請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50344完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃建璋(Jian-Jang Huang) | |
| dc.contributor.author | Tsung-Han Yang | en |
| dc.contributor.author | 楊宗翰 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:37:05Z | - |
| dc.date.available | 2019-08-03 | |
| dc.date.copyright | 2016-08-03 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-29 | |
| dc.identifier.citation | Reference
[1] Z. Zhong, M. Li, D. Xiang, N. Dai, Y. Qing, D. Wang, et al., 'Signal amplification of electrochemical immunosensor for the detection of human serum IgG using double-codified nanosilica particles as labels,' Biosensors and Bioelectronics, vol. 24, pp. 2246-2249, 2009. [2] M. J. Schöning and A. Poghossian, 'Bio FEDs (Field‐Effect Devices): State‐of‐the‐Art and New Directions,' Electroanalysis, vol. 18, pp. 1893-1900, 2006. [3] C. V. Sapan, R. L. Lundblad, and N. C. Price, 'Colorimetric protein assay techniques,' Biotechnology and applied Biochemistry, vol. 29, pp. 99-108, 1999. [4] T. Riedel, C. Rodriguez-Emmenegger, A. de los Santos Pereira, A. Bědajánková, P. Jinoch, P. M. Boltovets, et al., 'Diagnosis of Epstein–Barr virus infection in clinical serum samples by an SPR biosensor assay,' Biosensors and Bioelectronics, vol. 55, pp. 278-284, 2014. [5] P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, et al., 'New colorimetric cytotoxicity assay for anticancer-drug screening,' Journal of the National Cancer Institute, vol. 82, pp. 1107-1112, 1990. [6] R. Yakimova, G. Steinhoff, R. Petoral, C. Vahlberg, V. Khranovskyy, G. Yazdi, et al., 'Novel material concepts of transducers for chemical and biosensors,' Biosensors and Bioelectronics, vol. 22, pp. 2780-2785, 2007. [7] J.-C. Lin, B.-R. Huang, and Y.-K. Yang, 'IGZO nanoparticle-modified silicon nanowires as extended-gate field-effect transistor pH sensors,' Sensors and Actuators B: Chemical, vol. 184, pp. 27-32, 2013. [8] J. Jung, S. J. Kim, D. H. Yoon, B. Kim, S. H. Park, and H. J. Kim, 'Electrical responses of artificial DNA nanostructures on solution-processed In-Ga-Zn-O thin-film transistors with multistacked active layers,' ACS applied materials & interfaces, vol. 5, pp. 98-102, 2012. [9] S. J. Kim, J. Jung, K. W. Lee, D. H. Yoon, T. S. Jung, S. R. Dugasani, et al., 'Low-cost label-free electrical detection of artificial DNA nanostructures using solution-processed oxide thin-film transistors,' ACS applied materials & interfaces, vol. 5, pp. 10715-10720, 2013. [10] S. J. Kim, J. Jung, D. H. Yoon, and H. J. Kim, 'The effect of various solvents on the back channel of solution-processed In–Ga–Zn–O thin-film transistors intended for biosensor applications,' Journal of Physics D: Applied Physics, vol. 46, p. 035102, 2012. [11] J. Y. Chen, C. J. Chen, M. Y. Liu, S. M. Cho, M. M. Hsu, T. C. Lynn, et al., 'Antibody to Epstein‐Barr virus‐specific DNase as a marker for field survey of patients with nasopharyngeal carcinoma in Taiwan,' Journal of medical virology, vol. 27, pp. 269-273, 1989. [12] J. Fachiroh, T. Schouten, B. Hariwiyanto, D. K. Paramita, A. Harijadi, S. M. Haryana, et al., 'Molecular diversity of Epstein-Barr virus IgG and IgA antibody responses in nasopharyngeal carcinoma: a comparison of Indonesian, Chinese, and European subjects,' Journal of Infectious Diseases, vol. 190, pp. 53-62, 2004. [13] A. S. Fauci, Harrison's principles of internal medicine vol. 2: McGraw-Hill, Medical Publishing Division, 2008. [14] K.-C. Chow, J. Ma, L.-S. Lin, K.-H. Chi, S.-H. Yen, S.-M. Liu, et al., 'Serum responses to the combination of Epstein-Barr virus antigens from both latent and acute phases in nasopharyngeal carcinoma: complementary test of EBNA-1 with EA-D,' Cancer Epidemiology Biomarkers & Prevention, vol. 6, pp. 363-368, 1997. [15] J. Luka, R. C. Chase, and G. R. Pearson, 'A sensitive enzyme-linked immunosorbent assay (ELISA) against the major EBV-associated antigens. I. Correlation between ELISA and immunofluorescence titers using purified antigens,' Journal of immunological methods, vol. 67, pp. 145-156, 1984. [16] J. Gray, 'Avidity of EBV VCA-specific IgG antibodies: distinction between recent primary infection, past infection and reactivation,' Journal of virological methods, vol. 52, pp. 95-104, 1995. [17] S. Ghaemmaghami, W.-K. Huh, K. Bower, R. W. Howson, A. Belle, N. Dephoure, et al., 'Global analysis of protein expression in yeast,' Nature, vol. 425, pp. 737-741, 2003. [18] M. Kunimoto, S. Tamura, T. Tabata, and O. Yoshie, 'One-step typing of Epstein-Barr virus by polymerase chain reaction: predominance of type 1 virus in Japan,' Journal of general virology, vol. 73, pp. 455-461, 1992. [19] Y.-C. Shen, C.-H. Yang, S.-W. Chen, S.-H. Wu, T.-L. Yang, and J.-J. Huang, 'IGZO thin film transistor biosensors functionalized with ZnO nanorods and antibodies,' Biosensors and Bioelectronics, vol. 54, pp. 306-310, 2014. [20] K. H. Ji, J.-I. Kim, Y.-G. Mo, J. H. Jeong, S. Yang, C.-S. Hwang, et al., 'Comparative Study on Light-Induced Bias Stress Instability of IGZO Transistors With and Gate Dielectrics,' IEEE Electron Device Letters, vol. 31, pp. 1404-1406, 2010. [21] J. L. West and N. J. Halas, 'Applications of nanotechnology to biotechnology: Commentary,' Current opinion in Biotechnology, vol. 11, pp. 215-217, 2000. [22] K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, et al., 'Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,' Cancer research, vol. 63, pp. 1999-2004, 2003. [23] L.-S. Jang and H.-K. Keng, 'Modified fabrication process of protein chips using a short-chain self-assembled monolayer,' Biomedical microdevices, vol. 10, pp. 203-211, 2008. [24] K. Abe, K. Takahashi, A. Sato, H. Kumomi, K. Nomura, T. Kamiya, et al., 'Amorphous In–Ga–Zn–O dual-gate TFTs: Current–voltage characteristics and electrical stress instabilities,' IEEE Transactions on Electron Devices, vol. 59, pp. 1928-1935, 2012. [25] K.-S. Son, J.-S. Jung, K.-H. Lee, T.-S. Kim, J.-S. Park, Y.-H. Choi, et al., 'Characteristics of double-gate Ga–In–Zn–O thin-film transistor,' IEEE Electron Device Letters, vol. 31, pp. 219-221, 2010. [26] K. Weber and M. Osborn, 'The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis,' Journal of Biological Chemistry, vol. 244, pp. 4406-4412, 1969. [27] H. Schägger and G. Von Jagow, 'Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa,' Analytical biochemistry, vol. 166, pp. 368-379, 1987. [28] J. Adams, 'Technical considerations on the use of horseradish peroxidase as a neuronal marker,' Neuroscience, vol. 2, pp. 141-145, 1977. [29] W. N. Burnette, '“Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A,' Analytical biochemistry, vol. 112, pp. 195-203, 1981. [30] G. R. Pearson, 'ELISA tests and monoclonal antibodies for EBV,' Journal of virological methods, vol. 21, pp. 97-104, 1988. [31] E. Stenberg, B. Persson, H. Roos, and C. Urbaniczky, 'Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins,' Journal of colloid and interface science, vol. 143, pp. 513-526, 1991. [32] J. Homola, S. S. Yee, and G. Gauglitz, 'Surface plasmon resonance sensors: review,' Sensors and Actuators B: Chemical, vol. 54, pp. 3-15, 1999. [33] J. Homola, 'Present and future of surface plasmon resonance biosensors,' Analytical and bioanalytical chemistry, vol. 377, pp. 528-539, 2003. [34] C.-C. Chang, N.-F. Chiu, D. S. Lin, Y. Chu-Su, Y.-H. Liang, and C.-W. Lin, 'High-sensitivity detection of carbohydrate antigen 15-3 using a gold/zinc oxide thin film surface plasmon resonance-based biosensor,' Analytical chemistry, vol. 82, pp. 1207-1212, 2010. [35] S. Somekh, 'Etch stop layer for dual damascene process,' ed: Google Patents, 2001. [36] P. R. Gray and R. G. Meyer, Analysis and design of analog integrated circuits: John Wiley & Sons, Inc., 1990. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50344 | - |
| dc.description.abstract | 在這篇論文中介紹以氧化銦鎵鋅薄膜電晶體與感測金屬板構成之生醫感測器檢測人類皰疹病毒第四型病毒蛋白質。此研究分兩部分:
在第一部分,我們首先利用延伸感測板之薄膜電晶體生醫感測器量測人類皰疹病毒第四型的核抗原抗體與早期抗原抗體。將量測結果與數種現行臨床檢測方法做比較以驗證薄膜電晶體生醫感測器的可靠性。省時、高敏感度是此感測器的顯著優勢。我們可以專一性量測到濃度為 10 -5 µg/ml 的 EBV 抗體溶液。 在第二部分,我們介紹改良型可重複使用之薄膜電晶體生醫感測器。分離原生 醫感測器之薄膜電晶體部分與感測板部分再以棒線方式聯結。他的優點在於只要在每次量測後更換感測板部分,薄膜電晶體部分可以被保存以達成重複使用之需求。在這部分,我們量測人類皰疹病毒第四型的核抗原抗體。並將薄膜電晶體生醫感測器與酵素免疫分析法之量測結果交叉比對,以驗證薄膜電晶體生醫感測器之可靠性。 | zh_TW |
| dc.description.abstract | In this thesis, a biosensor consists of an Indium-Gallium-Zinc-Oxide (IGZO) thin film transistor (TFT) biosensor and a gold sensing pad is demonstrated. There are two parts in this thesis.
In the first part, a TFT biosensor with an extended gold sensing pad is demonstrated. EBV antibodies are measured and the results are compared with three conventional biological detection methods to ensure the reliability of the TFT biosensor. Time-saving and high sensitivity are the significant advantages. The TFT biosensor is able to selectively detect 10-5µg/ml EBV antibodies in the PBS buffer solution. In the second part, a modified reusable TFT biosensor is demonstrated. The TFT section and the sensing pad section of the biosensors are separated and then combined by wire bonding. The main advantage is that TFT transistors can be reused after each measurement by substituting the external gold sensing pads. A Cross-matching comparison of ELISA approach and TFT biosensor is discussed in order to verify reliability and credibly of the TFT biosensor. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:37:05Z (GMT). No. of bitstreams: 1 ntu-105-R02941122-1.pdf: 3137783 bytes, checksum: df9e6a5dfe168ba933c17a50965c76d9 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Contents
謝誌 I 摘要 III Abstract IV Contents V List of Figure VII List of Table IX Chapter 1 Introduction 1 1.1 Overview of FET biosensors 1 1.2 Background of Epstein-Barr virus detection 3 1.3 Thesis structure 6 Chapter 2 Detection of Epstein-Barr Virus 7 2.1 Introduction 7 2.2 Structure and fabrication 9 2.2.1 Structure of the Biosensors 9 2.2.2 Fabrication of the biosensors 10 2.3 Detection of EBV antibodies by TFT biosensors 12 2.3.1 The detection procedure 12 2.3.2 Results and discussion 14 2.4 Comparison of conventional methods 25 2.4.1 Western blot 25 2.4.2 Enzyme-linked immunosorbent assay (ELISA) 28 2.4.3 Surface Plasmon Resonance (SPR) 31 2.5 Summary 35 Chapter3 Bio-detection based on reusable TFT biosensors 36 3.1 Introduction 36 3.2 Structure and fabrication 38 3.3 Detection of EBNA-1 antibody with reusable TFT biosensors 40 3.3.1 Detection procedure 40 3.3.2 Results and discussion 42 3.4 Cross verifications with conventional ELISA approach 51 3.4.1 The schematic diagram of the comparison 51 3.4.2 The assay procedure 53 3.4.3 Results and discussion 55 3.5 Summary 59 Chapter 4 Conclusion 60 Reference 61 | |
| dc.language.iso | en | |
| dc.subject | 蛋白質檢測 | zh_TW |
| dc.subject | 高敏感度生醫感測器 | zh_TW |
| dc.subject | 蛋白質檢測 | zh_TW |
| dc.subject | 人類皰疹病毒第四型 | zh_TW |
| dc.subject | 薄膜電晶體 | zh_TW |
| dc.subject | 人類皰疹病毒第四型 | zh_TW |
| dc.subject | 薄膜電晶體 | zh_TW |
| dc.subject | 高敏感度生醫感測器 | zh_TW |
| dc.subject | TFT | en |
| dc.subject | high sensitivity biosensor | en |
| dc.subject | Epstein-Barr virus | en |
| dc.subject | protein detection | en |
| dc.subject | protein detection | en |
| dc.subject | high sensitivity biosensor | en |
| dc.subject | TFT | en |
| dc.subject | Epstein-Barr virus | en |
| dc.title | 高敏感度銦鎵鋅氧化物薄膜電晶體
應用於EB病毒蛋白質之檢測 | zh_TW |
| dc.title | High Sensitivity IGZO-TFT Biosensors for EBV Protein
Detection | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳奕君(I-Chun Cheng),林致廷(Chih-Ting Lin),吳育任(Yuh-Renn Wu),吳肇欣(Chao-Hsin Wu) | |
| dc.subject.keyword | 人類皰疹病毒第四型,薄膜電晶體,高敏感度生醫感測器,蛋白質檢測, | zh_TW |
| dc.subject.keyword | Epstein-Barr virus,TFT,high sensitivity biosensor,protein detection, | en |
| dc.relation.page | 63 | |
| dc.identifier.doi | 10.6342/NTU201601560 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-07-30 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 3.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
