Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50422
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林茂昭
dc.contributor.authorYen-Ching Liuen
dc.contributor.author劉顏慶zh_TW
dc.date.accessioned2021-06-15T12:40:06Z-
dc.date.available2019-08-02
dc.date.copyright2016-08-02
dc.date.issued2016
dc.date.submitted2016-07-27
dc.identifier.citation[1] D. J. C. MacKay. Encyclopedia of sparse graph codes. [Online]. Available: http://www.inference.phy.cam.ac.uk/mackay/codes/data.html
[2] R. O’Neill and L. B. Lopes, “Envelope variations and spectral splatter in clipped multicarrier signals,” in Proc. IEEE Personal, Indoor and Mobile Radio Communications, 1995.(PIMRC’95), Toronto, Canada, Sep. 1995, pp. 71–75.
[3] X. Li and L. J. Cimini, “Effects of clipping and filtering on the performance of OFDM,” IEEE Commun. Lett., vol. 2, no. 5, pp. 131–133, 1998.
[4] J. Armstrong, “Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering,” Elect. Lett., vol. 38, no. 5, pp. 246–247, 2002.
[5] J. Tellado, Peak to Average Power Reduction for Multicarrier Modulation. Stanford Univ., 2000.
[6] D. L. Jones, “Peak power reduction in OFDM and DMT via active channel modification,” in Proc. Asilomar Conference on Signals, Systems, and Computers, vol. 2, 1999, pp. 1076–1079.
[7] B. S. Krongold and D. L. Jones, “PAR reduction in OFDM via active constellation extension,” IEEE Trans. Broadcast., vol. 49, no. 3, pp. 258–268, Sep. 2003.
[8] S.-K. Deng and M.-C. Lin, “Recursive clipping and filtering with bounded distortion for PAPR reduction,” IEEE Trans. Commun., vol. 55, no. 1, pp. 227–230, Jan. 2007.
[9] A. E. Jones, T. A. Wilkinson, and S. K. Barton, “Block coding scheme for reduction of peak to mean envelope power ratio of multicarrier transmission schemes,” Elect. Lett., vol. 30, no. 25, pp. 2098–2099, 1994.
[10] V. Tarokh and H. Jafarkhani, “On the computation and reduction of the peakto-average power ratio in multicarrier communications,” IEEE Trans. Commun., vol. 48, no. 1, pp. 37–44, 2000.
[11] R. W. Bauml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping,” Elect. Lett., vol. 32, no. 22, pp. 2056–2057, 1996.
[12] M. Breiling, S. H. Muller-Weinfurtner, and J. B. Huber, “SLM peak-power reduction without explicit side information,” IEEE Commun. Lett., vol. 5, no. 6, pp. 239–241, 2001.
[13] S. H. Muller and J. B. Huber, “OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences,” Elect. Lett., vol. 33, no. 5, pp. 368–369, 1997.
[14] A. D. S. Jayalath and C. Tellambura, “Adaptive PTS approach for reduction of peak-to-average power ratio of OFDM signal,” Elect. Lett., vol. 36, no. 14, pp. 1226–1228, 2000.
[15] L. J. Cimini and N. R. Sollenberger, “Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences,” IEEE Commun. Lett., vol. 4, no. 3, pp. 86–88, 2000.
[16] C. Tellambura, “Improved phase factor computation for the PAR reduction of an OFDM signal using PTS,” IEEE Commun. Lett., vol. 5, no. 4, pp. 135–137, 2001.
[17] S. H. Han and J. H. Lee, “PAPR reduction of OFDM signals using a reduced complexity PTS technique,” IEEE Signal Process. Lett., vol. 11, no. 11, pp. 887–890, 2004.
[18] Y.-C. Liu, C.-F. Chang, S.-K. Lee, and M.-C. Lin, “Deliberate bit flipping with error-correction for PAPR reduction,” IEEE Trans. Broadcast., accepted.
[19] H.-B. Jeon, K.-H. Kim, J.-S. No, and D.-J. Shin, “Bit-based SLM schemes for PAPR reduction in QAM modulated OFDM signals,” IEEE Trans. Broadcast., vol. 55, no. 3, pp. 679–685, Sep. 2009.
[20] H.-B. Jeon, J.-S. No, and D.-J. Shin, “A low-complexity SLM scheme using additive mapping sequences for PAPR reduction of OFDM signals,” IEEE Trans. Broadcast., vol. 57, no. 4, pp. 866–875, Dec. 2011.
[21] R. G. Gallager, “Low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. IT-8, pp. 21–28, Jan. 1962.
[22] D. J. C. MacKay and R. M. Neal, “Near shannon limit performance of low-density parity-check codes,” Electron Lett., vol. 32, pp. 1645–1646, Aug. 1996.
[23] S.-Y. Chung, T. J. Richardson, and R. L. Urbanke, “Analysis of sum-product decoding of low-density parity-check codes using a gaussian approximation,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 657–670, Feb. 2001.
[24] S. Lin and D. J. Costello, Error Control Coding. PEARSON Prentice Hall, 2004.
[25] X.-Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular progressive edge-growth tanner graphs,” IEEE Trans. Inf. Theory, vol. 51, no. 1, pp. 386–398, Jan. 2005.
[26] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of capacity approaching irregular low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 619–637, Feb. 2001.
[27] B. Vasic, A. Cvetkovic, S. Sankaranarayanan, and M. Marcellin, “Adaptive error protection low-density parity-check codes for joint source-channel coding schemes,” in Proceedings International Symposium of Information Theory (ISIT), 2003, p. 267.
[28] X. Yang, D. Yuan, P. Ma, and M. Jiang, “New research on unequal error protection (uep) property of irregular LDPC codes,” in Consumer Communications and Networking Conference, 2004, pp. 361–363.
[29] Y. Li and W. E. Ryan, “Bit-reliability mapping in LDPC-coded modulation systems,” IEEE Commun. Lett., vol. 9, no. 1, pp. 1–3, 2005.
[30] M. Lunglmayr and J. Berkmann, “Optimized mapping schemes for LDPC coded higher order modulated QAM transmission,” EUROCAST, pp. 952–959, 2007.
[31] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 599–618, Feb. 2001.
[32] S.-Y. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke, “On the design of low-density parity-check codes within 0.0045 db of the shannon limit,” IEEE Commun. Lett., vol. 5, no. 2, pp. 58–60, Feb. 2001.
[33] W. E. Ryan and S. Lin, Channel Codes. Cambridge Univ., 2009.
[34] J. Hou, P. H. Siegel, L. B. Milstein, and H. D. Pfister, “Capacity-approaching bandwidth-efficient coded modulation schemes based on low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 49, no. 9, pp. 2141–2155, Sep. 2003.
[35] G. Durisi, L. Dinoi, and S. Benedetto, “eIRA codes for coded modulation systems,” in IEEE International Conference on Communications (ICC), 2006, pp. 1125–1130.
[36] M. Luby, “LT codes,” in Proc. 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002, pp. 271–280.
[37] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2551–2567, Jun. 2006.
[38] O. Etesami and A. Shokrollahi, “Raptor codes on binary memoryless symmetric channels,” IEEE Trans. Inf. Theory, vol. 52, no. 5, pp. 2033–2051, May 2006.
[39] Z. Cheng, J. Castura, and Y. Mao, “On the design of raptor codes for binary-input Gaussian channels,” IEEE Trans. Commun., vol. 57, no. 11, pp. 3269–3277, Nov. 2009.
[40] R. J. Barron, C. K. Lo, and J. M. Shapiro, “Global design methods for raptor codes using binary and higher-order modulations,” in IEEE Military Communications Conference, 2009, pp. 1–7.
[41] S.-H. Kuo, Y. L. Guan, S.-K. Lee, and M.-C. Lin, “A design of physical-layer raptor codes for wide SNR ranges,” IEEE Commun. Lett., vol. 18, no. 3, pp. 491–494, Mar. 2014.
[42] S.-H. Kuo, Some Designs of Physical-Layer Raptor Codes. National Taiwan Univ., 2015.
[43] J. Garcia-Frias and W. Zhong, “Approaching shannon performance by iterative decoding of linear codes with low-density generator matrix,” IEEE Commun. Lett., vol. 7, no. 6, pp. 266–268, Jun. 2003.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50422-
dc.description.abstract在正交分頻多工系統中,位元翻轉技術可用來降低峰均比。
而錯誤更正編碼可用來減緩因位元翻轉技術所造成的位元錯誤率惡化。
我們提出一些設計去適當地整合特意位元翻轉技術跟非對稱錯誤保護的錯誤更正碼。
我們使用一種修改過的密度進化方法來尋找適合我們位元翻轉系統的編碼度分佈。
而另一種錯誤更正碼,即猛禽碼亦可被用來減輕因翻轉位元所造成的位元錯誤率惡化。
模擬結果顯示出在很多狀況當中,我們所提出的設計可以有效的降低峰均比而且伴隨著非常微弱的位元錯誤率惡化。
zh_TW
dc.description.abstractIn the orthogonal frequency division multiplexing (OFDM) communications, bit flipping can be used for the reduction of peak-to-average-power ratio (PAPR).
Error-correction coding can be used to relieve the degradation of bit-error rates (BER) resultant from the bit-flipping.
We propose designs which appropriately integrate deliberate bit flipping and error-correcting codes with unequal error protection.
A modified density evolution method is used for obtaining appropriate code degree distributions to our bit-flipping system.
Another error-correcting codes, i.e. Raptor code also can be adopted to mitigate the BER degradation causing of the flipped bits.
Simulation results show that our proposed designs can obtain effective PAPR reduction with very minor BER degradation in many cases.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:40:06Z (GMT). No. of bitstreams: 1
ntu-105-D97942025-1.pdf: 1291298 bytes, checksum: 16ace65acb36515f3760711a4ec67b30 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 i
致謝iii
中文摘要v
Abstract vii
Contents ix
List of Figures xi
List of Tables xv
1 Introduction 1
2 Deliberate Bit Flipping For PAPR Reduction 5
2.1 The Proposed System Model And Some Basics . . . . . . . . . . . . . 5
2.2 Deliberate Bit-Flipping For PAPR Reduction . . . . . . . . . . . . . . 10
2.2.1 Clipping-Based Bit-Flipping (CBBF) Method . . . . . . . . . . 13
2.2.2 Active Constellation Extension Combined With CBBF Method 17
2.2.3 SLM-Based Bit-Flipping (SLMBBF) Method . . . . . . . . . . 22
2.3 PAPR Performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3 Error Correction Based On Unequal Error Protection For Bit-Flipping System
41
3.1 Unequal Error Protection . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Modified Density Evolution . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.1 Quantized Density Evolution (QDE) . . . . . . . . . . . . . . . 44
3.2.2 Modified QDE for Systems with Flipped Bits . . . . . . . . . . 47
3.3 Code Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4 Modification of Channel LLR . . . . . . . . . . . . . . . . . . . . . . 54
3.5 BER Peroformances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4 Error Correction Based On Raptor Codes For Bit-Flipping System 71
4.1 Raptor Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5 Conclusions and Future Work 85
Bibliography 89
dc.language.isoen
dc.subject猛禽碼zh_TW
dc.subject均峰值zh_TW
dc.subject位元翻轉zh_TW
dc.subject低密度奇偶檢查碼zh_TW
dc.subject非對稱的錯誤保護zh_TW
dc.subject密度進化zh_TW
dc.subject正交分頻多工系統zh_TW
dc.subjectRaptor codeen
dc.subjectdensity evolutionen
dc.subjectbit-flippingen
dc.subjectpeak-to-average power ratio (PAPR)en
dc.subjectOrthogonal frequency division multiplexing (OFDM)en
dc.subjectunequal error protection (UEP)en
dc.subjectlow-density parity-check (LDPC) codesen
dc.title在正交分頻多工系統中以特意位元翻轉與錯誤更正碼降低峰均比之研究zh_TW
dc.titleDeliberate Bit Flipping with Error-Correction for PAPR Reduction in OFDM Systemsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.oralexamcommittee蘇賜麟,趙啟超,呂忠津,楊谷章,蘇育德
dc.subject.keyword正交分頻多工系統,均峰值,位元翻轉,低密度奇偶檢查碼,非對稱的錯誤保護,密度進化,猛禽碼,zh_TW
dc.subject.keywordOrthogonal frequency division multiplexing (OFDM),peak-to-average power ratio (PAPR),bit-flipping,low-density parity-check (LDPC) codes,unequal error protection (UEP),density evolution,Raptor code,en
dc.relation.page95
dc.identifier.doi10.6342/NTU201601446
dc.rights.note有償授權
dc.date.accepted2016-07-28
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
1.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved