifier.doi10.6342/NTU201601328
dc.rights.note有償授權
dc.date.accepted2016-07-28
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
3.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved