請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50428
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王俊能 | |
dc.contributor.author | Yi-Wen Ho | en |
dc.contributor.author | 何伊雯 | zh_TW |
dc.date.accessioned | 2021-06-15T12:40:21Z | - |
dc.date.available | 2021-08-02 | |
dc.date.copyright | 2016-08-02 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-07-27 | |
dc.identifier.citation | 1. Abraham-Juárez, M. J., Martínez-Hernández, A., Leyva-González, M. A., Herrera-Estrella, L., & Simpson, J. (2010). Class I KNOX genes are associated with organogenesis during bulbil formation in Agave tequilana. Journal of experimental botany, 61(14): 4055–4067.
2. Albani, M. C., Castaings, L., Wötzel, S., Mateos, J. L., Wunder, J., Wang, R., Reymond, M., & Coupland G. (2012). PEP1 of Arabis alpina is encoded by two overlapping genes that contribute to natural genetic variation in perennial flowering. PLoS Genet, 8(12): e1003130. 3. Alvarez-Buylla, E. R., Benítez, M., Corvera-Poiré, A., Chaos Cador, Á., de Folter, S., Gamboa de Buen, A., Garay-Arroyo, A., García-Ponce, B., Jaimes-Miranda, F., Pérez-Ruiz, R. V., & Piñeyro-Nelson, A. (2010). Flower development. The Arabidopsis Book, e0127. 4. Bao, Y., Dharmawardhana, P., Arias, R., Allen, M. B., Ma, C., & Strauss, S. H. (2009). WUS and STM-based reporter genes for studying meristem development in poplar. Plant cell reports, 28(6): 947–962. 5. Barrett, S. C., Colautti, R. I., & Eckert, C. G. (2008). Plant reproductive systems and evolution during biological invasion. Molecular Ecology, 17(1): 373–383. 6. Beatty, B. L., Jennings, W. F. & Rawlinson, R. C. (2003, November 21). Mimulus gemmiparus W.A. Weber (Rocky Mountain monkeyflower): a technical conservation assessment. USDA Forest Service, Rocky Mountain Region. Available: http://www.fs.fed.us/r2/projects/scp/assessments/mimulusgemmiparus.pdf. Retrieved 10-06-2016 7. Benlloch, R., Berbel, A., Ali, L., Gohari, G., Millán, T., & Madueño, F. (2015). Genetic control of inflorescence architecture in legumes. Frontiers in plant science: 6. 8. Box, M. S., & Rudall, P. J. (2006). Floral structure and ontogeny in Globba (Zingiberaceae). Plant Systematics and Evolution, 258(1): 107–122. 9. Bradley, D., Carpenter, R., Sommer, H., Hartley, N., & Coen, E. (1993). Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell, 72(1): 85–95. 10. Bradley, D., Carpenter, R., Copsey, L., Vincent, C., Rothstein, S., & Coen, E. (1996). Control of inflorescence architecture in Antirrhinum. Nature, 379: 791–797. 11. Bradley, D., Ratcliffe, O., Vincent, C., Carpenter, R., & Coen, E. (1997). Inflorescence commitment and architecture in Arabidopsis. Science, 275(5296): 80–83. 12. Carles, C. C., & Fletcher, J. C. (2003). Shoot apical meristem maintenance: the art of a dynamic balance. Trends in plant science, 8(8): 394–401. 13. Carroll, S. B. (2000). Endless forms: the evolution of gene regulation and morphological diversity. Cell, 101(6): 577–580. 14. Carroll, S. B. (2008). Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell, 134(1): 25–36. 15. Causier, B., Castillo, R., Zhou, J., Ingram, R., Xue, Y., Schwarz-Sommer, Z., & Davies, B. (2005). Evolution in action: following function in duplicated floral homeotic genes. Current Biology, 15(16): 1508–1512. 16. Chang, J. (2010). Study of inflorescence identity and floral determinacy genes on inflorescence transition in Titanotrichum, Master Thesis, National Taiwan University, Taipei. 122 pp. 17. Chen, S., Krinsky, B. H., & Long, M. (2013). New genes as drivers of phenotypic evolution. Nature Reviews Genetics, 14(9): 645–660. 18. Chen, Y. J. (2009). Candidate genes analysis of flower reversion to bulbils in Titanotrichum oldhamii (Hemsl.) Soler., Master Thesis, National Taiwan University, Taipei. 49 pp. 19. Coen, E. S., Romero, J., Doyle, S., Elliott, R., Murphy, G., & Carpenter, R. (1990). Floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell, 63(6): 1311–1322. 20. Daborn, P. J., Yen, J. L., Bogwitz, M. R., Le Goff, G., Feil, E., Jeffers, S., Tijet, N., Perry, T., Heckel, D., Batterham, P., Feyereisen, R., Wilson, T. G., & ffrench-Constant, R. H. (2002). A single P450 allele associated with insecticide resistance in Drosophila. Science, 297(5590): 2253–2256. 21. Daum, G., Medzihradszky, A., Suzaki, T., & Lohmann, J. U. (2014). A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis. Proceedings of the National Academy of Sciences, 111(40): 14619–14624. 22. Davies, B., Motte, P., Keck, E., Saedler, H., Sommer, H., & Schwarz‐Sommer, Z. (1999). PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS‐box factors controlling flower development. The EMBO Journal, 18(14): 4023–4034. 23. Delport, W., Poon, A. F., Frost, S. D., & Kosakovsky Pond, S. L. (2010). Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics, 26(19): 2455–2457. 24. Deng, T., Kim, C., Zhang, D. G., Zhang, J. W., Li, Z. M., Nie, Z. L., & Sun, H. (2013). Zhengyia shennongensis: A new bulbiliferous genus and species of the nettle family (Urticaceae) from central China exhibiting parallel evolution of the bulbil trait. Taxon, 62(1): 89–99. 25. Diggle, P. (1997). Extreme preformation in alpine Polygonum viviparum: an architectural and developmental analysis. American Journal of Botany, 84(2): 154–154. 26. Douhovnikoff, V., & Dodd, R. S. (2015). Epigenetics: a potential mechanism for clonal plant success. Plant Ecology, 216(2): 227–233. 27. Dreni, L., & Kater, M. M. (2014). MADS reloaded: evolution of the AGAMOUS subfamily genes. New Phytologist, 201(3): 717–732. 28. Elmqvist, T., & Cox, P. A. (1996). The evolution of vivipary in flowering plants. Oikos: 3–9. 29. Emerson, J. J., Cardoso-Moreira, M., Borevitz, J. O., & Long, M. (2008). Natural selection shapes genome-wide patterns of copy-number polymorphism in Drosophila melanogaster. Science, 320(5883): 1629–1631. 30. Ferrándiz, C., Gu, Q., Martienssen, R., & Yanofsky, M. F. (2000). Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development, 127(4): 725–734. 31. Ferrario, S., Shchennikova, A. V., Franken, J., Immink, R. G., & Angenent, G. C. (2006). Control of floral meristem determinacy in petunia by MADS-box transcription factors. Plant Physiology, 140(3): 890–898. 32. Finn, R. D., Mistry, J., Schuster-Böckler, B., Griffiths-Jones, S., Hollich, V., Lassmann, T., Moxon, S., Marshall, M., Khanna, A., Durbin, R., Eddy, S. R., Sonnhammer, E. L. L., & Bateman, A. (2006). Pfam: clans, web tools and services.Nucleic acids research, 34(suppl 1): D247–D251. 33. Flagel, L. E., & Wendel, J. F. (2009). Gene duplication and evolutionary novelty in plants. New Phytologist, 183(3): 557–564. 34. Floyd, S. K., & Bowman, J. L. (2007). The ancestral developmental tool kit of land plants. International journal of plant sciences, 168(1): 1–35. 35. Fourquin, C., & Ferrándiz, C. (2012). Functional analyses of AGAMOUS family members in Nicotiana benthamiana clarify the evolution of early and late roles of C‐function genes in eudicots. The Plant Journal, 71(6): 990–1001. 36. Gaillochet, C., & Lohmann, J. U. (2015). The never-ending story: from pluripotency to plant developmental plasticity. Development, 142(13): 2237–2249. 37. Gallois, J. L., Woodward, C., Reddy, G. V., & Sablowski, R. (2002). Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development, 129(13): 3207–3217. 38. Gallois, J. L., Nora, F. R., Mizukami, Y., & Sablowski, R. (2004). WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Genes & development, 18(4): 375–380. 39. Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic acids symposium series (Vol. 41, pp. 95–98). 40. Hedman, H., Zhu, T., von Arnold, S., & Sohlberg, J. J. (2013). Analysis of the WUSCHEL-RELATED HOMEOBOX gene family in the conifer Picea abies reveals extensive conservation as well as dynamic patterns. BMC plant biology,13(1): 1. 41. Hejátko, J., Blilou, I., Brewer, P. B., Friml, J., Scheres, B., & Benková, E. (2006). In situ hybridization technique for mRNA detection in whole mount Arabidopsis samples. Nature Protocols, 1(4): 1939–1946. 42. Huang, L., & Schiefelbein, J. (2015). Conserved gene expression programs in developing roots from diverse plants. The Plant Cell, 27(8): 2119–2132. 43. Ikeda, M., Mitsuda, N., & Ohme-Takagi, M. (2009). Arabidopsis WUSCHEL is a bifunctional transcription factor that acts as a repressor in stem cell regulation and as an activator in floral patterning. The Plant Cell, 21(11): 3493–3505. 44. Katayama, N., Koi, S., & Kato, M. (2010). Expression of SHOOT MERISTEMLESS, WUSCHEL, and ASYMMETRIC LEAVES1 homologs in the shoots of Podostemaceae: implications for the evolution of novel shoot organogenesis. The Plant Cell, 22(7): 2131–2140. 45. Kieffer, M., Stern, Y., Cook, H., Clerici, E., Maulbetsch, C., Laux, T., & Davies, B. (2006). Analysis of the transcription factor WUSCHEL and its functional homologue in Antirrhinum reveals a potential mechanism for their roles in meristem maintenance. The Plant Cell, 18(3): 560–573. 46. Kosakovsky Pond, S. L., & Frost, S. D. (2005a). Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics, 21(10): 2531–2533. 47. Kosakovsky Pond, S. L., & Frost, S. D. (2005b). Not so different after all: a comparison of methods for detecting amino acid sites under selection. Molecular biology and evolution, 22(5): 1208–1222. 48. Kosakovsky Pond, S. L., Murrell, B., Fourment, M., Frost, S. D., Delport, W., & Scheffler, K. (2011). A random effects branch-site model for detecting episodic diversifying selection. Molecular biology and evolution: msr125. 49. Kramer, E. M., Jaramillo, M. A., & Di Stilio, V. S. (2004). Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. Genetics, 166(2): 1011–1023. 50. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular biology and evolution: msw054. 51. Lee, H., Suh, S. S., Park, E., Cho, E., Ahn, J. H., Kim, S. G., Lee, J. S., Kwon, Y. M. & Lee, I. (2000). The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes & Development, 14(18): 2366–2376. 52. Lei, H. J., Yuan, H. Z., Liu, Y., Guo, X. W., Liao, X., Liu, L. L., Wang, Q., & Li, T. H. (2013). Identification and characterization of FaSOC1, a homolog of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 from strawberry. Gene, 531(2): 158–167. 53. Lenhard, M., Bohnert, A., Jürgens, G., & Laux, T. (2001). Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell, 105(6): 805–814. 54. Lenhard, M., Jürgens, G., & Laux, T. (2002). The WUSCHEL and SHOOTMERISTEMLESS genes fulfil complementary roles in Arabidopsis shoot meristem regulation. Development, 129(13): 3195–3206. 55. Lian, G., Ding, Z., Wang, Q., Zhang, D., & Xu, J. (2014). Origins and evolution of WUSCHEL-related homeobox protein family in plant kingdom. The Scientific World Journal, 2014. 56. Liu, C., Thong, Z., & Yu, H. (2009). Coming into bloom: the specification of floral meristems. Development, 136(20): 3379–3391. 57. Liu, X., Kim, Y. J., Müller, R., Yumul, R. E., Liu, C., Pan, Y., Cao, X., Goodrich, J., & Chen, X. (2011). AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of Polycomb Group proteins. The Plant Cell, 23(10): 3654–3670. 58. Lohmann, J. U., Hong, R. L., Hobe, M., Busch, M. A., Parcy, F., Simon, R., & Weigel, D. (2001). A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell, 105(6): 793–803. 59. Long, J. A., Moan, E. I., Medford, J. I., & Barton, M. K. (1996). A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature, 379(6560): 66–69. 60. Lozano, R., Giménez, E., Cara, B., Capel, J., & Angosto, T. (2009). Genetic analysis of reproductive development in tomato. International Journal of Developmental Biology, 53(8): 1635. 61. Mantegazza, R., Tononi, P., Möller, M., & Spada, A. (2009). WUS and STM homologs are linked to the expression of lateral dominance in the acaulescent Streptocarpus rexii (Gesneriaceae). Planta, 230(3): 529–542. 62. Melzer, S., Lens, F., Gennen, J., Vanneste, S., Rohde, A., & Beeckman, T. (2008). Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nature genetics, 40(12): 1489–1492. 63. Milne, I., Lindner, D., Bayer, M., Husmeier, D., McGuire, G., Marshall, D. F., & Wright, F. (2009). TOPALi v2: a rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multi-core desktops. Bioinformatics, 25(1): 126–127. 64. Mizukami, Y., & Ma, H. (1997). Determination of Arabidopsis floral meristem identity by AGAMOUS. The Plant Cell, 9(3): 393–408. 65. Möller, M., & Cronk, Q. C. B. (2001). Evolution of morphological novelty: a phylogenetic analysis of growth patterns in Streptocarpus (Gesneriaceae). Evolution, 55(5): 918–929. 66. Mondragón-Palomino, M., Meyers, B. C., Michelmore, R. W., & Gaut, B. S. (2002). Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana. Genome Research, 12(9): 1305–1315. 67. Moody, A., Diggle, P. K., & Steingraeber, D. A. (1999). Developmental analysis of the evolutionary origin of vegetative propagules in Mimulus gemmiparus (Scrophulariaceae). American Journal of Botany, 86(11): 1512–1522. 68. Moore, R. C., & Purugganan, M. D. (2005). The evolutionary dynamics of plant duplicate genes. Current opinion in plant biology, 8(2): 122–128. 69. Müller, B. M., Saedler, H., & Zachgo, S. (2001). The MADS‐box gene DEFH28 from Antirrhinum is involved in the regulation of floral meristem identity and fruit development. The Plant Journal, 28(2): 169–179. 70. Müller-Xing, R., Clarenz, O., Pokorny, L., Goodrich, J., & Schubert, D. (2014). Polycomb-group proteins and FLOWERING LOCUS T maintain commitment to flowering in Arabidopsis thaliana. The Plant Cell, 26(6): 2457–2471. 71. Müller-Xing, R., Schubert, D., & Goodrich, J. (2015). Non-inductive conditions expose the cryptic bract of flower phytomeres in Arabidopsis thaliana. Plant signaling & behavior, 10(4): e1010868. 72. Nardmann, J., Reisewitz, P., & Werr, W. (2009). Discrete shoot and root stem cell-promoting WUS/WOX5 functions are an evolutionary innovation of angiosperms. Molecular biology and evolution, 26(8): 1745–1755. 73. Okagami, N. (1979). Dormancy in bulbils of several herbaceous plants: effects of photoperiod, light, temperature, oxygen and gibberellic acid. The botanical magazine= Shokubutsu-gaku-zasshi, 92(1): 39–58. 74. Pan, I. L., McQuinn, R., Giovannoni, J. J., & Irish, V. F. (2010). Functional diversification of AGAMOUS lineage genes in regulating tomato flower and fruit development. Journal of experimental botany: erq046. 75. Parcy, F., Bomblies, K., & Weigel, D. (2002). Interaction of LEAFY, AGAMOUS and TERMINAL FLOWER1 in maintaining floral meristem identity in Arabidopsis. Development, 129(10): 2519–2527. 76. Par̆enicová, L., de Folter, S., Kieffer, M., Horner, D. S., Favalli, C., Busscher, J., Cook, H. E., Ingram, R. M., Kater, M. M., Davies, B., Angenent, G. C. & Colombo, L. (2003). Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis new openings to the MADS world. The Plant Cell, 15(7): 1538–1551. 77. Pnueli, L., Hareven, D., Rounsley, S. D., Yanofsky, M. F., & Lifschitz, E. (1994). Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. The Plant Cell, 6(2): 163–173. 78. Pires, N. D., & Dolan, L. (2012). Morphological evolution in land plants: new designs with old genes. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367(1588): 508–518. 79. Prunet, N., Morel, P., Negrutiu, I., & Trehin, C. (2009). Time to stop: flower meristem termination. Plant Physiology, 150(4): 1764–1772. 80. Rensing, S. A. (2014). Gene duplication as a driver of plant morphogenetic evolution. Current opinion in plant biology, 17: 43–48. 81. Rijpkema, A. S., Gerats, T., & Vandenbussche, M. (2007). Evolutionary complexity of MADS complexes. Current opinion in plant biology, 10(1): 32–38. 82. Roulin, A., Auer, P. L., Libault, M., Schlueter, J., Farmer, A., May, G., Stacey, G., Doerge, R. W., & Jackson, S. A. (2013). The fate of duplicated genes in a polyploid plant genome. The Plant Journal, 73(1): 143–153. 83. Rozier, F., Mirabet, V., Vernoux, T., & Das, P. (2014). Analysis of 3D gene expression patterns in plants using whole-mount RNA in situ hybridization. Nature protocols, 9(10): 2464–2475. 84. Ruokolainen, S., Ng, Y. P., Broholm, S. K., Albert, V. A., Elomaa, P., & Teeri, T. H. (2010). Characterization of SQUAMOSA-like genes in Gerbera hybrida, including one involved in reproductive transition. BMC plant biology, 10(1): 128. 85. Shannon, S., & Meeks-Wagner, D. R. (1991). A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. The Plant Cell, 3(9): 877–892. 86. Sharma, B., & Kramer, E. (2013). Sub‐and neo‐functionalization of APETALA3 paralogs have contributed to the evolution of novel floral organ identity in Aquilegia (columbine, Ranunculaceae). New Phytologist, 197(3): 949–957. 87. Sharma, B., Yant, L., Hodges, S. A., & Kramer, E. M. (2014). Understanding the development and evolution of novel floral form in Aquilegia. Current opinion in plant biology, 17: 22–27. 88. Smykal, P., Gennen, J., De Bodt, S., Ranganath, V., & Melzer, S. (2007). Flowering of strict photoperiodic Nicotiana varieties in non-inductive conditions by transgenic approaches. Plant molecular biology, 65(3): 233–242. 89. Stahl, Y., & Simon, R. (2010). Plant primary meristems: shared functions and regulatory mechanisms. Current opinion in plant biology, 13(1): 53–58. 90. Tanaka, Y., Oshima, Y., Yamamura, T., Sugiyama, M., Mitsuda, N., Ohtsubo, N., Ohme-Takagi, M., & Terakawa, T. (2013). Multi-petal cyclamen flowers produced by AGAMOUS chimeric repressor expression. Scientific reports, 3. 91. Tooke, F., Ordidge, M., Chiurugwi, T., & Battey, N. (2005). Mechanisms and function of flower and inflorescence reversion. Journal of Experimental Botany, 56(420): 2587–2599. 92. Vrebalov, J., Pan, I. L., Arroyo, A. J. M., McQuinn, R., Chung, M., Poole, M., Rose, J., Seymour, G., Grandillo, S., Giovannoni, J., & Irish, V. F. (2009). Fleshy fruit expansion and ripening are regulated by the tomato SHATTERPROOF gene TAGL1. The Plant Cell, 21(10), 3041-3062. 93. Vlad, D., Kierzkowski, D., Rast, M. I., Vuolo, F., Ioio, R. D., Galinha, C., Xiangchao Gan, X., Hajheidari, M., Hay, A., Smith, R. S., Huijser, P., Bailey, C. D., & Tsiantis, M. (2014). Leaf shape evolution through duplication, regulatory diversification, and loss of a homeobox gene. Science, 343(6172): 780–783. 94. Voordeckers, K., Pougach, K., & Verstrepen, K. J. (2015). How do regulatory networks evolve and expand throughout evolution?. Current opinion in biotechnology, 34: 180–188. 95. Wang, C. N., & Cronk, Q. C. (2003). Meristem fate and bulbil formation in Titanotrichum (Gesneriaceae). American Journal of Botany, 90(12): 1696–1707. 96. Wang, C. N., Möller, M., & Cronk, Q. C. (2004a). Altered expression of GFLO, the Gesneriaceae homologue of FLORICAULA/LEAFY, is associated with the transition to bulbil formation in Titanotrichum oldhamii. Development genes and evolution, 214(3): 122–127. 97. Wang, C. N., Möller, M., & Cronk, Q. C. (2004b). Aspects of sexual failure in the reproductive processes of a rare bulbiliferous plant, Titanotrichum oldhamii (Gesneriaceae), in subtropical Asia. Sexual Plant Reproduction, 17(1): 23–31. 98. Wang, Y., Ma, Y., Fu, J., Qi, S., Ma, H., & Dai, S. (2013). Isolation and functional analysis of the ClM8-FRUITFULL-like MADS-box gene from Chrysanthemum lavandulifolium. Scientia Horticulturae, 161, 125-133. 99. Wapinski, I., Pfeffer, A., Friedman, N., & Regev, A. (2007). Natural history and evolutionary principles of gene duplication in fungi. Nature, 449(7158): 54–61. 100. Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M., & Barton, G. J. (2009). Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics, 25(9): 1189–1191. 101. Weigel, D., Alvarez, J., Smyth, D. R., Yanofsky, M. F., & Meyerowitz, E. M. (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell, 69(5): 843–859. 102. Yu, D., Kotilainen, M., Pöllänen, E., Mehto, M., Elomaa, P., Helariutta, Y., Albert, V. A., & Teeri, T. H. (1999). Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). The Plant Journal, 17(1): 51–62. 103. Zhang, W., Fan, S., Pang, C., Wei, H., Ma, J., Song, M., & Yu, S. (2013). Molecular Cloning and Function Analysis of Two SQUAMOSA‐Like MADS‐Box Genes From Gossypium hirsutum L. Journal of integrative plant biology, 55(7): 597–607. 104. Zuo, J., Niu, Q. W., Frugis, G., & Chua, N. H. (2002). The WUSCHEL gene promotes vegetative‐to‐embryonic transition in Arabidopsis. The Plant Journal, 30(3): 349–359. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50428 | - |
dc.description.abstract | 開花植物如何演化並藉其有性或無性繁殖策略維繫物種存續,是植物學研究的重要議題之一。俄氏草具有包含「成花反轉」及「假性胎生」並形成無性繁殖體(珠芽)的獨特繁殖方式,先前研究顯示俄氏草花序特性基因ToCEN亦在珠芽序中表現,暗示珠芽序和花序在結構與遺傳調控上具有若干同源性。演化發育學理論敘及新形態發生常源自修改既有基因與調控機制而產生,因此本研究旨在探討是否也具有同源套組基因參與調控俄氏草花與珠芽分生組織這兩種同源構造的發育過程。研究中選擇了成花決定套組基因作為主要的探討對象,即幹細胞特性基因WUSCHEL (WUS)與其共同調控因子AGAMOUS (AG)。有趣的是,在大多數物種裡都只會有各一個WUS和AG的直系同源基因(ortholog),然而這兩個基因在俄氏草裡都發現了基因複製的現象,並且在發育過程呈現分歧表現。其中ToWUS1、ToAG1、ToAG3主要表現在花序,而ToWUS2與ToAG2則主要表現在珠芽序。雖然這類保守的套組基因複製並不常發生,一旦發生了則通常會伴隨著天擇作用。而此現象正好與在俄氏草裡看到的結果相符,模式檢定亦支持ToWUS2有受到正向天擇的證據,或許和它複製後具有其時空表現與功能棲位有關,並提供珠芽分生組織無限生長之特性。總結本研究呈現在俄氏草遺傳組中複製的幹細胞特性基因ToWUS1與ToWUS2分別和同源之有性與無性分生組織的器官生成相關,而創新的WUS-AG套組基因表現模式可能和新的形態發生有關,且該新形態係構成在俄氏草繁殖策略中至關重要的珠芽序。 | zh_TW |
dc.description.abstract | Reproductive strategy, including sexual or asexual, which directly related to the maintenance of one species, is one of the most important issues of angiosperms. Titanotrichum oldhamii exhibits a unique reproductive strategy, which consists of floral reversion and pseudoviviparous bulbils formation. Previous study revealed that the inflorescence meristem identity gene ToCEN participates in bulbiliferous shoot formation, suggesting that bulbiliferous shoot and inflorescence may share certain homology. As the evo-devo theory proposes that novel morphogenesis are largely evolved by recruiting the pre-existed genes, whether there exists homologous regulatory toolkits between the two homologous structures ̶ the floral meristem and the bulbiliferous meristem ̶ in Titanotrichum is concerned in this study. The key regulatory toolkits for floral determinacy, namely the stem cell identity gene WUSCHEL (WUS) and its co-operator AGAMOUS (AG) are therefore chosen as the major candidates. Interestingly, unlike most of the species have only one WUS ortholog and one euAG ortholog, both genes are duplicated in Titanotrichum and displaying divergent expression patterns. While ToWUS1, ToAG1, and ToAG3 are mainly expressed in inflorescence, ToWUS2 and ToAG2 are dominantly expressed in bulbiliferous shoot. Though duplication of conserved toolkit is rare, it is usually followed by selection. This is also consistent with the results that ToWUS2 was positively selected, maybe for occupying certain regulatory niches that provide the indeterminate growth of bulbiliferous meristem. In case of Titanotrichum, this study presents the scenario that the duplicated stem cell identity genes ToWUS1 and ToWUS2 are involved in organogenesis of homologous sexual and asexual meristems respectively. And innovation on WUS-AG toolkit is closely linked to the novel morphogenesis, the bulbiliferous development, which contributes to the alternative reproductive strategy of Titanotrichum. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T12:40:21Z (GMT). No. of bitstreams: 1 ntu-105-R02b21020-1.pdf: 5708390 bytes, checksum: 83dbd8f122c0290e1b408e85e32a1f9b (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 摘要 I
Abstract II Index of Figures and Tables VII Abbreviations IX 1. Introduction 1 1.1. General background of Titanotrichum oldhamii 1 1.1.1. Unique reproductive strategy observed in Titanotrichum 1 1.1.2. Floral reversion 2 1.1.3. Pseudovivipary, asexual propagation, and bulbils 3 1.1.4. Bulbil production may be evolved in parallel 4 1.1.5. Observed homology between the inflorescence/ flowers and the bulbiliferous shoots/ bulbil clusters 4 1.2. The evo-devo theory of innovative morphological evolution along with candidate gene approach 6 1.2.1. Toolkit gene: new designs with old genes 6 1.2.2. Selected candidate genes in this study 6 1.2.2.1. Major candidate toolkit: WUS and AG 6 1.2.2.2. Other candidate genes: LFY, SOC1, FUL, TFL1, and STM 8 1.3. Aim of this study 10 2. Materials and methods 12 2.1. Plant materials 12 2.2. Target gene isolation 15 2.2.1. RNA extraction and first strand cDNA synthesis 15 2.2.2. Primer design 16 2.2.3. Regular PCR settings 16 2.2.4. Rapid amplification of 3’ cDNA ends (3’ RACE) 18 2.2.5. Cloning and colony PCR 19 2.3. Sequence analysis 20 2.3.1. Homology assessment 20 2.3.1.1. Screening for Titanotrichum homologs 20 2.3.1.2. Preliminary phylogeny of modern clade of WOX gene family 21 2.3.1.3. Preliminary phylogeny of MIKC group of MADS box gene family 21 2.3.1.4. Obtaining possible sequences for the candidate genes 22 2.3.1.5. Reconstruction of the phylogeny of WUS 22 2.3.1.6. Reconstruction of the phylogeny of AG 23 2.3.2. Evolutionary analysis of ToAG and ToWUS genes 23 2.4. Target gene expression survey 25 2.4.1. RT-PCR 25 2.4.2. Real-time PCR 25 2.4.3. Whole-mount RNA in situ hybridization 27 2.4.3.1. Probe design and synthesis 27 2.4.3.2. Dot blotting quantification of DIG-labeled probe 29 2.4.3.3. Tissue fixation and dehydration 31 2.4.3.4. In situ hybridization 32 2.4.3.5. Sample Mounting and Imaging 35 3. Results 36 3.1. Genes cloned in the study 36 3.1.1. Homologs of WUS/ROA in Titanotrichum 36 3.1.1.1. Obtaining the WUS homologs 36 3.1.1.2. Sequence identity and similarity of WUS genes 38 3.1.1.3. Reconstruction of the phylogenic tree of WUS genes 40 3.1.2. Homologs of AG/PLE, FUL, SOC1 in Titanotrichum 41 3.1.2.1. Obtaining the AG/PLE, FUL, SOC1 homologs 41 3.1.2.2. Sequence identity and similarity of AG genes 43 3.1.2.3. Reconstruction of the phylogenic tree of AG genes 46 3.2. Tentative gene expression patterns by RT-PCR 47 3.2.1. Expression patterns of different developmental stages and tissues by RT-PCR 47 3.2.2. Expression patterns of Titanotrichum WUS and AG homologs in two different types of bulbiliferous shoot 49 3.3. Examining the temporal gene expression patterns by real-time PCR 51 3.3.1. The developmental stages of real-time PCR 51 3.3.2. The results of candidate genes expression patterns during floral reversion to bulbiliferous shoot formation in Titanotrichum 51 3.4. Spatial expression patterns of ToWUS2 and ToAG2 in Titanotrichum bulbiliferous meristem by whole-mount in situ hybridization 55 3.5. Evolutionary cues of ToWUS and ToAG 57 4. Discussion 64 4.1. Gene duplication associated homologous regulation and novel morphogenesis 64 4.1.1. Homologous regulation operated by homologous toolkits 64 4.1.2. Gene duplication may trigger morphological divergence. 65 4.1.3. Gene duplication can result in functional divergence and novel morphogenesis 67 4.2. The evolutionary cues link to the novel morphogenesis beyond newly created genetic regulation 68 4.2.1. Positive selection of the newly derived trait. 68 4.2.2. Positive selection on codons in the non-conserved region between homeodomain and WUS-box may affect the mobility of WUS protein. 69 4.2.3. Ambiguous roles of AG homologs in meristem fate 70 4.3. Other candidate gene expression pattern 72 4.3.1. Ectopic expression of WUS and STM homologs are linked to meristem activity and organogenesis. 72 4.3.2. The expression of FUL and SOC1 in non-inductive flowering conditions and the various roles of FUL among species. 73 5. Conclusion and Future Prospect 75 Reference 78 Appendices 91 Appendix 1. Accession numbers of sequence used in this study 91 Appendix 1.1. Accession numbers of WUS-like genes 91 Appendix 1.2. Accession numbers of AG-like genes 92 Appendix 1.3. Accession numbers of WOX gene family. 93 Appendix 1.4. Accession numbers of MIKC group of MADS box gene family. 95 Appendix 2. Primers used in this study 96 Appendix 2.1. Primers for gene isolation 96 Appendix 2.1. Primers for gene isolation (Continued.) 97 Appendix 2.2. Primers for RT-PCR 98 Appendix 2.2. Primers for RT-PCR (Continued.) 99 Appendix 2.3. Primers for real-time PCR 100 Appendix 2.4. Primers for probes of RNA in situ hybridization 101 Appendix 3. Complete results of evolutionary analysis on Datamonkey 102 Appendix 4. cDNA sequence of genes cloned in this study 105 Appendix4.1. Confirmed cDNA sequence of ToWUS2. 105 Appendix 4.2. Confirmed cDNA sequence of ToAG2 107 Appendix 4.3. Confirmed cDNA sequence of ToAG3 108 Appendix 4.4. Confirmed cDNA sequence of ToFUL 110 Appendix 4.5. Confirmed cDNA sequence of ToSOC1 111 | |
dc.language.iso | zh-TW | |
dc.title | WUSCHEL與AGAMOUS基因複製
對俄氏草珠芽發育之影響 | zh_TW |
dc.title | Duplication of WUSCHEL and AGAMOUS Involved
in the Bulbil Development of Titanotrichum | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 余天心,洪傳揚,陳仁治,蔡文杰 | |
dc.subject.keyword | WUSCHEL,AGAMOUS,基因複製,珠芽,演化發生, | zh_TW |
dc.subject.keyword | WHSCHEL,AGAMOUS,gene duplication,bulbil,evo-devo, | en |
dc.relation.page | 111 | |
dc.identifier.doi | 10.6342/NTU201601471 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-07-28 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生命科學系 | zh_TW |
顯示於系所單位: | 生命科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 5.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。