請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50369
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳明汝 | |
dc.contributor.author | Yi-Ting Cheng | en |
dc.contributor.author | 鄭伊庭 | zh_TW |
dc.date.accessioned | 2021-06-15T12:38:02Z | - |
dc.date.available | 2019-10-14 | |
dc.date.copyright | 2016-10-14 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-07-28 | |
dc.identifier.citation | 中華民國國家標準。2005。食品中水分之檢驗方法 CNS5033。經濟部中央標準局。
中華民國國家標準。2005。食品中粗灰分之檢驗方法 CNS5034。經濟部中央標準局。 中華民國國家標準。2005。食品中粗蛋白質之檢驗方法 CNS5035。經濟部中央標準局。 中華民國國家標準。2005。食品中粗脂肪之檢驗方法 CNS5036。經濟部中央標準局。 王本翔、劉愛晶、程秀娟、王慶貴、魏廣仁和崔景朝。1985。鹿茸多糖抗潰瘍作用。藥學學報。20: 321-325。 行政院農委會。畜產品價格查詢系統。2014。臺北市。 李振華、趙文海和周秋麗。2011。鹿茸多肽對抗骨關節炎軟骨細胞氧化損傷作用的實驗研究。中國骨傷。24: 245-248。 李鷹、張曉莉、董豔、劉亞威、張紅軍、唐曉雲、李英蘭、宋寶輝、朱曉東、趙啟超和張磊芝。1997。鹿血對小鼠腸道菌群及免疫功能的影響。中國微生態學雜誌。9: 8-10。 汪婷。2012。臺灣水鹿鹿茸於傷口癒合及呼吸道發炎小鼠之研究。國立臺灣大學生物資源暨農學院動物科學技術學系。碩士論文。 吳兩新和林仁壽。2000。鹿茸的化學成分與藥理作用。第一屆國際鹿茸人體臨床實驗成果發表暨鹿茸生化價值研討會論文。pp. 32-43。 周秋麗、劉永強、王穎、郭穎潔和王本翔。2001。梅花鹿茸與馬鹿茸多肽化學性質及生物活性比較。中國中藥雜誌。26: 699-702。 范玉琳。1980。鹿茸化學成份研究的進展。 范玉琳、邢增濤、衛功慶、劉桂榮、李慧萍和周淑琴。1998。鹿茸蛋白的提取分離及其抗腫瘤活性。經濟動物學報。2: 27-31。 姜紅、樂國偉、尹曉平、高曉黎和施用暉。2009。馬鹿茸血酶解肽體內免疫功能及抗氧化功能關係的研究。天然產物研究與開發。21: 757-760。 袁相戀、薄士儒、李慶傑和王全凱。2011。鹿血化學成分和藥理作用及其應用研究進展。經濟動物學報。15: 207-211。 陳曉光、常一丁、崔志勇和王本祥。1992。鹿茸提取物對老年小鼠衰老指標的影響。 中藥藥理與臨床。2:17-20。 張志強和王岩。1994。鹿茸多肽的抗炎作用。中國藥理學報。15: 282-284。 張曉莉、唐曉雲、劉亞威、張紅軍和鄭玉蘭。1997。鹿血酒口服液對小鼠免疫功能的影響。中國林副特產。43: 21-22。 郭卿雲、王妙鈴、康獻仁和王治華。2009。台灣水鹿茸四分切段成分分析。畜產研究。42: 245-253。 潘風光、孫威、周玉、陳健、文立正和劉靜波。2007。梅花鹿鹿茸活性多肽的提取及免疫功效的初步研究。中國生物製品學雜誌。20: 669-673。 簡群育。2014。鑑定臺灣水鹿鹿茸冷水萃取物中免疫調節有效成分之研究。國立臺灣大學生物資源暨農學院動物科學技術學系。碩士論文。 戴廷宇。2010。臺灣水鹿鹿茸於金黃色葡萄球菌感染及卵白蛋白致敏小鼠模式之免疫調節影響。國立臺灣大學生物資源暨農學院動物科學技術學系。碩士論文。 羅翔丹、潘風光、張鐵華、張鳴鏑、宋歌和劉靜波。2008。鹿茸多肽對小鼠耐缺氧和抗疲勞能力的影響。食品科學。29: 386-388。 Auboiron, S., Sparrow, D. A., Beaubatie, L., Bauchart, D., Sparrow, J. T., Laplaud, M. P. and Chapman, J. M. 1990. Characterization and amino-terminal sequence of apolipoprotein AI from plasma high density lipoproteins in the preruminant calf, Bos spp. Biochem. Biophys. Res. Commun. 166: 833-839. Broeder, C. E., Percival, R., Quindry, J., Panton, L., Wills, T., Browder, K. D., Earnest, C., Almada, A., Haines, S. R. and Suttie, J. M. 2004. The effects of New Zealand deer antler velvet supplementation on body composition, strength, and maximal aerobic and anaerobic performance. Age. 28: 25-34. Brennan, F. M., Green, P., Amjadi, P., Robertshaw, H. J., Alvarez-Iglesias, M. and Takata, M. 2008. Interleukin-10 regulates TNF-alpha-converting enzyme (TACE/ADAM-17) involving a TIMP-3 dependent and independent mechanism. Eur. J. Immunol. 38: 1106-1117. Chen, X. G., Wang, B. X. and Wu, Y. D. 1990. Inhibitory effect of phospholipids of pilose antler on monoamine oxidase activity. Pharmacology and Clinics of Chinese Materia Medica. 6: 14-17. Chen, X. G., Chang, D. Y., Cui, Z. Y. and Wang, B. X. 1992. Effects of the water extract of pilose antler on some biochemical indicators related to aging in old mice. Pharmacology and Clinics of Chinese Materia Medica. 8: 17-20. Choi, M. J., Kim, J. H. and Chang, K. J. 2006. The effect of dietary taurine supplementation on plasma and liver lipid concentrations and free amino acid concentrations in rats fed a high-cholesterol diet. Taurine 6. 3: 235-242. Couper, K. N., Blount, D. G. and Riley, E. M. 2008. IL-10: the master regulator of immunity to infection. J. Immunol. 180: 5771-5777. Dai, T. Y., Wang, C. H., Chen, K. N., Huang, I. N., Hong, W. S., Wang, S. Y., Chen, Y. P., Kuo, C. Y. and Chen, M. J. 2011. The antiinfective effects of velvet antler of Formosan sambar deer (Cervus unicolor swinhoei) on Staphylococcus aureus-infected mice. Evid-Based Compl. Alt. doi: 10.1155/2011/534069. Edelman, J., Hanrahar, V. P. and Ghosh, P. 2000. Deer antler cartilage ìh the treatment of arthritis: results of a 6 month placebo-controlled double-blind study with cervusen® in 54 patients with osteoarthritis. Estévez, M. and Cava, R. 2004. Lipid and protein oxidation, release of iron from heme molecule and colour deterioration during refrigerated storage of liver pâté. Meat Sci. 68: 551-558. Fraser, A., Haines, S. R., Stuart, E. C., Scandlyn, M. J., Alexander, A., Somers-Edgar, T. J. and Rosengren, R. J. 2010. Deer velvet supplementation decreases the grade and metastasis of azoxymethane-induced colon cancer in the male rat. Food Chem. Toxicol. 48: 1288-1292. Flower, D. R. 1996. The lipocalin protein family: structure and function. Biochem. J. 318: 1-14. Gómez‐Basauri, J. V. and Regenstein, J. M. 1992a. Processing and frozen storage effects on the iron content of cod and mackerel. J. Food Sci. 57: 1332-1336. Gómez‐Basauri, J. V. and Regenstein, J. M. 1992b. Vacuum packaging, ascorbic acid and frozen storage effects on heme and nonheme iron content of mackerel. J. Food Sci. 57: 1337-1339. Gu, L. J., Mo, E. K., Yang, Z. H., Fang, Z. M., Sun, B. S., Wang, C. Y., Zhu, X. M., Bao, J. F. and Sung, C. K. 2008. Effects of red deer antlers on cutaneous wound healing in full-thickness rat models. Asian-Aust. J. Anim. Sci. 21: 277-290. Guan, S. W., Duan, L. X., Li, Y. Y., Wang, B. X. and Zhou, Q. L. 2006. A novel polypeptide from Cervus nippon Temminck proliferation of epidermal cells and NIH3T3 cell line. Acta. Biochim. Pol. 53: 395-397. Hao, L. L., Liu, S. C., Xia, Q. J., Zhang, Q. Q. and Hou F. 2006. Studies on biological activities of velvet antler polypeptides. Journal of Jilin Agricultural University. 28: 285-288. Hess, J. F., Casselman, J. T. and FitzGerald, P. G. 1994. Nucleotide sequence of the bovine vimentin-encoding cDNA. Gene. 140: 257-259. Hu, J., Xu, M., Hang, B., Wang, L., Wang, Q., Chen, J., Song, T., Fu, D. F., Wang, Z. L., Wang, S. H. and Liu, X. 2011. Isolation and characterization of an antimicrobial peptide from bovine hemoglobin α-subunit. World J. Microbiol Biotechnol. 27: 767-771. Huang, P., Zhao, Y., Niu, F., Tang, R. N., Li, Y. Q., Liu, S. C. and Zhang, L. X. 2010. Isolation and identification of sika antler base soluble proteins. Asia-Pacific Traditional Medicine. 6: 28-30. Jang, S., Park, E. D., Suh, H. J., Lee, S. H., Kim, J. S. and Park, Y. 2014. Enhancement of exercise endurance capacity by fermented deer antler in BALB/c mice. Biosci. Biotechnol. Biochem. 78: 1716-1722. Je, J. Y., Park, P. J., Lim, D. H., Jeon, B. T., Kho, K. H. and Ahn, C. B. 2011. Antioxidant, anti-acetylcholinesterase and composition of biochemical components of Russian deer velvet antler extracts. Korean J. Food Sci. Anim. Resour. 31: 349-355. Jeon, B., Kim, S., Lee, S., Park, P., Sung, S., Kim, J. and Moon, S. 2009. Effect of antler growth period on the chemical composition of velvet antler in sika deer (Cervus nippon). Mamm. Biol. 74: 374-380. Kang, S. W., Chae, H. Z., Seo, M. S., Kim, K., Baines, I. C. and Rhee, S. G. 1998. Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-α. J. Biol. Chem. 273: 6297-6302. Kang, S. K., Kim, K. S., Kim, S. I., Chung, K. H., Lee, I. S. and Kim, C. H. 2006. Immunosuppressive activity of deer antler extracts of Cervus Korean Temminck var. Mantchuricus Swinhoe, on type ii collagen-induced arthritis. In Vitro Cell. Dev. Biol.-Animal. 42: 100-107. Kawtikwar, P. S., Bhagwat, D. A. and Sakarkar, D. M. 2010. Deer antlers-traditional use and future perspectives. Indian J. Tradit. Knowl. 9: 245-251. Kim, H. S., Lim, H. K. and Park, W. K. 1999. Antinarcotic effects of the velvet antler water extract on morphine in mice. J. Ethnopharmacol. 66: 41-49. Kim, K. H., E. J. Lee, K. H. Kim, S. Y. Han and G. J. Jhon. 2004. Modification of concanavalin A-dependent proliferation by phosphatidylcholines isolated from deer antler, cervus elaphus. Nutrition. 20: 394-401. Kim, K. H., Kim, K. S., Choia, B. J., Chung, K. H., Chang, Y. C., Lee, S. D., Park, K. K., Kim, H. M. and Kim, C. H. 2005. Anti-bone resorption activity of deer antler aqua-acupunture, the pilose antler of Cervus korean temminck var. mantchuricus swinhoe (Nokyong) in adjuvant-induced arthritic rats. J. Ethnopharmacol. 96: 497-506. Kuo, C. Y., Wang, T., Dai, T. Y., Wang, C. H., Chen, K. N., Chen, Y. P. and Chen, M. J. 2012. Effect of the velvet antler of Formosan sambar deer (Cervus unicolor swinhoei ) on the prevention of an allergic airway response in mice. Evid-Based Compl. Alt. doi: 10.1155/2012/481318. Lee, M. R., Yun, B. S., Zhang, D. L., Liu, L., Wang, Z., Wang, C. L., Gu, L. J., Wang, C. Y., Mo, E. K., Ly, S. Y. and Sung, C. 2010. Effect of aqueous antler extract on scopolamine-induced memory impairment in mice and antioxidant activities. Food Sci. Biotechnol. 19: 655-661. Li, C., Suttie, J. M. and Clark, D. E. 2004. Morphological observation of antler regeneration in red deer (Cervus elaphus). J. Morphol. 262: 731-740. Li, Z. H., Wu, L. M., Yao, Y. X. and Wang, Q. K. 2007. Comparison of amino acid contents in different products of Cervus nippon temminck velvet antler. Amino Acids & Biotic Research. 29: 16-18. Li, Y., Zhao, Y., Tang, R. and Qu, X. 2010. Preventive and therapeutic effects of antler collagen on osteoporosis in ovariectomized rats. Afr. J. Biotechnol. 9: 6437-6441. Li, J. J., Li, Z., Gu, L. J., Wang, Y. B., Lee, M. R. and Sung, C. K. 2014. Aqueous extract of red deer antler promotes hair growth by regulating the hair cycle and cell proliferation in hair follicles. The Scientific World Journal. doi: 10.1155/2014/878162. Lin, T., Sammy, F., Yang, H., Thundivalappil, S., Hellman, J., Tracey, K. J. and Warren, H. S. 2012. Identification of hemopexin as an anti-inflammatory factor that inhibits synergy of hemoglobin with HMGB1 in sterile and infectious inflammation. J. Immunol. 189: 2017-2022. Liu, J. J., Zhang, H., Li, R., Yu, W. J., Hao, Y. G. and Zhang, L. X., 2010. Determination on mineral element contents in basal antlers of sika deer at different ages by atomic absorption spectrometry. Journal of Anhui Agricultural Sciences. 38: 2211-2212. Liu, M. H., Sun, J. S., Tsai, S. W., Sheu, S. Y. and Chen, M. H. 2010. Icariin protects murine chondrocytes from lipopolysaccharide-induced inflammatory responses and extracellular matrix degradation. Nutr. Res. 30: 57-65. Lu, C., Wang, M., Mu, J., Han, D., Bai, Y. and Zhang, H. 2013. Simultaneous determination of eighteen steroid hormones in antler velvet by gas chromatography–tandem mass spectrometry. Food Chem. 141: 1796-1806. Luo, C. C., Li, W. H. and Chan, L. 1989. Structure and expression of dog apolipoprotein AI, E, and CI mRNAs: implications for the evolution and functional constraints of apolipoprotein structure. J. Lipid Res. 30: 1735-1746. Miller, D. K., Smith, V. L., Kanner, J., Miller, D. D. and Lawless, H. T. 1994. Lipid oxidation and warmed‐over aroma in cooked ground pork from swine fed increasing levels of iron. J. Food Sci. 59: 751-756. Pan, F. G., Zhao, Y. Y., Zhu, S., Li, H. S., Fanf, Z., Qin, Y. N., Xing, H. Q., Pang, Y. and Zhang, M. D. 2011. An effiecient way to extract pilose antler polypeptide and evaluation its role in the immune response. International Conference on Human Health and Biomedical Engineering (HHBE), 2011 International Conference. pp. 434-437. Park, H. J., Lee, D. H., Park, S. G., Lee, S. C., Cho, S., Kim, H. K., Kim, J. J., Bae, H. and Park, B. C. 2004. Proteome analysis of red deer antlers. Proteomics. 4: 3642-3653. Peters, T. 1985. Serum albumin. Advances in protein chemistry. 37: 161-245. Pockley, A. G. 2003. Heat shock proteins as regulators of the immune response. The Lancet. 362: 469-476. Qiu, F. P., Ma, B., Wang, Z. B. and Xie, S. L. 2007. Study on the purification and activity of antler plate protein. Journal of Changchun University of Technology (Natural Science). 28: 144-147. Rauterberg, J., Timpl, R. and Furthmayr, H. 1972. Structural characterization of N-terminal antigenic determinants in calf and human collagen. Eur. J. Biochem. 27:231-237. Shimizu, K., Wong, S. C., Wilson, J. B., Lam, H., Reynolds, A. E., Singh, P., Huisman, T. H. J., Charles, N. G. and Amma, E. L. 1983. The Primary Sequence of the β Chain of Hb Type Iii of the Virginia White-Tailed Deer (Odocoilus Virginianus), a Comparison with Putative Sequences of the β Chains from Four Additional Deer Hemoglobins, Types Ii, Iv, V, and Vii, and Relationships Between Intermolecular Contacts, Primary Sequence and Sickling of Deer Hemoglobins. Hemoglobin, 7: 15-45. Su, F. Y., Li, H. P., Wang, Y. M., Huang, Y. X., Xiao, S. M. and Xiao, Y. Q., 2001. Protein component extraction and its bioactivity determination of sika deer antler base. Animal Science and Veterinary Medicine. 18: 18-20. Sun, Y. X. and Liu, J. C. 2008. Structural characterization of a water-soluble polysaccharide from the roots of Codonopsis pilosula and its immunity activity. Int J Biol Macromolec. 43: 279-282. Sui, Z., Zhang, L., Huo, Y. and Zhang, Y. 2013. Bioactive components of velvet antlers and their pharmacological properties. J Pharm Biomed Anal. 87: 229-240. Sunwoo, H. H., Nakano, T. and Sim, J. S. 1997. Effect of water-soluble extract from antler of wapiti (Cervus elaphus) on the growth of fibroblasts. Can J Anim Sci. 77: 343-345. Suttie, J. M., Gluckman, P. D., Butler, J. H., Fennessy, P. F., Corson, I. D. and Laas, F. J. 1985. Insulin-like growth factor 1 (IGF-1) antler-stimulating hormone? J Endocrinol. 116: 846-848. Tang, R. N., Zhao, Y., Sun, X. D. and Qu, X. B., 2008. Comparison of water soluble total protein in velvet, antler plate and bone of sika deer. Jilin Journal of Traditional Chinese Medicine. 28: 295-296. Tian, Y. H. and Hu, W. 2010. Studies on the chemical constituents of sika deer antler base. Animal Husbandry & Veterinary Medicine. 42: 235-236. Tian, Y. H. 2011. Studies on the purification and activities of polypeptide from sika antler plate. The Master Thesis. Jilin Agricultural University. pp. 72. Tseng, S. H., Sung, H. C., Chen, L. G., Lai, Y. J., Wang, K. T., Sung, C. H. and Wang, C. C. 2012. Effects of velvet antler with blood on bone in ovariectomized rats. Molecules, 17: 10574-10585. Tseng, S. H., Sung, C. H., Chen, L. G., Lai, Y. J., Chang, W. S., Sung, H. C. and Wang, C. C. 2014. Comparison of chemical compositions and osteoprotective effects of different sections of velvet antler. J Ethnopharmacol. 151: 352-360. Veal, E. A., Day, A. M. and Morgan, B. A. 2007. Hydrogen peroxide sensing and signaling. Molecular cell, 26: 1-14. Wang, Z. Y. 1987. Study on injection of antler plate. Chinese Journal of Biochemical Pharmaceutics. 2: 10-12. Wang, X. H. and Gao, Z. G. 1999. The pharmacology activities and the clinical applied in the water soluble coronet composition. Journal of Economic Animal. 3: 18-22. Wang, F. and Zhao, Y. Q. 2009. HPLC determination of cholesterol in deer antler base. Chinese Traditional and Herbal Drugs. 40: 286-287. Wood, Z. A., Poole, L. B. and Karplus, P. A. 2003. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science, 300: 650-653. Wu, F., Li, H., Jin, L., Li, X., Ma, Y., You, J., Li, S. and Xu, Y. 2013. Deer antler base as a traditional Chinese medicine: a review of its traditional uses, chemistry and pharmacology. J Endocrinol. 145: 403-415. Yao, Y. X., Du, R., Wang, Y. M. and Wang, S. Z. 2002. Calcium and phosphors contents of three-branched and two-branched antler and ossificational antler from sika deer. J. Econ. Animal. 6: 6-8. Zha, E. H., S. Y. Gao, Y. Z. Pi, X. X. Li, Y. T. Wang and X. Q. Yue. 2012. Wound healing by a 3.2 kDa recombinant polypeptide from velvet antler of Cervus nippon Temminck. Biotechnol. Lett. 34: 789-793. Zha, E., Li, X., Li, D., Guo, X., Gao, S. and Yue, X. 2013. Immunomodulatory effects of a 3.2 kDa polypeptide from velvet antler of Cervus nippon Temminck. Int. Immunopharmacol. 16: 210-213. Zhang, Z. Q., Zhang, Y., Wang, B. X., Zhou, H. O., Wang, Y. and Zhang, H. 1991. Purification and partial characterization of anti-inflammatory peptide from pilose antler of Cervus nippon Temminck. Yao xue xue bao=Acta pharmaceutica Sinica. 27: 321-324. Zhang, B. X., Jin, C. A., Zhao, Y. P., 2005. The chemical composition and utilization of antler plate. Special Economic Animal and Plant. 12: 7. Zhang, R., Zhao, Y. H. and Wang, Z. Z. 2011. Anti-fatigue effects of antler velvet water extract in mice. Food Sci. Technol. Int. 4: 365-367. Zhang, L. Z., Xin, J. L., Zhang, X. P., Fu, Q., Zhang, Y. and Zhou, Q. L. 2013. The anti-osteoporotic effect of velvet antler polypeptides from Cervus elaphus Linnaeus in ovariectomized rats. J. Ethnopharmacol. 150: 181-186. Zhao, L., Bao-Ping, J., Li, B., Zhou, F., Li, J. H. and Luo, Y. C. 2009. Immunomodulatory effects of aqueous extract of velvet antler (Cervus elaphus Linnaeus) and its simulated gastrointestinal digests on immune cells in vitro. J. Food Drug Anal. 17: 282-292. Zhao, L., Pei, R. S., Ji, B. P., Luo, Y. C., Zhang, D., Xu, Z. Y. and Jia, X. N. 2010. Antioxidant activity of aqueous extract fractions of velvet antler (Cervus elaphus Linnaeus). J. Food Drug Anal. 18: 319-327. Zhao, L., Y. C. Luo, C. T. Wang and B. P. Ji. 2011. Antioxidant activity of protein hydrolysates from aqueous extract of velvet antler (Cervus elaphus) as influenced by molecular weight and enzymes. Nat. Prod. Commun. 6: 1683-1688. Zhao, L., Wang, X., Zhang, X. L. and Xie, Q. F. 2016. Purification and identification of anti-inflammatory peptides derived from simulated gastrointestinal digests of velvet antler protein (Cervus elaphus Linnaeus). J. Food Drug Anal. doi: 10.1016. Zhou, R. and Li, S. 2009a. In vitro antioxidant analysis and characterisation of antler velvet extract. Food Chem. 114: 1321-1327. Zhou, R., Wang, J., Li, S. and Liu, Y. 2009b. Supercritical fluid extraction of monoamine oxidase inhibitor from antler velvet. Sep. Purif. Technol. 65: 275-281. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50369 | - |
dc.description.abstract | 鹿茸來自雄鹿未完全鈣化的鹿角,在亞洲做為傳統中國中藥材已超過兩千年,有許多研究指出鹿茸具有抗發炎、促進傷口癒合、抗關節炎、抗腫瘤、改善骨質疏鬆和抗氧化等機能性功效。由臺灣特有亞種臺灣水鹿取得新鮮的鹿茸,先前本實驗室的研究已證實臺灣水鹿鹿茸具有免疫調節的功效,如抗發炎、抑制呼吸道的過敏反應與抗金黃色葡萄球菌感染的抗菌能力;鹿茸可由許多不同的鹿種取得,目前最主要提供鹿茸為紅鹿、梅花鹿、麋鹿與馴鹿等。國外研究多著重於紅鹿、梅花鹿和麋鹿鹿茸成分功能的比較,但不同鹿種所提供的鹿茸對於機能性的關係目前並未明瞭,因此本研究以體外實驗探討臺灣水鹿鹿茸與紐西蘭紅鹿鹿茸進行比較其免疫調節功效的差異,並利用二維膠體電泳與液相層析串聯式質譜儀 (LC MS/MS) 分析比對兩種鹿茸是否含有可能影響機能性的成分。
首先,將臺灣水鹿與紐西蘭紅鹿的鹿茸冷水萃取物以不同濃度與小鼠巨噬細胞 RAW 264.7細胞共培養,利用脂多醣 (lipopolysaccharide, LPS) 誘導小鼠巨噬細胞產生發炎反應,發現到給予萃取物的小鼠巨噬細胞顯著降低促發炎細胞激素:腫瘤壞死因子 (tumor necrosis factor alpha, TNF-alpha) 與細胞介白素 (interleukin, IL)-6的分泌量,且給予高濃度的臺灣水鹿鹿茸冷水萃取物顯著較紐西蘭紅鹿降低TNF-alpha的生成 (p < 0.05),臺灣水鹿與紐西蘭紅鹿萃取物皆可有效調節巨噬細胞,顯著較控制組刺激細胞分泌IL-10 (p < 0.05)。進一步以二維電泳與LC MS/MS分析鹿茸萃取液中蛋白質組成,發現部分蛋白質種類與含量不同,但大部分的蛋白質無文獻指出具有調節免疫的能力。將臺灣水鹿鹿茸冷凍乾燥切片以-20℃、4℃與25℃存放6個月,將其冷水萃取物與RAW 264.7細胞共培養後發現,鹿茸經各溫度儲藏後仍具有免疫調節之能力,有隨著時間的增加而調節免疫的能力有逐漸下降的趨勢,其中以-20℃有最佳的抗發炎能力。再以二維電泳分析經過儲存後蛋白質冷水萃取物中蛋白質組成,發現蛋白質僅有濃度上有些微差異,然而,與新鮮鹿茸冷水萃取物蛋白質電泳膠片比較,發現在分子量小於20 kDa的蛋白質有減少的現象。 綜合上述實驗結果,臺灣水鹿鹿茸可能有比紐西蘭紅鹿有較佳的免疫調節能力,經過儲存可得知適當的儲藏條件可減緩免疫調節能力的下降與機能性成分的降解,且推測免疫調節相關蛋白質可能為小分子蛋白質。 | zh_TW |
dc.description.abstract | Velvet antler (VA), a traditional Chinese Medicine in Asia for more than 2000 years, was collected from deer no calcified antler. The numerous benefits of VA have been found such as anti-inflammation, accelerating wound healing, anti-arthritis, and anti-oxidant. In Taiwan, antlers from Formosan sambar deer (Rusa unicolor swinhoei), an indigenous subspecies, demonstrated immunomodulatory effects including anti-allergy and anti-inflammation. Various deer species could provide velvet antler, however, the differences in health benefits among different velvet antler remain unknown. Thus, in the present study, we would like to investigate the immunomodulatory effect of cold water extracted VA from sambar deer and red deer in vitro. The possible components were also evaluated by two dimensional electrophoresis and Liquid Chromatography-Mass spectrometer.
First, we co-cultured VA extraction with mice macrophage RAW 264.7 and found that both VA from sambar deer and red deer could significantly reduce the levels of proinflammatory cytokines, tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 after stimulated by lipopolysaccharide (LPS) . The high dosage of sambar deer showed a significantly lower TNF-alpha production than red deer (p < 0.05). For regulatory T cell, IL-10, the significantly higher levels were observed in both VA extractions from sambar deer and red deer when compared with negative control (p < 0.05) . Further analysis both cold water extracted VA by two dimensional electrophoresis and LC-MSMS indicated that several proteins and chemicals were different in volumes and components. Additional analysis is required to identify those compounds. Storage under different temperatures in 6 months still had the inhibitory ability to cytokine production. We found that the interaction between temperature and storage period existed. By the increasing of storage period, the functionality of VA had a downward trend. According to the protein profiles of stored VA water extraction, some protein spots under 20 kDa were invisible. The storage showed a significant influence in the stability of VA components. In summary, Formosan sambar deer VA might have better effect on immunomodulation than red deer. Possible beneficial components might be small molecule protein under 20 kDa. The proper storage for VA is necessary to maintain its health benefits. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T12:38:02Z (GMT). No. of bitstreams: 1 ntu-105-R03626023-1.pdf: 4230583 bytes, checksum: 080284174783272853f75b2c003e976f (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 目錄
中文摘要 iii 英文摘要 v 目錄 vii 圖目錄 xi 表目錄 xiii 緒言 xv 壹、 文獻檢討 1 一、 鹿茸簡介 1 (一) 臺灣水鹿 1 (二) 紐西蘭紅鹿 2 (三) 鹿茸組成成分 3 (四) 鹿茸機能性 11 二、 鹿茸水萃物機能性 20 (一) 免疫調節 20 (二) 骨骼保健 21 (三) 傷口癒合 21 (四) 抗氧化 21 (五) 抗老化 22 (六) 抗疲勞 22 (七) 治療關節炎 22 三、 膠體電泳分析於鹿茸水萃物之應用 24 (一) 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳 24 (二) 二維膠體電泳 24 貳、 材料與方法 29 第一節: 臺灣水鹿與紐西蘭紅鹿鹿茸粉之製備 30 一、 試驗材料 30 (一) 臺灣水鹿鹿茸 30 (二) 紐西蘭紅鹿鹿茸 30 二、 試驗方法 30 (一) 鹿茸粉製備 30 (二) 鹿茸冷水萃取粉製備 30 第二節: 鹿茸基本組成之測定 31 一、 試驗材料 31 (一) 臺灣水鹿與紐西蘭紅鹿濕鹿茸 31 (二) 臺灣水鹿與紐西蘭紅鹿鹿茸冷水萃取粉 31 二、 試驗方法 31 (一) 水分 31 (二) 灰分 31 (三) 粗蛋白質 32 (四) 粗脂肪 33 (五) 統計分析 33 第三節: 鹿茸冷水萃取物機能性之測定 34 一、 試驗材料 34 (一) 臺灣水鹿與紐西蘭紅鹿鹿茸冷水萃取粉 34 (二) 試驗細胞 34 二、 試驗方法 34 (一) 小鼠巨噬細胞株RAW 264.7細胞之培養 34 (二) 臺灣水鹿及紐西蘭紅鹿鹿茸冷水萃取粉與細胞共培養 34 (三) 統計分析 36 第四節: 鹿茸冷水萃取粉蛋白質組成分析 37 一、 試驗材料 37 (一) 臺灣水鹿與紐西蘭紅鹿鹿茸冷水萃取粉 37 二、 試驗方法 37 (一) 鹿茸冷水萃取粉蛋白質之沉澱與純化 37 (二) 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳 38 (三) 二維膠體電泳 39 (四) 蛋白質身分鑑定 41 第五節: 鹿茸經不同溫度、儲存時間對機能性之影響 42 一、 試驗材料 42 (一) 臺灣水鹿冷凍乾燥鹿茸切片 42 (二) 試驗細胞 42 二、 試驗方法 42 (一) 臺灣水鹿鹿茸冷凍乾燥切片儲存 42 (二) 臺灣水鹿鹿茸冷水萃取粉與細胞共培養 42 (三) 統計分析 43 第六節: 鹿茸經不同溫度、儲存時間對蛋白質組成之影響 44 一、 試驗材料 44 (一) 臺灣水鹿冷凍乾燥鹿茸冷水萃取粉 44 二、 試驗方法 44 (一) 鹿茸冷水萃取粉蛋白質之沉澱與純化 44 (二) 二維膠體電泳 44 參、 結果與討論 45 第一節: 臺灣水鹿與紐西蘭紅鹿鹿茸之比較 45 一、 臺灣水鹿與紐西蘭紅鹿鹿茸外觀與基本組成 45 二、 臺灣水鹿與紐西蘭紅鹿鹿茸冷水萃取物對免疫調節的能力 49 (一) 抗發炎能力 49 (二) 細胞增生率 56 第二節: 臺灣水鹿與紐西蘭紅鹿鹿茸保健成分之比較 59 一、 Mini SDS-PAGE蛋白質電泳分析 59 二、 二維膠體蛋白質電泳分析 61 三、 蛋白質身分鑑定 64 四、 以LC MS/MS分析鹿茸冷水萃取液中蛋白質組成 70 第三節: 不同儲存方式對臺灣水鹿鹿茸之影響 78 一、 經冷凍乾燥之臺灣水鹿鹿茸在不同存放溫度與時間下的外觀 78 二、 儲存方式對免疫調節機能性之影響 81 (一) 抗發炎能力 81 (二) 儲存溫度與時間之相互作用關係 85 三、 儲存方式對免疫調節保健成分之影響 88 (一) 儲存時間對蛋白質組成之影響 88 (二) 儲存溫度對蛋白質組成之影響 88 肆、 結論 92 伍、 參考文獻 94 陸、 作者小傳 103 | |
dc.language.iso | zh-TW | |
dc.title | 探討臺灣水鹿與紐西蘭鹿茸中免疫調節之保健成分 | zh_TW |
dc.title | Evaluation of Beneficial Components on Velvet Antler from Formosan Sambar Deer and Red Deer Associated with Immunomodulatory Effect | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭卿雲,王治華,劉?睿,徐丞志 | |
dc.subject.keyword | 臺灣水鹿,紅鹿,儲存,免疫調節,保健成分, | zh_TW |
dc.subject.keyword | Formosan sambar deer,red deer,storage,immunomodulation,beneficial components, | en |
dc.relation.page | 103 | |
dc.identifier.doi | 10.6342/NTU201601597 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-07-29 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 4.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。