請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50371完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾秀如 | |
| dc.contributor.author | Yao-Qing Zhang | en |
| dc.contributor.author | 張瑤卿 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:38:06Z | - |
| dc.date.available | 2018-08-26 | |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-29 | |
| dc.identifier.citation | 1. R. J. Gordon, F. D. Lowy, Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 46 Suppl 5, S350 (Jun 1, 2008).
2. S. Bhakdi, J. Tranum-Jensen, Alpha-toxin of Staphylococcus aureus. Microbiological reviews 55, 733 (Dec, 1991). 3. R. C. Bone, Gram-positive organisms and sepsis. Archives of internal medicine 154, 26 (Jan 10, 1994). 4. F. D. Lowy, Staphylococcus aureus infections. The New England journal of medicine 339, 520 (Aug 20, 1998). 5. J. Deisenhofer, Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-A resolution. Biochemistry 20, 2361 (Apr 28, 1981). 6. F. D. Lowy, Antimicrobial resistance: the example of Staphylococcus aureus. The Journal of clinical investigation 111, 1265 (May, 2003). 7. W. M. Kirby, Extraction of a Highly Potent Penicillin Inactivator from Penicillin Resistant Staphylococci. Science 99, 452 (Jun 2, 1944). 8. A. Bondi, Jr., C. C. Dietz, Penicillin resistant staphylococci. Proc Soc Exp Biol Med 60, 55 (Oct, 1945). 9. M. C. Enright et al., The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proceedings of the National Academy of Sciences of the United States of America 99, 7687 (May 28, 2002). 10. H. F. Chambers, Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clinical microbiology reviews 10, 781 (Oct, 1997). 11. P. D. Stapleton, P. W. Taylor, Methicillin resistance in Staphylococcus aureus: mechanisms and modulation. Science progress 85, 57 (2002). 12. D. J. Diekema et al., Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997-1999. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 32 Suppl 2, S114 (May 15, 2001). 13. J. D. Sexton, K. A. Reynolds, Exposure of emergency medical responders to methicillin-resistant Staphylococcus aureus. American journal of infection control 38, 368 (Jun, 2010). 14. G. L. French, Clinical impact and relevance of antibiotic resistance. Advanced drug delivery reviews 57, 1514 (Jul 29, 2005). 15. G. C. Schito, The importance of the development of antibiotic resistance in Staphylococcus aureus. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases 12 Suppl 1, 3 (Mar, 2006). 16. G. W. Kaatz, S. M. Seo, N. J. Dorman, S. A. Lerner, Emergence of teicoplanin resistance during therapy of Staphylococcus aureus endocarditis. The Journal of infectious diseases 162, 103 (Jul, 1990). 17. F. Brunet et al., Failure of teicoplanin therapy in two neutropenic patients with staphylococcal septicemia who recovered after administration of vancomycin. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology 9, 145 (Feb, 1990). 18. J. L. Mainardi et al., Decreased teicoplanin susceptibility of methicillin-resistant strains of Staphylococcus aureus. The Journal of infectious diseases 171, 1646 (Jun, 1995). 19. K. Hiramatsu et al., Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet 350, 1670 (Dec 6, 1997). 20. K. Hiramatsu et al., Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. The Journal of antimicrobial chemotherapy 40, 135 (Jul, 1997). 21. L. Cui, H. Murakami, K. Kuwahara-Arai, H. Hanaki, K. Hiramatsu, Contribution of a thickened cell wall and its glutamine nonamidated component to the vancomycin resistance expressed by Staphylococcus aureus Mu50. Antimicrobial agents and chemotherapy 44, 2276 (Sep, 2000). 22. G. Yim, H. H. Wang, J. Davies, Antibiotics as signalling molecules. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 362, 1195 (Jul 29, 2007). 23. J. Davies, D. Davies, Origins and evolution of antibiotic resistance. Microbiology and molecular biology reviews : MMBR 74, 417 (Sep, 2010). 24. S. Chopra, K. Matsuyama, C. Hutson, P. Madrid, Identification of antimicrobial activity among FDA-approved drugs for combating Mycobacterium abscessus and Mycobacterium chelonae. The Journal of antimicrobial chemotherapy 66, 1533 (Jul, 2011). 25. A. M. Kalle, A. Rizvi, Inhibition of bacterial multidrug resistance by celecoxib, a cyclooxygenase-2 inhibitor. Antimicrobial agents and chemotherapy 55, 439 (Jan, 2011). 26. J. R. Vane, Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature: New biology 231, 232 (Jun 23, 1971). 27. F. E. Silverstein et al., Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study: A randomized controlled trial. Celecoxib Long-term Arthritis Safety Study. Jama 284, 1247 (Sep 13, 2000). 28. A. T. Kunzmann et al., PTGS2 (Cyclooxygenase-2) expression and survival among colorectal cancer patients: a systematic review. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 22, 1490 (Sep, 2013). 29. A. Ristimaki, N. Honkanen, H. Jankala, P. Sipponen, M. Harkonen, Expression of cyclooxygenase-2 in human gastric carcinoma. Cancer research 57, 1276 (Apr 1, 1997). 30. M. T. Yip-Schneider et al., Cyclooxygenase-2 expression in human pancreatic adenocarcinomas. Carcinogenesis 21, 139 (Feb, 2000). 31. R. A. Soslow et al., COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer 89, 2637 (Dec 15, 2000). 32. L. M. Lee, C. C. Pan, C. J. Cheng, C. W. Chi, T. Y. Liu, Expression of cyclooxygenase-2 in prostate adenocarcinoma and benign prostatic hyperplasia. Anticancer research 21, 1291 (Mar-Apr, 2001). 33. K. M. Arunasree et al., Imatinib-resistant K562 cells are more sensitive to celecoxib, a selective COX-2 inhibitor: role of COX-2 and MDR-1. Leukemia research 32, 855 (Jun, 2008). 34. H. C. Chiu et al., Development of novel antibacterial agents against methicillin-resistant Staphylococcus aureus. Bioorganic & medicinal chemistry 20, 4653 (Aug 1, 2012). 35. A. Veillette, M. A. Bookman, E. M. Horak, L. E. Samelson, J. B. Bolen, Signal transduction through the CD4 receptor involves the activation of the internal membrane tyrosine-protein kinase p56lck. Nature 338, 257 (Mar 16, 1989). 36. C. M. Waters, B. L. Bassler, Quorum sensing: cell-to-cell communication in bacteria. Annual review of cell and developmental biology 21, 319 (2005). 37. K. Xie, R. E. Dalbey, Inserting proteins into the bacterial cytoplasmic membrane using the Sec and YidC translocases. Nature reviews. Microbiology 6, 234 (Mar, 2008). 38. J. Serek et al., Escherichia coli YidC is a membrane insertase for Sec-independent proteins. The EMBO journal 23, 294 (Jan 28, 2004). 39. K. Kumazaki et al., Structural basis of Sec-independent membrane protein insertion by YidC. Nature 509, 516 (May 22, 2014). 40. J. Luirink, T. Samuelsson, J. W. de Gier, YidC/Oxa1p/Alb3: evolutionarily conserved mediators of membrane protein assembly. FEBS letters 501, 1 (Jul 13, 2001). 41. S. Kol, N. Nouwen, A. J. Driessen, Mechanisms of YidC-mediated insertion and assembly of multimeric membrane protein complexes. The Journal of biological chemistry 283, 31269 (Nov 14, 2008). 42. O. Schneewind, D. M. Missiakas, Protein secretion and surface display in Gram-positive bacteria. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 367, 1123 (Apr 19, 2012). 43. E. van Bloois et al., The Sec-independent function of Escherichia coli YidC is evolutionary-conserved and essential. The Journal of biological chemistry 280, 12996 (Apr 1, 2005). 44. J. C. Samuelson et al., Function of YidC for the insertion of M13 procoat protein in Escherichia coli: translocation of mutants that show differences in their membrane potential dependence and Sec requirement. The Journal of biological chemistry 276, 34847 (Sep 14, 2001). 45. A. Hasona et al., Streptococcal viability and diminished stress tolerance in mutants lacking the signal recognition particle pathway or YidC2. Proceedings of the National Academy of Sciences of the United States of America 102, 17466 (Nov 29, 2005). 46. M. Caffrey, Crystallizing membrane proteins for structure determination: use of lipidic mesophases. Annual review of biophysics 38, 29 (2009). 47. Y. Dong et al., Functional overlap but lack of complete cross-complementation of Streptococcus mutans and Escherichia coli YidC orthologs. Journal of bacteriology 190, 2458 (Apr, 2008). 48. J. C. Samuelson et al., YidC mediates membrane protein insertion in bacteria. Nature 406, 637 (Aug 10, 2000). 49. Z. Li, D. Boyd, M. Reindl, M. B. Goldberg, Identification of YidC residues that define interactions with the Sec Apparatus. Journal of bacteriology 196, 367 (Jan, 2014). 50. M. W. Pantoliano et al., High-density miniaturized thermal shift assays as a general strategy for drug discovery. Journal of biomolecular screening 6, 429 (Dec, 2001). 51. G. Deckers-Hebestreit, K. Altendorf, The F0F1-type ATP synthases of bacteria: structure and function of the F0 complex. Annual review of microbiology 50, 791 (1996). 52. J. Kang, E. Heart, C. K. Sung, Effects of cellular ATP depletion on glucose transport and insulin signaling in 3T3-L1 adipocytes. American journal of physiology. Endocrinology and metabolism 280, E428 (Mar, 2001). 53. L. L. Chan et al., A Method for Identifying Small-Molecule Aggregators Using Photonic Crystal Biosensor Microplates. JALA Charlottesv Va 14, 348 (Dec, 2009). 54. E. P. Carpenter, K. Beis, A. D. Cameron, S. Iwata, Overcoming the challenges of membrane protein crystallography. Current opinion in structural biology 18, 581 (Oct, 2008). 55. M. van der Laan, P. Bechtluft, S. Kol, N. Nouwen, A. J. Driessen, F1F0 ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis. The Journal of cell biology 165, 213 (Apr 26, 2004). 56. M. W. Bowler, M. G. Montgomery, A. G. Leslie, J. E. Walker, How azide inhibits ATP hydrolysis by the F-ATPases. Proceedings of the National Academy of Sciences of the United States of America 103, 8646 (Jun 6, 2006). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50371 | - |
| dc.description.abstract | 在現代社會中,由於抗生素的濫用而使得越來越多具有抗藥性的細菌出現,其中之一為抗甲氧苯青黴素金黃色葡萄球菌,被此菌感染嚴重會致死,令人擔心的是這種細菌對目前市面上大部分的抗生素都具有抗藥性,以至於治療困難,所以發展新穎抗菌藥也成為科學家們重要的課題。在先前研究發現非固醇類抗發炎藥物希樂葆 (celecoxib)衍生物Cpd36及Cpd46能有效抑制抗甲氧苯青黴素金黃色葡萄球菌的生長,並利用次世代定序(NGS)找出膜蛋白YidC2可能參與了抗菌機制之中。因此,我們想確認是否因YidC2與化合物Cpd36、Cpd46之間有交互作用,而影響金黃色葡萄球菌的生存。從我們的實驗結果中發現增加細菌中YidC2的表現量會使得細菌對Cpd46更具有抗性。除此之外,我們利用YidC2移位酶的受質三磷酸腺苷合成酶次單元c 分析YidC2的功能,結果發現在Cpd46存在的環境中受質無法順利移位到細胞膜上,因此而導致三磷酸腺苷無法正常合成。我們也發現在施加Cpd46時,會使得細菌YidC2表現量上升,但是這些YidC2無法幫助其受質再次移位到細胞膜上。綜合上述結果我們認為Cpd46可能直接結合在YidC2上。為了確認Cpd36和Cpd46是否與YidC2蛋白直接結合,我們利用生物物理的方式分析熱力學及動力學數據的變化,可惜的是,礙於化合物溶解度以及蛋白質特性等因素,無法從數據中看到直接結合的反應。根據我們的研究,膜蛋白YidC2確實在Cpd46的殺菌活性中扮演一個重要角色,且YidC2為一個極具潛力的作用目標用以發展新抗菌藥物,來解決抗甲氧苯青黴素金黃色葡萄球菌所造成的問題。 | zh_TW |
| dc.description.abstract | Due to inappropriate use of antibiotics, the emergence of antimicrobial-resistant bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, Streptococcus pneumonia, has been a critical problem nowadays. In particular, infections of MRSA, resistant to most antibiotics, often cause a higher mortality in patient. In our previous study, two celecoxib derivatives, Cpd36 and Cpd46, were identified to exhibit inhibitory activity against MRSA. Subsequent mutation analysis of S. aureus resistant isolates by next-generation sequencing identified a membrane protein translocase, YidC2, as the potential target of these compounds. Here, we aim to investigate the interaction between the YidC2 and Cpd36 and Cpd46. The results showed that ectopic expression of YidC2 can decrease the susceptibility of S. aureus to Cpd46. The level of ATP synthase subunit c (ATPsc) on bacterial membrane were also reduced by Cpd46 treatment, leading to a reduction of ATP level in bacteria. Although YidC2 protein level in bacteria was increased with exposure to Cpd46, the raised YidC2 level didn’t reverse the reduction of ATPsc translocation. To further investigate whether Cpd46 bind to YidC2 directly, recombinant YidC2 was prepared by overexpressing protein in E. coli followed by extraction with detergent. Next, to explore the interaction between YidC2 and compounds, biophysical approaches were used to monitor the change of several important physiochemical parameters, including enthalpy, entropy, free energy and the thermodynamic profile. However, no significant biophysical evidences showed these compounds binding to YidC2 directly. Altogether, our results showed that YidC2 plays an important role in the antibacterial activity of Cpd46, and YidC2 is a potential target for new anti-MRSA drugs development. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:38:06Z (GMT). No. of bitstreams: 1 ntu-105-R03442006-1.pdf: 16559417 bytes, checksum: fdf647a23e3313e5f31a681bb63dfef9 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iii 1. Introduction 1 1.1 Staphylococcus aureus 2 1.2 Methicillin-resistant Staphylococcus aureus, MRSA 3 1.3 Strategies to discover and develop novel antibiotics 4 1.4 Celecoxib, a nonsteroidal anti-inflammatory drug 5 1.5 Novel celecoxib-derived anti-MRSA agents, Cpd36 and Cpd46 6 1.6 Membrane protein-YidC2 7 1.7 Specific aims 9 2. Materials and Methods 10 2.3 Antibacterial assay 12 2.4 Compounds-induced YidC2 expression level determination 13 2.5 In vitro thermal shift assays. 13 2.6 Bacteria membrane fractionation 14 2.7 Fluorescence microscopy 15 2.8 Intracellular ATP measurement 16 2.9 Western blotting 16 2.10 Recombinant protein preparation. 17 2.11 Surface plasmon resonance (SPR) analysis 18 2.12 Isothermal titration calorimetry (ITC) 19 2.13 Crystallization 19 3. Results 21 3.1 Ectopic expression of YidC2 decreases S. aureus’s susceptibility to Cpd46 ....... 22 3.2 Cpd36 and Cpd46 can stimulate endogenous YidC2 expression in S. aureus. 23 3.3 Cpd46 increased YidC2 thermal stability in vitro 23 3.4 The membrane translocation of F0F1 ATP synthase subunit c is decreased by Cpd46 treatment 24 3.5 Cpd46 reduced intracellular ATP levels of S. aureus 25 3.6 To modify a protein purified methods for better yield 26 3.7 Thermodynamic data could not provide evidence that Cpd36 and Cpd46 bind to YidC2 in vitro 28 3.8 Cpd36 and Cpd46 nonspecifically bind to protein 28 3.9 Crystallization of YidC2 30 4. Discussion 31 5. Conclusion 36 6. References 38 7. Figures 50 Figure 1. The efficiency of inducible YidC2 expression level in S. aureus NCTC8325 strain and antibacterial activity of Cpd46. 52 Figure 2. Celecoxib derivatives induced endogenous YidC2 expression. 54 Figure 3. In vitro thermal stability of S. aureus YidC2. The YidC2 thermal stability with different concentrations of Cpd46 55 Figure 4. YidC2 activity assays by validated efficiency of ATPsc-EGFP translocation. 59 Figure 5. Intracellular ATP level and bacteria survival. 61 Figure 6. Recombinant proteins expression yield. 64 Figure 7. Measurement of dissociation constants between YidC2 and Cpd36 by isothermal titration calorimetry (ITC). 66 Figure 8. The sensorgrams of Cpd36 or Cpd46 binding to the indicated chipimmobilized YidC2. 68 Figure 9. Crystallization results. 70 8. Tables 71 Table 1. S. aureus YidC2 melting temperature with different concentrations of Cpd46 72 Table 2. Kinetic data of SPR 73 9. Supplementary 74 Supplementary 1. The structure of the YidC2 protein and the mutant amino acids 75 Supplementary 2. The point mutations locate in YidC2 conserve region. 76 Supplementary 3. In vitro thermal stability of S. aureus YidC2. YidC2 target with 10 μg/ml Cpd46 77 Supplementary 4. Protein expression level of endogenous YidC2 and YidC2-6HisTag with Cpd46 in S. aureus NCTC8325. 78 Supplementary 5. Determine Cpd36 concentration. 79 | |
| dc.language.iso | en | |
| dc.subject | 新穎抗生素 | zh_TW |
| dc.subject | 新穎抗生素 | zh_TW |
| dc.subject | 膜蛋白 | zh_TW |
| dc.subject | 抗甲氧苯青黴素金黃色葡萄球菌 | zh_TW |
| dc.subject | 膜蛋白 | zh_TW |
| dc.subject | 希樂葆 | zh_TW |
| dc.subject | 抗甲氧苯青黴素金黃色葡萄球菌 | zh_TW |
| dc.subject | 希樂葆 | zh_TW |
| dc.subject | MRSA | en |
| dc.subject | YidC2 | en |
| dc.subject | celecoxib | en |
| dc.subject | antibiotics. | en |
| dc.subject | MRSA | en |
| dc.subject | YidC2 | en |
| dc.subject | celecoxib | en |
| dc.subject | antibiotics. | en |
| dc.title | 探討抗甲氧苯青黴素金黃色葡萄球菌之潛力抗菌藥與膜蛋白YidC2的交互作用 | zh_TW |
| dc.title | Exploring the interaction between potent anti-MRSA agents and membrane protein YidC2 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林敬哲,陳慶士,邱浩傑 | |
| dc.subject.keyword | 抗甲氧苯青黴素金黃色葡萄球菌,膜蛋白,新穎抗生素,希樂葆, | zh_TW |
| dc.subject.keyword | MRSA,YidC2,celecoxib,antibiotics., | en |
| dc.relation.page | 80 | |
| dc.identifier.doi | 10.6342/NTU201601564 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-07-29 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 16.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
