Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50423
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor閔明源
dc.contributor.authorTing-Hsuan Daniel Changen
dc.contributor.author張珽瑄zh_TW
dc.date.accessioned2021-06-15T12:40:09Z-
dc.date.available2019-08-03
dc.date.copyright2016-08-03
dc.date.issued2016
dc.date.submitted2016-07-28
dc.identifier.citationAl-Hasani, R, Bruchas, MR (2011) Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology, 115:1363–1381.
Allen, GV, Saper, CB, Hurley, KM, Cechetto, DF (1991) Organization of visceral and limbic connections in the insular cortex of the rat. J Comp Neurol, 311:1–16.
Apkarian, AV, Bushnell, MC, Treede, RD, Zubieta, JK (2005) Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain, 9:463–484.
Basbaum, AI, Fields, HL (1978) Endogenous pain control mechanisms: review and hypothesis. Ann Neurol, 4:451–462.
Bormann, J (1988) Electrophysiology of GABAA and GABAB receptor subtypes. Trends in Neuroscience, 11:112–116.
Burkey, AR, Carstens, E, Jasmin, L (1999) Dopamine reuptake inhibition in the rostral agranular insular cortex produces antinociception. The Journal of neuroscience,
Carcea, I, Froemke, RC (2013) Cortical plasticity, excitatory-inhibitory balance, and sensory perception. Prog Brain Res, 207:65–90.
Chen, L, Liu, JC, Zhang, XN, Guo, YY, Xu, ZH, Cao, W, Sun, XL, Sun, WJ, Zhao, MG (2008) Down-regulation of NR2B receptors partially contributes to analgesic effects of Gentiopicroside in persistent inflammatory pain. Neuropharmacology, 54:1175–1181.
Cheng, SJ, Chen, CC, Yang, HW, Chang, YT, Bai, SW, Chen, CC, Yen, CT, Min, MY (2011) Role of extracellular signal-regulated kinase in synaptic transmission and plasticity of a nociceptive input on capsular central amygdaloid neurons in normal and acid-induced muscle pain mice. J Neurosci, 31:2258–2270.
Christmann, C, Koeppe, C, Braus, DF, Ruf, M, Flor, H (2007) A simultaneous EEG-fMRI study of painful electric stimulation. Neuroimage, 34:1428–1437.
Crown, ED, Ye, Z, Johnson, KM, Xu, GY, McAdoo, DJ, Westlund, KN, Hulsebosch, CE (2005) Upregulation of the phosphorylated form of CREB in spinothalamic tract cells following spinal cord injury: relation to central neuropathic pain. Neurosci Lett, 384:139–144.
Cruikshank, SJ, Urabe, H, Nurmikko, AV, Connors, BW (2010) Pathway-specific feedforward circuits between thalamus and neocortex revealed by selective optical stimulation of axons. Neuron, 65:230–245.
D’amour, JA, Froemke, RC (2015) Inhibitory and excitatory spike-timing-dependent plasticity in the auditory cortex. Neuron, 86:514–528.
Dorrn, AL, Yuan, K, Barker, AJ, Schreiner, CE, Froemke, RC (2010) Developmental sensory experience balances cortical excitation and inhibition. Nature, 465:932–936.
Gao, YJ, Ji, RR (2009) c-Fos and pERK, which is a better marker for neuronal activation and central sensitization after noxious stimulation and tissue injury. Open Pain J, 2:11–17.
Hurd, YL, Suzuki, M, Sedvall, GC (2001) D1 and D2 dopamine receptor mRNA expression in whole hemisphere sections of the human brain. J Chem Neuroanat, 22:127–137.
Ibrahim, MM, Mata, HP, Chawla, M, Lai, J, Porreca, F, Malan, TP (2001) Allodynia and hyperalgesia produced by specific inhibition of spinal c-fos expression: lack of correlation with dynorphin content. J Pain, 2:241–249.
Jasmin, L, Burkey, AR, Granato, A, Ohara, PT (2004) Rostral agranular insular cortex and pain areas of the central nervous system: a tract-tracing study in the rat. J Comp Neurol, 468:425–440.
Jasmin, L, Rabkin, SD, Granato, A, Boudah, A, Ohara, PT (2003) Analgesia and hyperalgesia from GABA-mediated modulation of the cerebral cortex. Nature, 424:316–320.
Ji, RR, Kohno, T, Moore, KA, Woolf, CJ (2003) Central sensitization and LTP: do pain and memory share similar mechanisms. Trends Neurosci, 26:696–705.
Kobayashi, M, Takei, H, Yamamoto, K, Hatanaka, H, Koshikawa, N (2012) Kinetics of GABAB autoreceptor-mediated suppression of GABA release in rat insular cortex. J Neurophysiol, 107:1431–1442.
Kobayashi, S (2012) Organization of neural systems for aversive information processing: pain, error, and punishment. Front Neurosci, 6:136.
Koyanagi, Y, Oi, Y, Yamamoto, K, Koshikawa, N, Kobayashi, M (2014) Fast-spiking cell to pyramidal cell connections are the most sensitive to propofol-induced facilitation of GABAergic currents in rat insular cortex. Anesthesiology, 121:68–78.
Koyanagi, Y, Yamamoto, K, Oi, Y, Koshikawa, N, Kobayashi, M (2010) Presynaptic interneuron subtype- and age-dependent modulation of GABAergic synaptic transmission by beta-adrenoceptors in rat insular cortex. J Neurophysiol, 103:2876–2888.
Krettek, JE, Price, JL (1977) The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Comp Neurol, 171:157–191.
Le Bars, D, Villanueva, L, Willer, JC, Bouhassira, D (1991) Diffuse Noxious Inhibitory Controls (DNIC) in animals and in man. Acupuncture in Medicine, 9:47–56.
Lee, WT, Sohn, MK, Park, SH, Ahn, SK, Lee, JE, Park, KA (2001) Studies on the changes of c-fos protein in spinal cord and neurotransmitter in dorsal root ganglion of the rat with an experimental peripheral neuropathy. Yonsei Med J, 42:30–40.
Li, XY, Ko, HG, Chen, T, Descalzi, G, Koga, K, Wang, H, Kim, SS, Shang, Y, Kwak, C, Park, SW, Shim, J, Lee, K, Collingridge, GL, Kaang, BK, Zhuo, M (2010) Alleviating neuropathic pain hypersensitivity by inhibiting PKMzeta in the anterior cingulate cortex. Science, 330:1400–1404.
Liu, MG, Kang, SJ, Shi, TY, Koga, K, Zhang, MM, Collingridge, GL, Kaang, BK, Zhuo, M (2013) Long-term potentiation of synaptic transmission in the adult mouse insular cortex: multielectrode array recordings. J Neurophysiol, 110:505–521.
Lopantsev, V, Schwartzkroin, PA (2001) GABA(A)-dependent chloride influx modulates reversal potential of GABA(B)-mediated IPSPs in hippocampal pyramidal cells. J Neurophysiol, 85:2381–2387.
Oliet, SHR, Malenka, RC, Nicoll, RA (1996) Bidirectional control of quantal size by synaptic activity in the hippocampus. Science, 271:1294–1297.
Ostrowsky, K, Magnin, M, Ryvlin, P, Isnard, J, Guenot, M, Mauguiere, F (2002) Representation of pain and somatic sensation in the human insula: a study of responses to direct electrical cortical stimulation. Cereb Cortex, 12:376–385.
Park, P, Sanderson, TM, Amici, M, Choi, S-L, Bortolotto, ZA, Zhuo, M, Kaang, B-K, Collingridge, GL (2016) Calcium-Permeable AMPA Receptors Mediate the Induction of the Protein Kinase A-Dependent Component of Long-Term Potentiation in the Hippocampus. Journal of Neuroscience, 36:622–631.
Paxinos, G, Franklin, KBJ (2004) The mouse brain in stereotaxic coordinates. Gulf Professional Publishing:
Pert, CB, Snyder, SH (1973) Opiate receptor: demonstration in nervous tissue. Science, 179:1011–1014.
Qiu, S, Zhang, M, Liu, Y, Guo, Y, Zhao, H, Song, Q, Zhao, M, Huganir, RL, Luo, J, Xu, H, Zhuo, M (2014) GluA1 phosphorylation contributes to postsynaptic amplification of neuropathic pain in the insular cortex. J Neurosci, 34:13505–13515.
Ray, JP, Price, JL (1992) The organization of the thalamocortical connections of the mediodorsal thalamic nucleus in the rat, related to the ventral forebrain-prefrontal cortex topography. J Comp Neurol, 323:167–197.
TC, S (2011) How does PKMζ maintain long-term memory? Nat. Rev. Neurosci., 12
Sandkuhler, J (2007) Understanding LTP in pain pathways. Mol Pain, 3:9.
Simon, EJ, Hiller, JM, Edelman, I (1973) Stereospecific binding of the potent narcotic analgesic (3H) Etorphine to rat-brain homogenate. Proc Natl Acad Sci U S A, 70:1947–1949.
Song, XS, Cao, JL, Xu, YB, He, JH, Zhang, LC, Zeng, YM (2005) Activation of ERK/CREB pathway in spinal cord contributes to chronic constrictive injury-induced neuropathic pain in rats. Acta Pharmacol Sin, 26:789–798.
Starr, CJ, Sawaki, L, Wittenberg, GF, Burdette, JH, Oshiro, Y, Quevedo, AS, Coghill, RC (2009) Roles of the insular cortex in the modulation of pain: insights from brain lesions. J Neurosci, 29:2684–2694.
Tamamaki, N, Yanagawa, Y, Tomioka, R, Miyazaki, J, Obata, K, Kaneko, T (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol, 467:60–79.
Wei, F, Li, P, Zhuo, M (1999) Loss of synaptic depression in mammalian anterior cingulate cortex after amputation. J Neurosci, 19:9346–9354.
Wei, F, Zhuo, M (2001) Potentiation of sensory responses in the anterior cingulate cortex following digit amputation in the anaesthetised rat. J Physiol, 532:823–833.
Woolf, CJ (2010) What is this thing called pain. J Clin Invest, 120:3742–3744.
Woolf, CJ (2011) Central sensitization: implications for the diagnosis and treatment of pain. Pain, 152:S2–15.
Woolf, CJ, Ma, Q (2007) Nociceptors--noxious stimulus detectors. Neuron, 55:353–364.
Wu, L-J (2005) Upregulation of Forebrain NMDA NR2B Receptors Contributes to Behavioral Sensitization after Inflammation. Journal of Neuroscience, 25:11107–11116.
Xu, H, Wu, LJ, Wang, H, Zhang, X, Vadakkan, KI, Kim, SS, Steenland, HW, Zhuo, M (2008) Presynaptic and postsynaptic amplifications of neuropathic pain in the anterior cingulate cortex. J Neurosci, 28:7445–7453.
Yamamoto, K, Koyanagi, Y, Koshikawa, N, Kobayashi, M (2010) Postsynaptic cell type-dependent cholinergic regulation of GABAergic synaptic transmission in rat insular cortex. J Neurophysiol, 104:1933–1945.
Yu, HY, Tang, FI, Kuo, BI, Yu, S (2006) Prevalence, interference, and risk factors for chronic pain among Taiwanese community older people. Pain Manag Nurs, 7:2–11.
Zhuang, ZY, Xu, H, Clapham, DE, Ji, RR (2004) Phosphatidylinositol 3-kinase activates ERK in primary sensory neurons and mediates inflammatory heat hyperalgesia through TRPV1 sensitization. J Neurosci, 24:8300–8309.
Zhuo, M (2002) Glutamate receptors and persistent pain: targeting forebrain NR2B subunits. Drug Discov Today, 7:259–267.
Zhuo, M (2008) Cortical excitation and chronic pain. Trends Neurosci, 31:199–207.
Zhuo, M (2011) Cortical plasticity as a new endpoint measurement for chronic pain. Mol Pain, 7:54
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50423-
dc.description.abstract前端無顆粒狀腦島皮質(rostral agranular insular cortex, RAIC)是大腦皮質中 島葉的前端,在人腦中位於顳葉的內側,又稱大腦的第五葉。島葉是腦邊緣系統的 一部份,和很多感覺調控都有關係,包括內臟感覺、情緒等,也參與在疼痛反應的 調控上。過去研究指出當島葉有病變或是受到藥物抑制時,會有鎮痛的反應。這表 示在正常狀態下,活化島葉會造成痛覺過敏。過去腦核磁照影也指出島葉會參與在 調控慢性痛的迴路裡。慢性痛是一個非常麻煩的病症,對於患者會持續產生疼痛感 覺和影響患者的生活品質,過去研究指出慢性痛的生成可能和大腦中疼痛核區的 突觸長期性改變有關。而突觸長期性的改變,或稱可塑性(Plasticity),通常和核 區內興奮性和抑制性細胞的調控失衡有關,而影響一個核區的活化。所以我們假設: 島葉是因為核區內興奮性和抑制性細胞的調控失衡,而活化核區,最後影響慢性痛 的生成。實驗室過去的研究已提出一個有力的證據,在前端無顆粒狀腦島皮質中, 第五層的錐狀神經元與丙胺基丁酸神經元細胞會在慢性痛後有差異性的活化,只 有投射細胞錐狀神經元被活化。
因此,為了更進一步探討慢性痛在突觸上產生的可塑性變化,我進行了全細 胞鑲嵌技術(Whole-cell patch clamp)同時紀錄第五層的錐狀神經元與丙胺基丁酸 神經元細胞,探討這兩種細胞對來自於第二三層同樣的興奮性刺激的突觸生理,並 比較其在疼痛前和疼痛後的差異。我的研究主要在於疼痛處理前做探討,分為兩個 部分,突觸後與突觸前反應。
(1) 突觸後反應:可以發現在錐狀神經元的興奮性突觸後電流較丙胺基丁酸
神經元細胞來得慢也比較長。同時我也測量了N-甲基-D-天門冬胺酸接 iv
受器(NMDA receptor)在突觸後神經元的比例,我發現錐狀神經元細 胞中的N-甲基-D-天門冬胺酸接受器較丙胺基丁酸神經元細胞有較大的 比例。
(2) 突觸前反應:我紀錄了配對脈衝比率(Paired-pulse ratio),發現錐狀細 胞的前突觸皆為配對脈衝促進性,但丙胺基丁酸神經元細胞有些呈現促 進性,而有些呈現抑制性。還發現投射到丙胺基丁酸神經元細胞的前突 觸趨勢性較高的神經濾胞釋放機率。
最後,由於先前研究指出慢性痛會誘發磷酸化細胞外信號調節激酶(pERK), 所以我測試了該激酶對於島葉突觸的影響。我發現當誘發磷酸化細胞外信號調節 激酶(pERK)時,會增加興奮性突觸後電流。而進一步的疼痛研究將是我們未來 的目標。
zh_TW
dc.description.abstractIt has been shown that inhibition or lesion of the rostral agranular insular cortex (RAIC) results in analgesia, it suggests that RAIC tonically produces hyperalgesia signal. RAIC is a cortical area where nociceptive output originates, and it has been reported to activate in chronic pain perception. It’s believed that chronic pain is associated with the long-term change in synaptic plasticity. Moreover, the imbalance of excitatory and inhibitory (E/I) synaptic signaling in neural circuits is responsible to modulate synaptic plasticity in certain behavior disorders. In our lab, previous study had reported that the induction of chronic pain induced differential activation in pyramidal cells and GABAergic neurons in RAIC. We propose here that E/I imbalance in RAIC may contribute to the increased cortical output of nociceptive signal in chronic pain. To test this possibility, we compared synaptic transmission of layers 2/3 (L2/3) inputs onto layer 5 (L5) pyramidal cells (PC), which are the descending projection neurons, and onto local GABAergic interneurons (IntN) in RAIC. We performed dual-patch recording from a paired IntN-PC in layer 5, and elicited EPSC by putting an electrode in layer 2/3. We found functional connectivity in 34.2% of all recorded IntN-PC pairs. There was no significant difference in data sampled from IntN-PC pairs with and without functional connectivity, and all data were pooled. Our data showed no significant difference in paring-pulse ratio between transmission at L2/3-PC synapses and at L2/3-IntN synapses. L2/3-IntN seemed to have higher releasing probability than L2/3-PC synapse in quantum study. The ratio of NMDA and non-NMDA EPSCs component was larger at L2/3-PC synapses than at L2/3-IntN synapses. Furthermore, the rising and decay of EPSCs were much faster at L2/3-IntN synapse than at L2/3-PC synapse. We further examined the modulation of pERK on IntN-PC pairs by applying PKC activator Phorbol 12,13- diacetate (PDA). PDA enhanced the postsynaptic currents at L2/3-PC synapses and L2/3- IntN synapses. The further issue of chronic pain model is under studying.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:40:09Z (GMT). No. of bitstreams: 1
ntu-105-R02b21009-1.pdf: 23011743 bytes, checksum: 5b8a9b67359275d48a699a676e67f2b3 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 iv
ABSTRACT vi
CONTENTS viii
LIST OF FIGURES x
Chapter 1 Introduction 1
1.1 What is pain 1
1.2 Pain pathway in the brain 1
1.3 The formation of chronic pain 3
1.4 Central sensitization in pain modulation 6
1.5 Anterior cingular cortex 6
1.6 Agranular insular cortex 7
1.7 The role of excitatory and inhibitory balance in synaptic plasticity 9
Chapter 2 Materials and Methods 11
2.1 Animal 11
2.2 Brain slice preparation 11
2.3 Electrophysiology 11
2.4 Immunostaining 13
2.5 Drug 14
2.6 Statistical analysis 14
Chapter 3 Results 15
3.1 Identification of pyramidal and GABAergic neurons in RAIC brain slice 15
3.2 Pyramidal cells and GABAergic neurons showed functional connectivity 16
3.3 Pyramidal cells show slower eEPSC kinetic than GABAergic neurons 17
3.4 Pyramidal cells and GABAergic neurons had no significant difference in NMDA/non-NMDA ratio 18
3.5 There are no significant different in pairing-pulse ratio 19
3.6 Presynaptic releasing probability of GABAergic neurons was higher than pyramidal cells 19
3.7 pERK activator PDA enhance the eEPSC in pyramidal cells and GABAergic neurons 20
3.8 Conclusion 21
Chapter 4 Discussion 23
4.1 Insular cortex had various efferents 23
4.2 Connection from GABAergic neurons to pyramidal cells 24
4.3 The impact of GABAB receptors 25
4.4 Insular cortex was a heterogeneous cortical region 26
4.5 The role of NR2B in the insular cortex 27
4.6 Neuromodulatory system 28
4.7 Significance & Future works 29
Chapter 5 Reference 31
dc.language.isoen
dc.subject興奮性與刺激性訊號平衡zh_TW
dc.subject疼痛zh_TW
dc.subject突觸可塑性zh_TW
dc.subject磷酸化細胞外信號調節激?zh_TW
dc.subject全細胞鑲嵌技術zh_TW
dc.subject磷酸化細胞外信號調節激?zh_TW
dc.subject疼痛zh_TW
dc.subject全細胞鑲嵌技術zh_TW
dc.subject興奮性與刺激性訊號平衡zh_TW
dc.subject前端無顆粒裝腦島皮質zh_TW
dc.subject前端無顆粒裝腦島皮質zh_TW
dc.subject突觸可塑性zh_TW
dc.subjectpERKen
dc.subjectwhole-cell patch clampen
dc.subjectpERKen
dc.subjectpainen
dc.subjectE-I ratioen
dc.subjectrostral agranular insular cortex (RAIC)en
dc.subjectpainen
dc.subjectwhole-cell patch clampen
dc.subjectrostral agranular insular cortex (RAIC)en
dc.subjectE-I ratioen
dc.title前端無顆粒狀腦島皮質之第五層錐狀神經元與丙胺基丁酸神經元細胞對自二三層傳入訊息之突觸傳導比較研究zh_TW
dc.titleComparison of Transmission at Synapses of Layers 2/3 Input onto Layer 5 Pyramidal and GABAergic Neurons in Rostral Agranular Insular Cortexen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊琇雯,湯志永,陳志成
dc.subject.keyword前端無顆粒裝腦島皮質,興奮性與刺激性訊號平衡,疼痛,磷酸化細胞外信號調節激?,全細胞鑲嵌技術,突觸可塑性,zh_TW
dc.subject.keywordrostral agranular insular cortex (RAIC),E-I ratio,pain,pERK,whole-cell patch clamp,en
dc.relation.page50
dc.identifier.doi10.6342/NTU201601485
dc.rights.note有償授權
dc.date.accepted2016-07-28
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
22.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved