Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50349
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃榮山(Long-Sun Huang)
dc.contributor.authorMin-Cheng Chungen
dc.contributor.author鍾旻成zh_TW
dc.date.accessioned2021-06-15T12:37:16Z-
dc.date.available2023-02-25
dc.date.copyright2020-02-25
dc.date.issued2016
dc.date.submitted2016-07-29
dc.identifier.citation[1] D. Basu, A. Gallus, J. Hirsh and J. Cade, 'A Prospective Study of the Value of Monitoring Heparin Treatment with the Activated Partial Thromboplastin Time,' N Engl J Med, vol. 287, pp. 324-327, 1972.
[2] http://www.who.int/mediacentre/factsheets/fs310/en/.
[3] C. Heneghan, P. Alonso-Coello, J. M. Garcia-Alamino, R. Perera, E. Meats, and P. Glasziou, 'Self-monitoring of oral anticoagulation: A systematic review and meta-analysis,' Lancet, vol. 367, pp. 404-411, 2006.
[4] Drug Information Handbook 10th ed., pp. 657-660, 2002-2003.
[5] D.M. Anderson, K.B. Tallian, 'Heparin and low molecular weight heparin,' 2nd ed. J.E. Murphy, Clinical Pharmacokinetics Pocket Reference, pp. 165-203, 2001.
[6] W. Plesch, T. Wolf, N. Breitenbeck, L. D. Dikkeschei, A. Cervero, P. L. Perez, 'Results of the performance verification of the CoaguChek XS system,' Thrombosis Research, vol. 123, pp. 381-389, 2008.
[7] L. F. Harris, V. Castro-Lopez, and A. J. Killard, 'Coagulation monitoring devices: Past, present, and future at the point of care,' TrAC Trends in Analytical Chemistry, vol. 50, pp. 85-95, 2013.
[8] M. A. McMichael and S. A. Smith, 'Viscoelastic coagulation testing: technology, applications, and limitations,' Vet Clin Pathol, vol. 40, pp. 140-53, Jun 2011.
[9] C. J. Schlimp, A. Khadem, A. Klotz, C. Solomon, G. Hochleitner, M. Ponschab, H. Redl, H. Schochl, 'Rapid measurement of fibrinogen concentration in whole blood using a steel ball coagulometer,' Journal of Trauma and Acute Care Surgery, vol. 78, pp. 830-836, 2015.
[10] T. P. Vikinge, K. M. Hansson, P. Sandstrom, B. Liedberg, T. L. Lindahl, I. Lundstrom, P. Tengvall, F. Hook, 'Comparison of surface plasmon resonance and quartz crystal microbalance in the study of whole blood and plasma coagulation,' Biosensors and Bioelectronics, vol. 15, pp. 605-613, 2000.
[11] B. S. Karon, 'Why is everyone so excited about thromboelastrography (TEG)?,' Clin Chim Acta, vol. 436, pp. 143-8, Sep 25 2014.
[12] R. J. Luddington, 'Thrombelastography/thromboelastometry,' Clinical and Laboratory Haematology, vol. 27, pp. 81-90, 2005.
[13] D. A. Hett, D. Walker, S. N. Pilkington, and D. C. Smith, 'Sonoclot analysis,' British Journal of Anaesthesia, vol. 75, pp. 771-776, December 1, 1995 1995.
[14] M. T. Ganter and C. K. Hofer, 'Coagulation monitoring: current techniques and clinical use of viscoelastic point-of-care coagulation devices,' Anesth Analg, vol. 106, pp. 1366-75, May 2008.
[15] K. W. Wee, G. Y. Kang, J. Park, J. Y. Kang, D. S. Yoon, J. H. Park, T. S. Kim, 'Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing micro-cantilevers,' Biosensors and Bioelectronics, vol. 20, pp. 1932-1938, 2005.
[16] A. Loui, T. V. Ratto, T. S. Wilson, S. K. McCall, E. V. Mukerjee, A. H. Love, B. R. Hart, 'Chemical vapor discrimination using a compact and low-power array of piezoresistive microcantilevers,' Analyst, vol. 133, pp. 608-615, 2008.
[17] P. I. Oden, G. Y. Chen, R. A. Steele, R. J. Warmack, and T. Thundat, 'Viscous drag measurements utilizing microfabricated cantilevers,' Applied Physics Letters, vol. 68, pp. 3814-3816, 1996.
[18] T. L. Wilson, G. A. Campbell, and R. Mutharasan, 'Viscosity and density values from excitation level response of piezoelectric-excited cantilever sensors,' Sensors and Actuators, A: Physical, vol. 138, pp. 44-51, 2007.
[19] 張育禎, '振動式自感測微懸臂梁應用於凝血反應之監測,' 國立台灣大學工學院應用力學研究所碩士論文, 2013.
[20] N. Weitzel, T. Seres, and G. P. Gravlee, 'Laboratory-based tests of blood clotting,' Monitoring in Anesthesia and Perioperative Care, pp. 291-307, 2011.
[21] C. S. Smith, 'Piezoresistance effect in germanium and silicon,' Physical Review, vol. 94, pp. 42-49, 1954.
[22] S. Huang, X. Li, Z. Song, Y. Wang, H. Yang, L. Che, J. Jiao, 'A high-performance micromachined piezoresistive accelerometer with axially stressed tiny beams,' Journal of Micromechanics and Microengineering, vol. 15, pp. 993-1000, 2005.
[23] P. J. French and A. G. R. Evans, 'Polycrystalline silicon as a strain gauge material,' Journal of Physics E: Scientific Instruments, vol. 19, pp. 1055-1058, 1986.
[24] Y. Su, A. G. R. Evans, and A. Brunnschweiler, 'Micromachined silicon cantilever paddles with piezoresistive readout for flow sensing,' Journal of Micromechanics and Microengineering, vol. 6, pp. 69-72, 1996.
[25] Y. Kanda, 'A graphical representation of the piezoresistance coefficients in silicon,' IEEE Transactions on electron devices, vol. 29, pp. 64-70, 1982.
[26] A. A. Barlian, W.-T. Park, J. R. Mallon, A. J. Rastegar, and B. L. Pruitt, 'Review: Semiconductor piezoresistance for microsystems,' Proceedings of the IEEE, vol. 97, pp. 513-552, 2009.
[27] W. C. Young and R. Budynas, 'Roark's Formulas for Stress and Strain,' 2002.
[28] O. Hansen, 'Cantilever Bending due to Surface Stress,' 2001.
[29] J. Thaysen, 'Cantilever for Bio-chemical Sensing Integrated in a Microliquid Handling System,' Technical University of DenmarkDanmarks Tekniske Universitet, Department of Micro-and NanotechnologyInstitut for Mikro-og Nanoteknologi, 2001.
[30] D. Sarid, 'Scanning Force Microscopy with Application to Electric, mMagnetic and Atomic Forces,' New York Oxford, 1991.
[31] 辜煜夫, '壓阻式微懸臂樑生化感測器溫度效應之量測、消除與應用,' 國立台灣大學工學院應用力學研究所碩士論文, 2009.
[32] 莊達人, 'VLSI製造技術,' 2002.
[33] P. J. French, 'Polysilicon: a Versatile Material for Microsystems,' Sensors and Actuators A: Physical, vol. 99, pp. 3-12, 2002.
[34] P. J. French and A. G. R. Evans, 'Piezoresistance in polysilicon and its applications to strain gauges,' Solid-State Electronics, vol. 32, pp. 1-10, 1989.
[35] 李信節, '多重感測元件之高性能壓阻式微懸臂樑生化感測器之設計、製程與特性分析,' 2010.
[36] X. Liu, Y. Wu, R. Chuai, C. Shi, W. Chen, and J. Li, 'Temperature Characteristics of Polysilicon Piezoresistive Nanofilm Depending on Film Structure,' in 2008 2nd IEEE International Nanoelectronics Conference, Shanghai, China, 2008.
[37] P. J. French and A. G. R. Evans, 'Polycrystalline silicon as a strain gauge material,' Journal of Physics E: Scientific Instruments, vol. 19, p. 1055, 1986.
[38] 顏毅廣, '整合式微型壓阻微懸臂粱生物感測器之研究及其應用,' 國立台灣大學工學院應用力學研究所博士論文, 2009.
[39] 林隆翊, '壓阻式微懸臂樑生物感測元件於抗癲癇藥物之研究,' 國立台灣大學工學院應用力學研究所碩士論文, 2011.
[40] S. Middelhoek and S. Audet, Physics of Silicon Sensors: Academic Press, 1989.
[41] 林豪駸, '利用快速傅立葉轉換系統分析自感測壓阻式微懸臂梁於凝血反應之監測,' 國立台灣大學工學院應用力學研究所碩士論文, 2015.
[42] W. N. Sharpe Jr, B. Yuan, R. Vaidyanathan, and R. L. Edwards, 'Measurements of Young's modulus, Poisson's ratio, and tensile strength of polysilicon,' in Micro Electro Mechanical Systems, 1997. MEMS'97, Proceedings, IEEE., Tenth Annual International Workshop on, 1997, pp. 424-429.
[43] J.-H. Zhao, T. Ryan, P. S. Ho, A. J. McKerrow, and W.-Y. Shih, 'Measurement of elastic modulus, Poisson ratio, and coefficient of thermal expansion of on-wafer submicron films,' J Appl Phys, vol. 85, pp. 6421-6424, 1999.
[44] http://www.cleanroom.byu.edu/KOH.phtml.
[45] A. Stoffel, A. Kovacs, W. Kronast, and B. Mueller, 'LPCVD against PECVD for micromechanical applications,' Journal of Micromechanics and Microengineering, vol. 6, p. 1, 1996.
[46] T.-Y. Zhang, Y.-J. Su, C.-F. Qian, M.-H. Zhao, and L.-Q. Chen, 'Microbridge testing of silicon nitride thin films deposited on silicon wafers,' Acta materialia, vol. 48, pp. 2843-2857, 2000.
[47] L. Rosenhead, 'Laminar Boundary Layers (Oxford University Press, 1963), Chap. VII, Part II, p. 391..'
[48] G. A. Cranch, J. E. Lane, G. A. Miller, and J. W. Lou, 'Low frequency driven oscillations of cantilevers in viscous fluids at very low Reynolds number,' Journal of Applied Physics, vol. 113, p. 194904, 2013.
[49] U. Kjellberg, and M. Hellgren, 'Sonoclot signature during normal pregnancy,' Intensive Care Med, vol. 26, p.p. 206-211 , 2000.
[50] R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, 'Passive and active microrheology with optical tweezers,' Journal of Optics A: Pure and Applied Optics, vol. 9, pp. S103-S112, 2007.
[51] http://www.formulaction.com/microrheology-rheolaser.html.
[52] S. T. Hiippala, 'Dextran and hydroxyethyl starch interfere with fibrinogen assays,' Blood Coagulation and Fibrinolysis, vol. 6, pp. 743-746, 1995.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50349-
dc.description.abstract隨著現代人的生活以及飲食習慣的改變,造成心血管疾病患者數量逐年遞增,而為了預防及治療由血液與血管壁異常作用造成的血管栓塞,病患須依賴抗凝血劑的治療。然而,如果使用了過量或不足的抗凝血劑量,則會造成大量出血或者無法成功預防治療等後果,因此使用抗凝血劑的病患需定時且即時地監測血液的凝固狀態是否在正常範圍內。因為目前血液的檢驗屬於醫療等級,病患若需監測血液凝固狀態,需要接受醫療院所的生醫檢測流程,然而醫療院所的檢測流程從檢體的處理、運送、儀器排程、上機測試到最後取得報告的時間相當冗長,並無法確實地達到即時監測的目的,因此本研究使用微奈米機電技術開發出能夠快速檢測的振動式自感測壓阻式微懸臂梁凝血感測器,搭配快速傅立葉轉換演算法分析訊號,應用於抗凝血劑肝素(heparin)用藥監測的評估方式—部分活化凝血酶原時間(APTT)的量測。
量測方式參考分析血液凝固狀況的機械式Sonoclot分析儀,本研究使用定頻率、定振幅的制動器驅動壓阻式微懸臂梁,使其在待測樣品中振動,利用血凝樣品年度變化時微懸臂梁受力情形也會產生變化作為監測基礎,擷取感測器之壓阻訊號以推知代測樣品的黏度性質變化。搭配快速傅立葉轉換演算法,可得知在致動器振動頻率的振幅值,本研究以此振幅值來反映微懸臂梁的受力情形,進而分析並得到部分活化凝血酶原時間。
首先利用不同濃度的甘油水溶液進行實驗來了解微懸臂梁感測器在不同黏度下的受力情況,實驗結果可看出微懸臂梁阻值改變量的10Hz振幅與黏度有正相關的趨勢,且線性度良好。同時也將微懸臂梁感測器之訊號與Reynolds number以對數相關的分析方式來表現,得到log(∆R/R_0 )=0.7922[-log(Re) ]-0.0314方程式來表示本研究所使用的微懸臂梁在液體中振動的表現(R2=0.929)證實本研究所開發的振動式自感測壓阻式微懸臂梁能分辨不同黏度的液體。接著將量測標的改為血凝樣品的實際凝固情形,利用自行設計的快速傅立葉轉換演算法來處理訊號,可得知在血凝樣品發生凝固過程中特定頻率的振幅變化情形,以振幅明顯驟升所需時間作為微懸臂梁所量測到的部分活化凝血酶原時間(Son-aPTT),三重複實驗結果得到第一級血凝品管液的Son-aPTT為23.2秒(標準差為1.25秒);第二級血凝品管液的Son-aPTT為47.5秒(標準差4.55秒);第三級血凝品管液的Son-aPTT為83.5秒(標準差4.32秒)。將微懸臂梁感測器與商用儀器的量測數據進行統計學上判斷差異性之T檢定,發現在95%信賴區間內兩者並無差異,且都在藥品的參考部分活化凝血酶原時間範圍內,證實本研究的確能用微懸臂梁感測器監測到凝血反應發生時纖維蛋白生成的情形。
本研究開發之振動式自感測壓阻式微懸臂梁感測器屬於微奈米機電技術,有可微型化與降低成本之潛力,而且後端訊號處理可與訊號擷取系統一同設計在軟體中,無論是在醫療院所的床邊照護或者定點照護領域中,均有很大的發展空間。
zh_TW
dc.description.abstractIn this study, we successfully developed a real-time, miniaturized coagulation monitoring sensor by using an externally vibrated, self-sensing piezoresistive microcantilever for disposable point-of care coagulation device. Patients with cardiovascular disease to avoid the thrombosis formation are required anticoagulant by continuous infusion. The infusion of anticoagulant during the previous 24 hours need to be allocated to have their therapy monitored by activated partial thromboplastin time (aPTT, an index for blood coagulation status). With the increasing use of anticoagulant, the need of point-of care coagulation devices has become necessary. Activated partial thromboplastin time (APTT) is a measure of intrinsic pathway and common pathway of blood coagulation, and it is an index for anticoagulant therapy to determine the blood condition in blood coagulation reaction.
In this study, the measurement was performed by vibrating the piezoresistive microcantilever immersed in the sample liquid at a fixed frequency of 10Hz and fixed amplitude of 40μm with an external vibrator. The acquired of resistance change in microcantilever processed by Fast Fourier Transform algorithm, and the resistance at amplitude 10Hz indicates the amount of force exerting to the cantilever. During the coagulation reaction, the viscosity of the sample would suddenly rise due to the clot formation, and the increased force can be sensed when the resistance amplitude in 10Hz rises. Activated partial thromboplastin time can be obtained by the time needed for fibrin clot formation. Because of the method was initiated by Sonoclot analysis, so we called the measurement result as Sonoclot signature-like activated partial thromboplastin time (Son-aPTT).
The amplitude of resistance in the specific frequency performed well linear correlation in calibration with absolute viscosity changes of glycerol/water solutions(R2>0.99), and we also found out that the amplitude-absolute viscosity curve behave differently in very low absolute viscosity, probably due to the decrease in viscous drag for low absolute viscosity. Three types of commercially standard samples for coagulation activated partial thromboplastin time measurements were used for the testing of microcantilever sensor. The measured results of resistance amplitude in specific frequency with specific patterns of signature indicated the viscoelastic changes during blood coagulation reaction. In coagulation control level 1, the Son-aPTT measured by microcantilever is 23.2 sec with std. of 1.25 sec; Son-aPTT = 47.5 sec with std. of 4.55 sec in coagulation control level 2; and Son-aPTT = 83.5 sec with std. of 4.32 sec in coagulation control level 3. Compare with commercial coagulation device, the aPPT measured show no difference between microcantilever sensor and commercial device in 95% confident level, and all lie in the reference aPTT ranges. The experiment results support that the aPTT measured by microcantilever sensor perform well and precise. Moreover, the patterns of resistance amplitude can be further analyzed for another useful information of blood such as MA for fibrinogen level in TEG analysis.
This microcantilever sensor has performed well in real-time measurement for point-of-care coagulation monitoring, after miniaturized and optimized, its potential can be well worth looking forward to.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:37:16Z (GMT). No. of bitstreams: 1
ntu-105-R03543010-1.pdf: 3975986 bytes, checksum: 9618e17eba5b2baf112175abf2dbcc71 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝................. ...................ii
中文摘要 ..........................................................................................................................iv
ABSTRACT vi
圖目錄 ...........................................................................................................................xii
表目錄 .........................................................................................................................xvii
第1章 緒論 1
前言 1
1.1 研究動機 2
1.2 文獻回顧 4
1.2.1 凝血監測技術 4
1.2.2 微懸臂梁應用於黏度測量 8
1.3 論文大綱 10
第2章 止血與凝血反應概論 11
2.1 止血 11
2.1.1 參與止血之元素 11
2.1.2 人體內之止血機制 11
2.2 凝血路徑(coagulation pathway) 12
2.3 凝血時間 15
2.3.1 凝血酶原時間 16
2.3.2 活化部分凝血活酶時間 16
2.3.3 活化凝血時間 17
第3章 壓阻式微懸臂梁之理論分析 18
3.1 壓阻材料特性分析 18
3.1.1 多晶矽之電阻率 19
3.1.2 壓阻效應 20
3.2 微懸臂梁機械性質分析 23
3.2.1 彈簧常數與共振頻率 23
3.2.2 微懸臂梁上的應力分析 25
第4章 壓阻式微懸臂梁凝血感測系統之設計與製程 31
4.1 微懸臂梁之壓阻層設計理念 31
4.1.1 壓阻層與中性軸位置探討 31
4.1.2 形狀設計與製程分析 31
4.2 壓阻式微懸臂梁晶片之尺寸 35
4.3 壓阻式微懸臂梁晶片之製程 36
4.3.1 基底與薄膜沉積 37
4.3.2 壓阻層位置定義 39
4.3.3 金屬導線及絕緣保護層之沉積 40
4.3.4 電極區製程 41
4.3.5 絕緣保護層蝕刻 42
4.3.6 微懸臂梁形狀定義 43
4.3.7 背蝕刻製程 43
4.3.8 背蝕刻懸浮微懸臂梁 44
4.3.9 晶圓切割處理 47
4.4 印刷電路板之設計與製作 48
4.5 壓阻式微懸臂梁凝血感測器之封裝 49
4.6 壓阻因子 49
4.6.1 壓阻因子量測理論計算 50
4.6.2 壓阻因子量測結果 51
4.7 微懸臂梁在液體中振動之受力情形 53
第5章 實驗方法與結果討論 56
5.1 實驗材料與藥品 56
5.2 軟硬體實驗設備 56
5.3 實驗設計與架構 57
5.4 實驗訊號處理方式 59
5.4.1 快速傅立葉轉換理論 59
5.4.2 應用快速傅立葉轉換於微懸臂梁感測訊號 61
5.5 壓阻式微懸臂梁凝血感測系統於不同黏度液體之量測 62
5.5.1 實驗方法 62
5.5.2 實驗結果與討論 63
5.6 壓阻式微懸臂梁凝血感測系統於凝血反應監測之應用 68
5.6.1 實驗方法 68
5.6.2 實驗結果與討論 68
第6章 結論與未來展望 78
6.1 結論 78
6.2 未來展望 79
參考文獻. 80
dc.language.isozh-TW
dc.subject壓阻zh_TW
dc.subject微懸臂梁zh_TW
dc.subject黏度zh_TW
dc.subject部分活化凝血?原時間zh_TW
dc.subject黏度zh_TW
dc.subject壓阻zh_TW
dc.subject微懸臂梁zh_TW
dc.subject部分活化凝血?原時間zh_TW
dc.subjectviscosityen
dc.subjectviscosityen
dc.subjectactivated partial thromboplastin timeen
dc.subjectmicrocantileveren
dc.subjectpiezoresistanceen
dc.subjectmicrocantileveren
dc.subjectactivated partial thromboplastin timeen
dc.subjectpiezoresistanceen
dc.title利用振動式自感測壓阻式微懸臂梁監測人體血漿中內部路徑凝血反應zh_TW
dc.titleMonitoring blood coagulation reaction of intrinsic pathway in human plasma by an oscillated, self-sensing piezoresistive microcantilever sensoren
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee施文彬(Wen-Pin Shih),盧彥文(Yen-Wen Lu)
dc.subject.keyword微懸臂梁,壓阻,部分活化凝血?原時間,黏度,zh_TW
dc.subject.keywordpiezoresistance,microcantilever,activated partial thromboplastin time,viscosity,en
dc.relation.page83
dc.identifier.doi10.6342/NTU201601506
dc.rights.note有償授權
dc.date.accepted2016-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
3.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved