Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50314
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余佳慧
dc.contributor.authorMeng-Ping Sheen
dc.contributor.author佘孟萍zh_TW
dc.date.accessioned2021-06-15T12:36:02Z-
dc.date.available2021-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-07-29
dc.identifier.citation1. Furness, J.B., et al., Intrinsic primary afferent neurons of the intestine. Prog Neurobiol, 1998. 54(1): p. 1-18.
2. Furness, J.B., et al., Intrinsic primary afferent neurons and nerve circuits within the intestine. Prog Neurobiol, 2004. 72(2): p. 143-64.
3. Nezami, B.G. and S. Srinivasan, Enteric nervous system in the small intestine: pathophysiology and clinical implications. Curr Gastroenterol Rep, 2010. 12(5): p. 358-65.
4. Brookes, S.J., et al., Extrinsic primary afferent signalling in the gut. Nat Rev Gastroenterol Hepatol, 2013. 10(5): p. 286-96.
5. Uesaka, T., et al., Development of the intrinsic and extrinsic innervation of the gut. Dev Biol, 2016.
6. Roth, K.A., S. Kim, and J.I. Gordon, Immunocytochemical studies suggest two pathways for enteroendocrine cell differentiation in the colon. Am J Physiol, 1992. 263(2 Pt 1): p. G174-80.
7. Pytliak, M., et al., Serotonin receptors - from molecular biology to clinical applications. Physiol Res, 2011. 60(1): p. 15-25.
8. Borman, R.A., et al., 5-HT(2B) receptors play a key role in mediating the excitatory effects of 5-HT in human colon in vitro. Br J Pharmacol, 2002. 135(5): p. 1144-51.
9. Hansen, M.B., et al., Effect of serotonin on small intestinal contractility in healthy volunteers. Physiol Res, 2008. 57(1): p. 63-71.
10. Hedlund, P.B. and J.G. Sutcliffe, Functional, molecular and pharmacological advances in 5-HT7 receptor research. Trends Pharmacol Sci, 2004. 25(9): p. 481-6.
11. Terron, J.A. and A. Falcon-Neri, Pharmacological evidence for the 5-HT7 receptor mediating smooth muscle relaxation in canine cerebral arteries. Br J Pharmacol, 1999. 127(3): p. 609-16.
12. Ishine, T., et al., Serotonin 5-HT(7) receptors mediate relaxation of porcine pial veins. Am J Physiol Heart Circ Physiol, 2000. 278(3): p. H907-12.
13. Tuladhar, B.R., L. Ge, and R.J. Naylor, 5-HT7 receptors mediate the inhibitory effect of 5-HT on peristalsis in the isolated guinea-pig ileum. Br J Pharmacol, 2003. 138(7): p. 1210-4.
14. Stasi, C., et al., Serotonin receptors and their role in the pathophysiology and therapy of irritable bowel syndrome. Tech Coloproctol, 2014. 18(7): p. 613-21.
15. Lange, W., Cell number and cell density in the cerebellar cortex of man and some other mammals. Cell Tissue Res, 1975. 157(1): p. 115-24.
16. Gershon, M.D., The enteric nervous system: a second brain. Hosp Pract (1995), 1999. 34(7): p. 31-2, 35-8, 41-2 passim.
17. Van Oudenhove, L., et al., Central nervous system involvement in functional gastrointestinal disorders. Best Pract Res Clin Gastroenterol, 2004. 18(4): p. 663-80.
18. Bienenstock, J. and S. Collins, 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: psycho-neuroimmunology and the intestinal microbiota: clinical observations and basic mechanisms. Clin Exp Immunol, 2010. 160(1): p. 85-91.
19. Collins, S.M. and P. Bercik, The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology, 2009. 136(6): p. 2003-14.
20. Rhee, S.H., C. Pothoulakis, and E.A. Mayer, Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol, 2009. 6(5): p. 306-14.
21. Mayer, E.A. and K. Tillisch, The brain-gut axis in abdominal pain syndromes. Annu Rev Med, 2011. 62: p. 381-96.
22. Garcia-Larrea, L., The posterior insular-opercular region and the search of a primary cortex for pain. Neurophysiol Clin, 2012. 42(5): p. 299-313.
23. Furness, J.B., The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol, 2012. 9(5): p. 286-94.
24. Sikandar, S. and A.H. Dickenson, Pregabalin modulation of spinal and brainstem visceral nociceptive processing. Pain, 2011. 152(10): p. 2312-22.
25. Millan, M.J., Descending control of pain. Prog Neurobiol, 2002. 66(6): p. 355-474.
26. Sengupta, J.N., Visceral pain: the neurophysiological mechanism. Handb Exp Pharmacol, 2009(194): p. 31-74.
27. Bouin, M., et al., Pain hypersensitivity in patients with functional gastrointestinal disorders: a gastrointestinal-specific defect or a general systemic condition? Dig Dis Sci, 2001. 46(11): p. 2542-8.
28. Zhou, Q., et al., Central and peripheral hypersensitivity in the irritable bowel syndrome. Pain, 2010. 148(3): p. 454-61.
29. Longstreth, G.F., et al., Functional bowel disorders. Gastroenterology, 2006. 130(5): p. 1480-91.
30. Corazziari, E., Definition and epidemiology of functional gastrointestinal disorders. Best Pract Res Clin Gastroenterol, 2004. 18(4): p. 613-31.
31. Lovell, R.M. and A.C. Ford, Global prevalence of and risk factors for irritable bowel syndrome: a meta-analysis. Clin Gastroenterol Hepatol, 2012. 10(7): p. 712-721 e4.
32. Gwee, K.A., Irritable bowel syndrome in developing countries--a disorder of civilization or colonization? Neurogastroenterol Motil, 2005. 17(3): p. 317-24.
33. Lu, C.L., et al., Current patterns of irritable bowel syndrome in Taiwan: the Rome II questionnaire on a Chinese population. Aliment Pharmacol Ther, 2003. 18(11-12): p. 1159-69.
34. Lu, C.L., et al., Gender difference on the symptoms, health-seeking behaviour, social impact and sleep quality in irritable bowel syndrome: a Rome II-based survey in an apparent healthy adult Chinese population in Taiwan. Aliment Pharmacol Ther, 2005. 21(12): p. 1497-505.
35. Halder, S.L., et al., Natural history of functional gastrointestinal disorders: a 12-year longitudinal population-based study. Gastroenterology, 2007. 133(3): p. 799-807.
36. Ford, A.C., et al., Irritable bowel syndrome: a 10-yr natural history of symptoms and factors that influence consultation behavior. Am J Gastroenterol, 2008. 103(5): p. 1229-39; quiz 1240.
37. Camilleri, M., R.C. Heading, and W.G. Thompson, Clinical perspectives, mechanisms, diagnosis and management of irritable bowel syndrome. Aliment Pharmacol Ther, 2002. 16(8): p. 1407-30.
38. Olafsdottir, L.B., et al., Stability of the irritable bowel syndrome and subgroups as measured by three diagnostic criteria - a 10-year follow-up study. Aliment Pharmacol Ther, 2010. 32(5): p. 670-80.
39. Engsbro, A.L., M. Simren, and P. Bytzer, The Rome II and Rome III criteria identify the same subtype-populations in irritable bowel syndrome: agreement depends on the method used for symptom report. Neurogastroenterol Motil, 2012. 24(7): p. 604-11, e266.
40. Schwille-Kiuntke, J., N. Mazurak, and P. Enck, Systematic review with meta-analysis: post-infectious irritable bowel syndrome after travellers' diarrhoea. Aliment Pharmacol Ther, 2015. 41(11): p. 1029-37.
41. Thabane, M., D.T. Kottachchi, and J.K. Marshall, Systematic review and meta-analysis: The incidence and prognosis of post-infectious irritable bowel syndrome. Aliment Pharmacol Ther, 2007. 26(4): p. 535-44.
42. Bouin, M., et al., Rectal distention testing in patients with irritable bowel syndrome: sensitivity, specificity, and predictive values of pain sensory thresholds. Gastroenterology, 2002. 122(7): p. 1771-7.
43. Azpiroz, F., et al., Mechanisms of hypersensitivity in IBS and functional disorders. Neurogastroenterol Motil, 2007. 19(1 Suppl): p. 62-88.
44. Kanazawa, M., et al., Contributions of pain sensitivity and colonic motility to IBS symptom severity and predominant bowel habits. Am J Gastroenterol, 2008. 103(10): p. 2550-61.
45. Quigley, E.M., Disturbances of motility and visceral hypersensitivity in irritable bowel syndrome: biological markers or epiphenomenon. Gastroenterol Clin North Am, 2005. 34(2): p. 221-33, vi.
46. Kellow, J.E. and S.F. Phillips, Altered small bowel motility in irritable bowel syndrome is correlated with symptoms. Gastroenterology, 1987. 92(6): p. 1885-93.
47. Kellow, J.E., et al., Dysmotility of the small intestine in irritable bowel syndrome. Gut, 1988. 29(9): p. 1236-43.
48. Ohman, L., et al., B-cell activation in patients with irritable bowel syndrome (IBS). Neurogastroenterol Motil, 2009. 21(6): p. 644-50, e27.
49. Ohman, L., et al., T-cell activation in patients with irritable bowel syndrome. Am J Gastroenterol, 2009. 104(5): p. 1205-12.
50. Cremon, C., et al., Mucosal immune activation in irritable bowel syndrome: gender-dependence and association with digestive symptoms. Am J Gastroenterol, 2009. 104(2): p. 392-400.
51. Gecse, K., et al., Increased faecal serine protease activity in diarrhoeic IBS patients: a colonic lumenal factor impairing colonic permeability and sensitivity. Gut, 2008. 57(5): p. 591-9.
52. Dinan, T.G., et al., Hypothalamic-pituitary-gut axis dysregulation in irritable bowel syndrome: plasma cytokines as a potential biomarker? Gastroenterology, 2006. 130(2): p. 304-11.
53. Chang, L., et al., Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis in irritable bowel syndrome. Neurogastroenterol Motil, 2009. 21(2): p. 149-59.
54. Eriksson, E.M., et al., Irritable bowel syndrome subtypes differ in body awareness, psychological symptoms and biochemical stress markers. World J Gastroenterol, 2008. 14(31): p. 4889-96.
55. Elsenbruch, S., et al., Public speaking stress-induced neuroendocrine responses and circulating immune cell redistribution in irritable bowel syndrome. Am J Gastroenterol, 2006. 101(10): p. 2300-7.
56. Kassinen, A., et al., The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology, 2007. 133(1): p. 24-33.
57. Kerckhoffs, A.P., et al., Lower Bifidobacteria counts in both duodenal mucosa-associated and fecal microbiota in irritable bowel syndrome patients. World J Gastroenterol, 2009. 15(23): p. 2887-92.
58. Matto, J., et al., Composition and temporal stability of gastrointestinal microbiota in irritable bowel syndrome--a longitudinal study in IBS and control subjects. FEMS Immunol Med Microbiol, 2005. 43(2): p. 213-22.
59. Kiesslich, R., et al., Identification of epithelial gaps in human small and large intestine by confocal endomicroscopy. Gastroenterology, 2007. 133(6): p. 1769-78.
60. Turcotte, J.F., et al., Breaks in the wall: increased gaps in the intestinal epithelium of irritable bowel syndrome patients identified by confocal laser endomicroscopy (with videos). Gastrointest Endosc, 2013. 77(4): p. 624-30.
61. Liu, J.J., et al., Increased epithelial gaps in the small intestines of patients with inflammatory bowel disease: density matters. Gastrointest Endosc, 2011. 73(6): p. 1174-80.
62. Enck, P., et al., Irritable bowel syndrome. Nat Rev Dis Primers, 2016. 2: p. 16014.
63. Drossman, D.A., et al., AGA technical review on irritable bowel syndrome. Gastroenterology, 2002. 123(6): p. 2108-31.
64. Drossman, D.A., et al., Bowel patterns among subjects not seeking health care. Use of a questionnaire to identify a population with bowel dysfunction. Gastroenterology, 1982. 83(3): p. 529-34.
65. Bradford, K., et al., Association between early adverse life events and irritable bowel syndrome. Clin Gastroenterol Hepatol, 2012. 10(4): p. 385-90 e1-3.
66. Chitkara, D.K., et al., Early life risk factors that contribute to irritable bowel syndrome in adults: a systematic review. Am J Gastroenterol, 2008. 103(3): p. 765-74; quiz 775.
67. Posserud, I., et al., Altered visceral perceptual and neuroendocrine response in patients with irritable bowel syndrome during mental stress. Gut, 2004. 53(8): p. 1102-8.
68. Patacchioli, F.R., et al., Actual stress, psychopathology and salivary cortisol levels in the irritable bowel syndrome (IBS). J Endocrinol Invest, 2001. 24(3): p. 173-7.
69. Walter, S.A., et al., Pre-experimental stress in patients with irritable bowel syndrome: high cortisol values already before symptom provocation with rectal distensions. Neurogastroenterol Motil, 2006. 18(12): p. 1069-77.
70. Kennedy, P.J., et al., A sustained hypothalamic-pituitary-adrenal axis response to acute psychosocial stress in irritable bowel syndrome. Psychol Med, 2014. 44(14): p. 3123-34.
71. Heitkemper, M., et al., Increased urine catecholamines and cortisol in women with irritable bowel syndrome. Am J Gastroenterol, 1996. 91(5): p. 906-13.
72. Elsenbruch, S. and W.C. Orr, Diarrhea- and constipation-predominant IBS patients differ in postprandial autonomic and cortisol responses. Am J Gastroenterol, 2001. 96(2): p. 460-6.
73. Halvorson, H.A., C.D. Schlett, and M.S. Riddle, Postinfectious irritable bowel syndrome--a meta-analysis. Am J Gastroenterol, 2006. 101(8): p. 1894-9; quiz 1942.
74. Chaudhary, N.A. and S.C. Truelove, The irritable colon syndrome. A study of the clinical features, predisposing causes, and prognosis in 130 cases. Q J Med, 1962. 31: p. 307-22.
75. Moss-Morris, R. and M. Spence, To 'lump' or to 'split' the functional somatic syndromes: can infectious and emotional risk factors differentiate between the onset of chronic fatigue syndrome and irritable bowel syndrome? Psychosom Med, 2006. 68(3): p. 463-9.
76. Wang, L.H., X.C. Fang, and G.Z. Pan, Bacillary dysentery as a causative factor of irritable bowel syndrome and its pathogenesis. Gut, 2004. 53(8): p. 1096-101.
77. Mearin, F., et al., Dyspepsia and irritable bowel syndrome after a Salmonella gastroenteritis outbreak: one-year follow-up cohort study. Gastroenterology, 2005. 129(1): p. 98-104.
78. Neal, K.R., J. Hebden, and R. Spiller, Prevalence of gastrointestinal symptoms six months after bacterial gastroenteritis and risk factors for development of the irritable bowel syndrome: postal survey of patients. BMJ, 1997. 314(7083): p. 779-82.
79. Yang, X., et al., Synaptic plasticity: the new explanation of visceral hypersensitivity in rats with Trichinella spiralis infection? Dig Dis Sci, 2009. 54(5): p. 937-46.
80. Aerssens, J., et al., Alterations in the brain-gut axis underlying visceral chemosensitivity in Nippostrongylus brasiliensis-infected mice. Gastroenterology, 2007. 132(4): p. 1375-87.
81. Spiller, R.C., Role of infection in irritable bowel syndrome. J Gastroenterol, 2007. 42 Suppl 17: p. 41-7.
82. King, T., Psychometric scores and persistence of irritable bowel after infectious diarrhoea. Clin Nutr, 1996. 15(3): p. 143.
83. Drossman, D.A., Mind over matter in the postinfective irritable bowel. Gut, 1999. 44(3): p. 306-7.
84. Spreadbury, I., et al., Concurrent psychological stress and infectious colitis is key to sustaining enhanced peripheral sensory signaling. Neurogastroenterol Motil, 2015. 27(3): p. 347-55.
85. Simren, M., et al., Quality of life in inflammatory bowel disease in remission: the impact of IBS-like symptoms and associated psychological factors. Am J Gastroenterol, 2002. 97(2): p. 389-96.
86. Gracie, D.J. and A.C. Ford, Functional bowel symptoms in quiescent inflammatory bowel disease: more than just irritable bowel syndrome? Gastroenterology, 2014. 147(5): p. 1176-7.
87. Gracie, D.J. and A.C. Ford, IBS-like symptoms in patients with ulcerative colitis. Clin Exp Gastroenterol, 2015. 8: p. 101-9.
88. Jonefjall, B., et al., Characterization of IBS-like symptoms in patients with ulcerative colitis in clinical remission. Neurogastroenterol Motil, 2013. 25(9): p. 756-e578.
89. Long, M.D. and D.A. Drossman, Inflammatory bowel disease, irritable bowel syndrome, or what?: A challenge to the functional-organic dichotomy. Am J Gastroenterol, 2010. 105(8): p. 1796-8.
90. Teruel, C., E. Garrido, and F. Mesonero, Diagnosis and management of functional symptoms in inflammatory bowel disease in remission. World J Gastrointest Pharmacol Ther, 2016. 7(1): p. 78-90.
91. Barbara, G., et al., Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology, 2004. 126(3): p. 693-702.
92. Barbara, G., et al., Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology, 2007. 132(1): p. 26-37.
93. Cenac, N., et al., Role for protease activity in visceral pain in irritable bowel syndrome. J Clin Invest, 2007. 117(3): p. 636-47.
94. Ibeakanma, C., et al., Brain-gut interactions increase peripheral nociceptive signaling in mice with postinfectious irritable bowel syndrome. Gastroenterology, 2011. 141(6): p. 2098-2108 e5.
95. Sagami, Y., et al., Effect of a corticotropin releasing hormone receptor antagonist on colonic sensory and motor function in patients with irritable bowel syndrome. Gut, 2004. 53(7): p. 958-64.
96. Wallon, C., et al., Corticotropin-releasing hormone (CRH) regulates macromolecular permeability via mast cells in normal human colonic biopsies in vitro. Gut, 2008. 57(1): p. 50-8.
97. Wallon, C. and J.D. Soderholm, Corticotropin-releasing hormone and mast cells in the regulation of mucosal barrier function in the human colon. Ann N Y Acad Sci, 2009. 1165: p. 206-10.
98. Greenwood-Van Meerveld, B., D.K. Prusator, and A.C. Johnson, Animal models of gastrointestinal and liver diseases. Animal models of visceral pain: pathophysiology, translational relevance, and challenges. Am J Physiol Gastrointest Liver Physiol, 2015. 308(11): p. G885-903.
99. Soderholm, J.D. and M.H. Perdue, Stress and gastrointestinal tract. II. Stress and intestinal barrier function. Am J Physiol Gastrointest Liver Physiol, 2001. 280(1): p. G7-G13.
100. Bradesi, S., et al., Repeated exposure to water avoidance stress in rats: a new model for sustained visceral hyperalgesia. Am J Physiol Gastrointest Liver Physiol, 2005. 289(1): p. G42-53.
101. Cameron, H.L. and M.H. Perdue, Stress impairs murine intestinal barrier function: improvement by glucagon-like peptide-2. J Pharmacol Exp Ther, 2005. 314(1): p. 214-20.
102. Santos, J., et al., Role of mast cells in chronic stress induced colonic epithelial barrier dysfunction in the rat. Gut, 2001. 48(5): p. 630-6.
103. Monis, P.T., S.M. Caccio, and R.C. Thompson, Variation in Giardia: towards a taxonomic revision of the genus. Trends Parasitol, 2009. 25(2): p. 93-100.
104. Andrews, R.H., et al., Comparison of the levels of intra-specific genetic variation within Giardia muris and Giardia intestinalis. Int J Parasitol, 1998. 28(8): p. 1179-85.
105. Li, E., et al., Mast cell-dependent control of Giardia lamblia infections in mice. Infect Immun, 2004. 72(11): p. 6642-9.
106. Chen, T.L., et al., Persistent gut barrier damage and commensal bacterial influx following eradication of Giardia infection in mice. Gut Pathog, 2013. 5(1): p. 26.
107. Langford, T.D., et al., Central importance of immunoglobulin A in host defense against Giardia spp. Infect Immun, 2002. 70(1): p. 11-8.
108. Spiller, R. and K. Garsed, Postinfectious irritable bowel syndrome. Gastroenterology, 2009. 136(6): p. 1979-88.
109. Cotton, J.A., J.K. Beatty, and A.G. Buret, Host parasite interactions and pathophysiology in Giardia infections. Int J Parasitol, 2011. 41(9): p. 925-33.
110. Morch, K., et al., High rate of fatigue and abdominal symptoms 2 years after an outbreak of giardiasis. Trans R Soc Trop Med Hyg, 2009. 103(5): p. 530-2.
111. Wensaas, K.A., et al., Irritable bowel syndrome and chronic fatigue 3 years after acute giardiasis: historic cohort study. Gut, 2012. 61(2): p. 214-9.
112. Nygard, K., et al., A large community outbreak of waterborne giardiasis-delayed detection in a non-endemic urban area. BMC Public Health, 2006. 6: p. 141.
113. Scott, K.G., L.C. Yu, and A.G. Buret, Role of CD8+ and CD4+ T lymphocytes in jejunal mucosal injury during murine giardiasis. Infect Immun, 2004. 72(6): p. 3536-42.
114. Troeger, H., et al., Effect of chronic Giardia lamblia infection on epithelial transport and barrier function in human duodenum. Gut, 2007. 56(3): p. 328-35.
115. Scott, K.G., et al., Intestinal infection with Giardia spp. reduces epithelial barrier function in a myosin light chain kinase-dependent fashion. Gastroenterology, 2002. 123(4): p. 1179-90.
116. Robertson, L.J., et al., Giardiasis--why do the symptoms sometimes never stop? Trends Parasitol, 2010. 26(2): p. 75-82.
117. Halliez, M.C., et al., Giardia duodenalis induces paracellular bacterial translocation and causes postinfectious visceral hypersensitivity. Am J Physiol Gastrointest Liver Physiol, 2016. 310(8): p. G574-85.
118. Allgayer, H., K. Deschryver, and W.F. Stenson, Treatment with 16,16'-dimethyl prostaglandin E2 before and after induction of colitis with trinitrobenzenesulfonic acid in rats decreases inflammation. Gastroenterology, 1989. 96(5 Pt 1): p. 1290-300.
119. Grisham, M.B., et al., Metabolism of trinitrobenzene sulfonic acid by the rat colon produces reactive oxygen species. Gastroenterology, 1991. 101(2): p. 540-7.
120. Whittle, B.J., et al., Attenuation of inflammation and cytokine production in rat colitis by a novel selective inhibitor of leukotriene A4 hydrolase. Br J Pharmacol, 2008. 153(5): p. 983-91.
121. Lamb, K., et al., Experimental colitis in mice and sensitization of converging visceral and somatic afferent pathways. Am J Physiol Gastrointest Liver Physiol, 2006. 290(3): p. G451-7.
122. Morris, G.P., et al., Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology, 1989. 96(3): p. 795-803.
123. Linden, D.R., et al., Serotonin transporter function and expression are reduced in mice with TNBS-induced colitis. Neurogastroenterol Motil, 2005. 17(4): p. 565-74.
124. Zhou, Q., et al., Visceral and somatic hypersensitivity in TNBS-induced colitis in rats. Dig Dis Sci, 2008. 53(2): p. 429-35.
125. Gschossmann, J.M., et al., Long-term effects of transient chemically induced colitis on the visceromotor response to mechanical colorectal distension. Dig Dis Sci, 2004. 49(1): p. 96-101.
126. Zhou, Q., et al., Visceral and somatic hypersensitivity in a subset of rats following TNBS-induced colitis. Pain, 2008. 134(1-2): p. 9-15.
127. Greenwood-Van Meerveld, B., et al., Spinal cord stimulation attenuates visceromotor reflexes in a rat model of post-inflammatory colonic hypersensitivity. Auton Neurosci, 2005. 122(1-2): p. 69-76.
128. Liebregts, T., et al., Effect of E. coli Nissle 1917 on post-inflammatory visceral sensory function in a rat model. Neurogastroenterol Motil, 2005. 17(3): p. 410-4.
129. Qin, H.Y., et al., Systematic review of animal models of post-infectious/post-inflammatory irritable bowel syndrome. J Gastroenterol, 2011. 46(2): p. 164-74.
130. Caterina, M.J., et al., The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature, 1997. 389(6653): p. 816-24.
131. Yiangou, Y., et al., Vanilloid receptor 1 immunoreactivity in inflamed human bowel. Lancet, 2001. 357(9265): p. 1338-9.
132. Hutter, M.M., et al., Transient receptor potential vanilloid (TRPV-1) promotes neurogenic inflammation in the pancreas via activation of the neurokinin-1 receptor (NK-1R). Pancreas, 2005. 30(3): p. 260-5.
133. Akbar, A., et al., Increased capsaicin receptor TRPV1-expressing sensory fibres in irritable bowel syndrome and their correlation with abdominal pain. Gut, 2008. 57(7): p. 923-9.
134. Cenac, N., et al., Quantification and Potential Functions of Endogenous Agonists of Transient Receptor Potential Channels in Patients With Irritable Bowel Syndrome. Gastroenterology, 2015. 149(2): p. 433-44 e7.
135. Winston, J., et al., The vanilloid receptor initiates and maintains colonic hypersensitivity induced by neonatal colon irritation in rats. Gastroenterology, 2007. 132(2): p. 615-27.
136. Sugiuar, T., K. Bielefeldt, and G.F. Gebhart, TRPV1 function in mouse colon sensory neurons is enhanced by metabotropic 5-hydroxytryptamine receptor activation. J Neurosci, 2004. 24(43): p. 9521-30.
137. Dothel, G., et al., Nerve fiber outgrowth is increased in the intestinal mucosa of patients with irritable bowel syndrome. Gastroenterology, 2015. 148(5): p. 1002-1011 e4.
138. Yu, Y.B., et al., Brain-derived neurotrophic factor contributes to abdominal pain in irritable bowel syndrome. Gut, 2012. 61(5): p. 685-94.
139. Torrents, D., et al., Antinerve growth factor treatment prevents intestinal dysmotility in Trichinella spiralis-infected rats. J Pharmacol Exp Ther, 2002. 302(2): p. 659-65.
140. Barreau, F., et al., Nerve growth factor mediates alterations of colonic sensitivity and mucosal barrier induced by neonatal stress in rats. Gastroenterology, 2004. 127(2): p. 524-34.
141. Willot, S., et al., Nerve growth factor content is increased in the rectal mucosa of children with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol Motil, 2012. 24(8): p. 734-9, e347.
142. Winston, J., et al., Nerve growth factor regulates VR-1 mRNA levels in cultures of adult dorsal root ganglion neurons. Pain, 2001. 89(2-3): p. 181-6.
143. Zhuang, Z.Y., et al., Phosphatidylinositol 3-kinase activates ERK in primary sensory neurons and mediates inflammatory heat hyperalgesia through TRPV1 sensitization. J Neurosci, 2004. 24(38): p. 8300-9.
144. Ji, R.R., et al., p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron, 2002. 36(1): p. 57-68.
145. Ernsberger, U., Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia. Cell Tissue Res, 2009. 336(3): p. 349-84.
146. Barreau, F., et al., Long-term alterations of colonic nerve-mast cell interactions induced by neonatal maternal deprivation in rats. Gut, 2008. 57(5): p. 582-90.
147. Yang, J., et al., The role of brain-derived neurotrophic factor in experimental inflammation of mouse gut. Eur J Pain, 2010. 14(6): p. 574-9.
148. Nakatani, Y., et al., Augmented brain 5-HT crosses the blood-brain barrier through the 5-HT transporter in rat. Eur J Neurosci, 2008. 27(9): p. 2466-72.
149. Sharma, H.S. and P.K. Dey, Probable involvement of 5-hydroxytryptamine in increased permeability of blood-brain barrier under heat stress in young rats. Neuropharmacology, 1986. 25(2): p. 161-7.
150. Sharma, H.S. and P.K. Dey, Impairment of blood-brain barrier (BBB) in rat by immobilization stress: role of serotonin (5-HT). Indian J Physiol Pharmacol, 1981. 25(2): p. 111-22.
151. Sikander, A., S.V. Rana, and K.K. Prasad, Role of serotonin in gastrointestinal motility and irritable bowel syndrome. Clin Chim Acta, 2009. 403(1-2): p. 47-55.
152. Dunlop, S.P., et al., Abnormalities of 5-hydroxytryptamine metabolism in irritable bowel syndrome. Clin Gastroenterol Hepatol, 2005. 3(4): p. 349-57.
153. Manocha, M., et al., IL-13-mediated immunological control of enterochromaffin cell hyperplasia and serotonin production in the gut. Mucosal Immunol, 2013. 6(1): p. 146-55.
154. Buhner, S., et al., Activation of human enteric neurons by supernatants of colonic biopsy specimens from patients with irritable bowel syndrome. Gastroenterology, 2009. 137(4): p. 1425-34.
155. Lu, C.L., et al., Estrogen rapidly modulates 5-hydroxytrytophan-induced visceral hypersensitivity via GPR30 in rats. Gastroenterology, 2009. 137(3): p. 1040-50.
156. Bardhan, K.D., et al., A double-blind, randomized, placebo-controlled dose-ranging study to evaluate the efficacy of alosetron in the treatment of irritable bowel syndrome. Aliment Pharmacol Ther, 2000. 14(1): p. 23-34.
157. Muller-Lissner, S.A., et al., Tegaserod, a 5-HT(4) receptor partial agonist, relieves symptoms in irritable bowel syndrome patients with abdominal pain, bloating and constipation. Aliment Pharmacol Ther, 2001. 15(10): p. 1655-66.
158. Ford, A.C. and N.J. Talley, Irritable bowel syndrome. BMJ, 2012. 345: p. e5836.
159. Prause, A.S., et al., Expression and function of 5-HT7 receptors in smooth muscle preparations from equine duodenum, ileum, and pelvic flexure. Res Vet Sci, 2009. 87(2): p. 292-9.
160. Tonini, M., et al., 5-HT7 receptors modulate peristalsis and accommodation in the guinea pig ileum. Gastroenterology, 2005. 129(5): p. 1557-66.
161. Zou, B.C., et al., Expression and role of 5-HT7 receptor in brain and intestine in rats with irritable bowel syndrome. Chin Med J (Engl), 2007. 120(23): p. 2069-74.
162. Guseva, D., et al., Serotonin 5-HT7 receptor is critically involved in acute and chronic inflammation of the gastrointestinal tract. Inflamm Bowel Dis, 2014. 20(9): p. 1516-29.
163. Leon-Ponte, M., G.P. Ahern, and P.J. O'Connell, Serotonin provides an accessory signal to enhance T-cell activation by signaling through the 5-HT7 receptor. Blood, 2007. 109(8): p. 3139-46.
164. Kim, J.J. and W.I. Khan, 5-HT7 receptor signaling: improved therapeutic strategy in gut disorders. Front Behav Neurosci, 2014. 8: p. 396.
165. Palecek, J. and W.D. Willis, The dorsal column pathway facilitates visceromotor responses to colorectal distention after colon inflammation in rats. Pain, 2003. 104(3): p. 501-7.
166. Larsson, M., et al., A model for chronic quantitative studies of colorectal sensitivity using balloon distension in conscious mice -- effects of opioid receptor agonists. Neurogastroenterol Motil, 2003. 15(4): p. 371-81.
167. Hsu, L.T., et al., Gut-derived cholecystokinin contributes to visceral hypersensitivity via nerve growth factor-dependent neurite outgrowth. J Gastroenterol Hepatol, 2016.
168. Bercik, P., et al., Visceral hyperalgesia and intestinal dysmotility in a mouse model of postinfective gut dysfunction. Gastroenterology, 2004. 127(1): p. 179-87.
169. Hughes, P.A., et al., Post-inflammatory colonic afferent sensitisation: different subtypes, different pathways and different time courses. Gut, 2009. 58(10): p. 1333-41.
170. Feng, B., et al., Altered colorectal afferent function associated with TNBS-induced visceral hypersensitivity in mice. Am J Physiol Gastrointest Liver Physiol, 2012. 303(7): p. G817-24.
171. Tanaka, T., et al., Modulation of visceral hypersensitivity by glial cell line-derived neurotrophic factor family receptor α-3 in colorectal afferents. Am J Physiol Gastrointest Liver Physiol, 2011. 300(3): p. G418-24.
172. Adam, B., et al., A combination of peppermint oil and caraway oil attenuates the post-inflammatory visceral hyperalgesia in a rat model. Scand J Gastroenterol, 2006. 41(2): p. 155-60.
173. Choudhury, B.K., X.Z. Shi, and S.K. Sarna, Gene plasticity in colonic circular smooth muscle cells underlies motility dysfunction in a model of postinfective IBS. Am J Physiol Gastrointest Liver Physiol, 2009. 296(3): p. G632-42.
174. Asfaha, S., et al., Prolonged colonic epithelial hyporesponsiveness after colitis: role of inducible nitric oxide synthase. Am J Physiol, 1999. 276(3 Pt 1): p. G703-10.
175. Zamuner, S.R., et al., Cyclooxygenase 2 mediates post-inflammatory colonic secretory and barrier dysfunction. Gut, 2003. 52(12): p. 1714-20.
176. Adam, B., et al., Severity of mucosal inflammation as a predictor for alterations of visceral sensory function in a rat model. Pain, 2006. 123(1-2): p. 179-86.
177. Larsson, M.H., L. Rapp, and E. Lindstrom, Effect of DSS-induced colitis on visceral sensitivity to colorectal distension in mice. Neurogastroenterol Motil, 2006. 18(2): p. 144-52.
178. Coldwell, J.R., et al., Increased responsiveness of rat colonic splanchnic afferents to 5-HT after inflammation and recovery. J Physiol, 2007. 579(Pt 1): p. 203-13.
179. Thijssen, A.Y., et al., Alterations in serotonin metabolism in the irritable bowel syndrome. Aliment Pharmacol Ther, 2016. 43(2): p. 272-82.
180. Houghton, L.A., et al., Increased platelet depleted plasma 5-hydroxytryptamine concentration following meal ingestion in symptomatic female subjects with diarrhoea predominant irritable bowel syndrome. Gut, 2003. 52(5): p. 663-70.
181. Kilkens, T.O., et al., The effects of an acute serotonergic challenge on brain-gut responses in irritable bowel syndrome patients and controls. Aliment Pharmacol Ther, 2005. 22(9)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50314-
dc.description.abstract背景:腸躁症(Irritable bowel syndrome, IBS)為功能性腸胃道疾病之一,患者出現反覆性腹痛和排便習慣的改變, 但在內視鏡及糞便篩檢中無腸道結構損傷或病原體。罹患IBS之風險因子包括精神壓力、腸道病原感染、慢性腸道炎等。目前已知腸道中血清素(5-HT)的改變為IBS的表徵之一。本篇利用兩種類腸躁症動物模式,探討第七型血清素受體(5-HT7 receptor, 5-HT7R)在內臟高敏感性與腸道蠕動性變化扮演的角色,以及評估新合成5-HT7R配體之止痛效果。
方法:建立兩種類腸躁症模式,包括利用梨形蟲(Giardia)感染後排除期加上避水壓力(WAS)稱之後感染性腸躁症(GW)小鼠、利用三硝基苯黃酸誘發結腸炎復原後稱之後發炎性腸躁症(TNBS)小鼠。透過結直腸撐張刺激引起的內臟動器反應,評估內臟高敏感性。進行活性碳試驗,評估腸道蠕動性。藉由西方轉漬法、反轉錄酶連鎖反應與免疫螢光染色觀察腸道中5-HT7R的表現。此外在內臟動器試驗前經口給予小鼠5-HT7R配體與標準品,評估其改善內臟痛覺與腸道蠕動。
結果:在後感染性腸躁症小鼠中確認梨形蟲在腸道中的感染狀況與避水壓力後血清中腎上腺皮質酮的增加,以及內臟痛覺相較對照組有敏感性的表現但無腸道黏膜型態改變。在後發炎性腸躁症小鼠中確認於灌輸三硝基苯黃酸後第2天腸道組織骨髓過氧化酶增加、組織型態受損,至第7天為發炎緩和復原期;第14、24天完全復原階段仍有持續的內臟痛覺表現;而在第57天痛覺消失。兩種類腸躁症小鼠的5-HT7R表現量在腸道肌肉層、黏膜層中均有提高的現象。腹腔注射SB-269970 (5-HT7R拮抗劑)能降低兩種類腸躁症小鼠的腸道痛覺。相較於Alosetron (臨床用5-HT3R拮抗劑)與Loperamide (臨床用止瀉劑),經口給予CYY1005(新合成之5-HT7R 配體)更能顯著降低內臟高敏感性的表現。
結論:本篇論文證實,腸道中5-HT7R的表現增加和類腸躁症小鼠的內臟高敏感性有關;此外,新合成之5-HT7R配體能有效減緩腸道痛覺。
zh_TW
dc.description.abstractBackground:Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder of which patients experience recurrent abdominal pain or discomfort with changes in bowel habit but neither apparent structural lesion nor presence of pathogen. Risk factors related to the onset of IBS include psychological stress, pathogen infection and chronic gut inflammation. One of the hallmark of IBS is the altered intestinal levels of serotonin (5-HT). The aim is to evaluate the role of 5-HT7 receptor (5-HT7R) in visceral hypersensitivity and gut motility, and to test the antinociceptive effects of newly synthesized 5-HT7R ligands in two IBS-like mouse models.
Method:Two mouse models were used, including post-giardiasis combined with water avoidance stress (GW) and post resolution of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. Visceromotor response (VMR) to colorectal distension and intestinal transit by charcoal meal test were measured. The expression of 5-HT7R protein and mRNA levels were examined in colonic tissue by Western blotting, RT-PCR and immunofluorescent staining. Moreover, 5-HT7R ligands and reference standards were orally administered prior to VMR and charcoal meal test.
Result:In the first model, Giardia infection was confirmed by trophozoite counts in the intestine, and increased serum corticosterone were observed following stress. Elevated visceral pain with normal gut morphology was observed in GW mice compared to normal controls. In the second model, increased colonic myeloperoxidase activity and histopathological score were observed 2 days after TNBS administration and resolved by day 7. Sustained visceral pain was seen on day 14 and 24 but was absent on day 57 after TNBS administration. In the two mouse models, expression levels of 5-HT7R were elevated in colonic muscle/nerve and mucosal layers. Intraperitoneal injection of SB-269970 (a 5-HT7R inhibitor) reduced visceral pain in GW and TNBS mice. Oral administration of a novel 5-HT7R ligand, CYY1005, significantly reduced visceral hypersensitivity compared to Alosetron (a clinically used 5-HT3R antagonist), or Loperamide (a clinically use μ-opioid receptor agonist).
Conclusion:Increased colonic 5-HT7R is involved in visceral hypersensitivity in IBS model. In addition, newly synthesized 5-HT7R ligands showed strong antinociceptive effect.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:36:02Z (GMT). No. of bitstreams: 1
ntu-105-R03441006-1.pdf: 4181471 bytes, checksum: c2143cecba76e0545e42878925668f82 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
目錄 V
圖目錄 VII
壹、前言 1
1.腸道生理功能 1
2.腦腸雙向軸(brain-gut axis) 3
3.內臟痛覺傳遞途徑 4
4.腸躁症(Irritable bowel syndrome, IBS) 6
5.腸躁症內臟高敏感性相關可能機轉 13
6.研究目的 17
貳、材料與方法 18
1.實驗動物 18
2.寄生蟲感染模式 18
3.精神壓力模式 19
4.結腸炎模式 19
5.血清素受體化合物 20
6.實驗動物分組與流程 21
7.血清素受體試驗 23
8.結直腸撐張刺激-內臟動器反應分析 23
(Colorectal distension- Visceromotor response, CRD- VMR) 24
9.腸道蠕動性測試之活性碳試驗 (charcoal meal test) 25
10.組織處理與分析 26
11.組織切片與染色 27
12.西方墨點法(Western blotting) 30
13.核糖核酸(mRNA)測定 31
14.抗體列表 34
15.統計方法 35
參、實驗結果 36
一.梨形鞭毛蟲後感染期合併避水壓力試驗模式 36
1. GW小鼠腸道感染情形與避水壓力試驗後生理結構變化 36
2. GW小鼠腸道內臟敏感性與蠕動性表現 36
3.GW小鼠腸道組織中相關痛覺分子的表現 37
3.1第七型血清素受體(5-HT7R)在腸道中表現 37
3.2第三、四型血清素受體(5-HT3R、5-HT4R)在腸道中表現 38
3.3腸道組織中神經的分布 38
3.4血清素(5-HT)在腸道中表現 38
4.給予血清素受體配體對GW小鼠腸道痛覺與蠕動的影響 39
4.1腹腔注射5-HT7R拮抗劑可降低GW小鼠腸道內臟敏感性 39
4.2比較經口給予不同5-HT7R配體對GW小鼠腸道內臟敏感性與蠕動性影響 39
4.3經口給予不同劑量、時間、次數的CYY1005對GW小鼠的影響 40
4.4比較經口給予標準品對GW小鼠腸道內臟敏感性與蠕動性影響 41
二. 三硝基苯磺酸誘導結腸炎復原後小鼠模式 42
1.灌輸TNBS後小鼠腸道結構變化 42
2.灌輸TNBS後小鼠腸道內臟敏感性與蠕動性表現 42
3. TNBS刺激下腸道組織中相關痛覺分子的表現 43
3.1第七型血清素受體(5-HT7R)在腸道中表現 43
3.2第三、四型血清素受體(5-HT3R、5-HT4R)在腸道中表現 43
3.3腸道組織中神經的分布 44
3.4血清素(5-HT)在腸道中表現 44
4. 給予血清素受體配體對TNBS小鼠腸道痛覺與蠕動的影響 44
4.1腹腔注射5-HT7R拮抗劑可降低TNBS小鼠腸道內臟敏感性 44
4.2經口給予不同5-HT7R配體對TNBS小鼠腸道內臟敏感性與蠕動性影響 45
4.3連續經口給予CYY1005對TNBS小鼠腸道內臟敏感性與蠕動性影響 45
4.4經口給予標準品對TNBS小鼠腸道內臟敏感性與蠕動性影響 46
三. 腸躁症患者的腸道黏膜檢體中5-HT7R的表現 46
肆、討論 47
參考文獻 90
dc.language.isozh-TW
dc.subject梨形蟲zh_TW
dc.subject精神壓力zh_TW
dc.subject腸躁症zh_TW
dc.subject腸道蠕動性zh_TW
dc.subject結腸炎zh_TW
dc.subject血清素第七型受體zh_TW
dc.subject梨形蟲zh_TW
dc.subject精神壓力zh_TW
dc.subject腸躁症zh_TW
dc.subject血清素第七型受體zh_TW
dc.subject腸道蠕動性zh_TW
dc.subject內臟高敏感性zh_TW
dc.subject內臟高敏感性zh_TW
dc.subject結腸炎zh_TW
dc.subject5-HT7 receptoren
dc.subjectIrritable bowel syndromeen
dc.subjectstressen
dc.subjectGiardia lambliaen
dc.subjectcolitisen
dc.subjectvisceral hypersensitivityen
dc.subjectgut motilityen
dc.subject5-HT7 receptoren
dc.subjectIrritable bowel syndromeen
dc.subjectstressen
dc.subjectGiardia lambliaen
dc.subjectcolitisen
dc.subjectvisceral hypersensitivityen
dc.subjectgut motilityen
dc.title探討兩種腸躁症動物模式中內臟高敏感性及
腸道蠕動性的表現
zh_TW
dc.titleStudy of visceral hypersensitivity and gut motility in two animal models of irritable bowel syndromeen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee忻凌偉,孫錦虹,謝坤睿
dc.subject.keyword腸躁症,精神壓力,梨形蟲,結腸炎,內臟高敏感性,腸道蠕動性,血清素第七型受體,zh_TW
dc.subject.keywordIrritable bowel syndrome,stress,Giardia lamblia,colitis,visceral hypersensitivity,gut motility,,5-HT7 receptor,en
dc.relation.page103
dc.identifier.doi10.6342/NTU201601616
dc.rights.note有償授權
dc.date.accepted2016-08-01
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
4.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved