Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50306
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor李芳仁(Fang-Jen Lee)
dc.contributor.authorMing-Chieh Linen
dc.contributor.author林明潔zh_TW
dc.date.accessioned2021-06-15T12:35:45Z-
dc.date.available2021-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-07-31
dc.identifier.citation1. Takai, Y., et al., Small GTP-binding proteins. Int Rev Cytol, 1992. 133: p. 187-230.
2. Donaldson, J.G. and C.L. Jackson, ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol, 2011. 12(6): p. 362-75.
3. Moss, J. and M. Vaughan, Structure and function of ARF proteins: activators of cholera toxin and critical components of intracellular vesicular transport processes. J Biol Chem, 1995. 270(21): p. 12327-30.
4. Burd, C.G., T.I. Strochlic, and S.R. Setty, Arf-like GTPases: not so Arf-like after all. Trends Cell Biol, 2004. 14(12): p. 687-94.
5. Lin, C.Y., et al., ARL4, an ARF-like protein that is developmentally regulated and localized to nuclei and nucleoli. J Biol Chem, 2000. 275(48): p. 37815-23.
6. Pasqualato, S., L. Renault, and J. Cherfils, Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for 'front-back' communication. EMBO Rep, 2002. 3(11): p. 1035-41.
7. Kahn, R.A., et al., Nomenclature for the human Arf family of GTP-binding proteins: ARF, ARL, and SAR proteins. J Cell Biol, 2006. 172(5): p. 645-50.
8. Hong, J.X., et al., Phospholipid- and GTP-dependent activation of cholera toxin and phospholipase D by human ADP-ribosylation factor-like protein 1 (HARL1). J Biol Chem, 1998. 273(25): p. 15872-6.
9. Van Valkenburgh, H., et al., ADP-ribosylation factors (ARFs) and ARF-like 1 (ARL1) have both specific and shared effectors: characterizing ARL1-binding proteins. J Biol Chem, 2001. 276(25): p. 22826-37.
10. Lu, L., G. Tai, and W. Hong, Autoantigen Golgin-97, an effector of Arl1 GTPase, participates in traffic from the endosome to the trans-golgi network. Mol Biol Cell, 2004. 15(10): p. 4426-43.
11. Zhou, C., et al., Arl2 and Arl3 regulate different microtubule-dependent processes. Mol Biol Cell, 2006. 17(5): p. 2476-87.
12. Heo, W.D., et al., PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science, 2006. 314(5804): p. 1458-61.
13. Brown, F.C., C.H. Schindelhaim, and S.R. Pfeffer, GCC185 plays independent roles in Golgi structure maintenance and AP-1-mediated vesicle tethering. J Cell Biol, 2011. 194(5): p. 779-87.
14. Engel, T., et al., ADP-ribosylation factor (ARF)-like 7 (ARL7) is induced by cholesterol loading and participates in apolipoprotein AI-dependent cholesterol export. FEBS Lett, 2004. 566(1-3): p. 241-6.
15. Li, C.C., et al., ARL4D recruits cytohesin-2/ARNO to modulate actin remodeling. Mol Biol Cell, 2007. 18(11): p. 4420-37.
16. Li, C.C., et al., GTP-binding-defective ARL4D alters mitochondrial morphology and membrane potential. PLoS One, 2012. 7(8): p. e43552.
17. Gidalevitz, T., et al., Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science, 2006. 311(5766): p. 1471-4.
18. Ross, C.A., Intranuclear neuronal inclusions: a common pathogenic mechanism for glutamine-repeat neurodegenerative diseases? Neuron, 1997. 19(6): p. 1147-50.
19. Faber, P.W., et al., Huntingtin interacts with a family of WW domain proteins. Hum Mol Genet, 1998. 7(9): p. 1463-74.
20. Raychaudhuri, S., et al., HYPK, a Huntingtin interacting protein, reduces aggregates and apoptosis induced by N-terminal Huntingtin with 40 glutamines in Neuro2a cells and exhibits chaperone-like activity. Hum Mol Genet, 2008. 17(2): p. 240-55.
21. Arnesen, T., et al., The chaperone-like protein HYPK acts together with NatA in cotranslational N-terminal acetylation and prevention of Huntingtin aggregation. Mol Cell Biol, 2010. 30(8): p. 1898-909.
22. Raychaudhuri, S., et al., Conserved C-terminal nascent peptide binding domain of HYPK facilitates its chaperone-like activity. J Biosci, 2014. 39(4): p. 659-72.
23. Choudhury, K.R., S. Raychaudhuri, and N.P. Bhattacharyya, Identification of HYPK-interacting proteins reveals involvement of HYPK in regulating cell growth, cell cycle, unfolded protein response and cell death. PLoS One, 2012. 7(12): p. e51415.
24. Hammond, G.R., et al., PI4P and PI(4,5)P2 are essential but independent lipid determinants of membrane identity. Science, 2012. 337(6095): p. 727-30.
25. Honda, A., et al., Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell, 1999. 99(5): p. 521-32.
26. Jean, S. and A.A. Kiger, Coordination between RAB GTPase and phosphoinositide regulation and functions. Nat Rev Mol Cell Biol, 2012. 13(7): p. 463-70.
27. Conduit, S.E., J.M. Dyson, and C.A. Mitchell, Inositol polyphosphate 5-phosphatases; new players in the regulation of cilia and ciliopathies. FEBS Lett, 2012. 586(18): p. 2846-57.
28. Garcia-Gonzalo, F.R., et al., Phosphoinositides Regulate Ciliary Protein Trafficking to Modulate Hedgehog Signaling. Dev Cell, 2015. 34(4): p. 400-9.
29. Lin, Y.C., et al., ARL4A acts with GCC185 to modulate Golgi complex organization. J Cell Sci, 2011. 124(Pt 23): p. 4014-26.
30. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell, 1993. 72(6): p. 971-83.
31. Aikawa, Y. and T.F. Martin, ARF6 regulates a plasma membrane pool of phosphatidylinositol(4,5)bisphosphate required for regulated exocytosis. J Cell Biol, 2003. 162(4): p. 647-59.
32. Tomas, A., et al., Regulation of insulin secretion by phosphatidylinositol-4,5-bisphosphate. Traffic, 2010. 11(1): p. 123-37.
33. Arnesen, T., et al., Identification and characterization of the human ARD1-NATH protein acetyltransferase complex. Biochem J, 2005. 386(Pt 3): p. 433-43.
34. Fluge, O., et al., NATH, a novel gene overexpressed in papillary thyroid carcinomas. Oncogene, 2002. 21(33): p. 5056-68.
35. Horn, S.C., et al., Huntingtin interacts with the receptor sorting family protein GASP2. J Neural Transm (Vienna), 2006. 113(8): p. 1081-90.
36. Schuld, N.J., et al., The chaperone protein SmgGDS interacts with small GTPases entering the prenylation pathway by recognizing the last amino acid in the CAAX motif. J Biol Chem, 2014. 289(10): p. 6862-76.
37. Xu, Q., et al., Phosphatidylinositol phosphate kinase PIPKIgamma and phosphatase INPP5E coordinate initiation of ciliogenesis. Nat Commun, 2016. 7: p. 10777.
38. Fansa, E.K., et al., PDE6delta-mediated sorting of INPP5E into the cilium is determined by cargo-carrier affinity. Nat Commun, 2016. 7: p. 11366.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50306-
dc.description.abstract二磷酸腺苷核糖基化因子(Arfs)是一群會攜帶三磷酸鳥苷(GTP)的小分子家族,在細胞中調控著囊報的運輸和肌動蛋白的重組。與其構造相近的次家族為腺嘌呤核苷二磷酸核醣化相似因子(Arf-like 4, Arl4),其中包含的成員有Arl4A,Arl4C和Arl4D,它們在生物發育期間是被嚴格調控且值得研究的。為了近一步得知他們功能,我們運用了酵母菌雙雜交篩選法發現了Arl4的新作用蛋白HYPK,它是一個會與導致亨丁頓舞蹈症的治病蛋白Htt作用的蛋白,並被報導可降低Htt引起的不正常堆積,同時有類似保護蛋白(chaperon)的特性。此外,HYPK可以與終端乙酰轉移酶共同作用,幫助剛做出的胜肽蛋白正確摺疊。為了釐清Arl4與HYPK的作用,我們在酵母菌雙雜交法中得知HYPK只特定與Arl4A和Arl4D,不與Arl4C作用,並發現HYPK尾端115-129是與Arl4結合的位置,用此片段我們繼續篩選出A1和A3兩個失去與Arl4結合能力的HYPK突變體。我們同時也驗證HYPK不偏好與活化態或非活化的態的Arl4作用。以上發現都藉由穀胱苷肽轉移酶 (GST) 融合蛋白進行試管結合實驗(in vitro binding assay)、共同免疫沉澱(IP)得到確認。接著也利用免疫螢光染色法在細胞中觀察到HYPK與Arl4A共同坐落於細胞膜上。功能探討部分,HYPK不僅在細菌系統裡可以加強Arl4A的表現量,更可以在COS-7細胞株與Arl4A一起促進細胞移動的能力。以上資訊告訴我們Arl4可能透過與尚未透徹的機制與HYPK作用而有更好的折疊,因而促進在細胞中的功能。
另一項研究主要在探討Arl4家族和磷酸肌醇(phosphoinositide)之間的相互關係。實驗室之前的研究顯示Arl4位在的細胞膜上累積許多特定的磷酸肌醇,因而好奇這樣的磷酸肌醇累積是否會影響Arl4家族對細胞膜的親和力。而我們用特殊的脂質磷酸酶系統降低細胞膜上特定的磷酸肌醇的含量,結果顯示Arl4家族駐於細胞膜上的能力並不受到這些特定的磷酸肌醇影響,此外,還意外發現Arl4家族有能力顯著地將實驗過程所使用的脂質磷酸酶INPP5E吸引到細胞膜上。利用免疫沉澱的分析,我們發現INPP5E可以直接與Arl4A作用。由於INPP5E被發現的主要功能為降低纖毛中特定磷酸肌醇的累積以幫助訊傳遞,所以我們在NIH/3T3細胞株抑制Arl4A的表現之後,發現INPP5E失去維持纖毛中特定磷酸肌醇的含量的能力。就這些結果顯示,INPP5E很有可能是Arl4A家族訊息下游新穎的作用分子,來共同調特定的生理功能,詳細的影響機制值得進一步探討。
zh_TW
dc.description.abstractADP-ribosylation factors (Arfs) are small GTPases that control vesicle trafficking and actin remodeling. The Arf-like 4 (Arl4) proteins contain Arl4A, Arl4C, and Arl4D which belong to Arf subfamily, are tightly regulated in development and different tissues. To understand the function of Arl4s more clearly, we identified a novel interacting partner huntingtin yeast two hybrid protein K (HYPK) by yeast two-hybrid system. HYPK is primarily found to be one of interacting proteins of huntingtin (Htt), which its N-terminal CAG repeats can cause product aggregation, thus leading to Huntington disease. HYPK was reported to reduce aggregates and apoptosis induced by Htt and exhibited chaperone-like activity. Also, it was found to act with N-terminal acetyltransferase (NaA) to confer nascent proteins’ proper folding. To confirm the interaction between Arl4s and HYPK, we found that HYPK prefers to interact with Arl4A and Arl4D but not Arl4C in yeast two-hybrid system, and HYPK’s C-terminal domain 115-129 was further narrow downed to be important for interacting with Arl4s, which led to identification of A1 and A3 mutants. Accordingly, HYPK has not preference toward Arl4A Q79L or T51N forms. These data are consistent in in intro binding assay, and co-immunoprecipitation. Next, HYPK can co-localize with Arl4A WT, Q79L and T51N but not T34N and G2A forms on plasm membrane in COS-7 cells. To focus on the functions between Arl4s and HYPK, we found that HYPK can not only promote the abundancy of Arl4A in E. coli system, but also enhance cell migration in the presence of Arl4A. As a result, HYPK probably through assisting proper folding of Arl4A by unknown mechanism to improve the functions of Arl4A.
Another study around Arl4s is focused on their interdependent relationship toward phosphoinositides (PIs). Our previous data showed that Arl4s localized membrane enriched with phosphatidylinositol 4,5-biphosphate (PI(4,5)P2), phosphatidylinositol 3,4,5-triphosphate (PI(3,4,5)P3) and phosphatidylserine. Curious about whether depletion of PI(4,5)P2 could affect the ability of Arl4s’s membrane targeting, we use Pseudojanin (PJ) phosphatase chimera coupled with rapamycin induced membrane translocation to deplete PI(4,5)P2 on plasma membrane. Arl4s seemed not to be affected by lipid composition change but accidentally potentiated phosphatase INPP5E in PJ to attach to membrane and co-localize with Arl4s. Co-immunoprecipitation of INPP5E confirmed its direct interaction toward Arl4A in COS-7 cells. Moreover, knockdown of Arl4A disrupt INPP5E maintained low PI(4,5)P2 distribution in cilia lumen in NIH/3T3 cells. Put together, INPP5E the could be a newly identified effector down stream of Arl4s.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:35:45Z (GMT). No. of bitstreams: 1
ntu-105-R03448007-1.pdf: 8787023 bytes, checksum: cc64d494ed2faa43c1e9fa9b13183e04 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝 ii
中文摘要 iii
Abstract v
Contents vii
Table of Contents ix
Figure of Contents: Part 1 x
Figure of Contents: Part 2 xi
1. Introduction 1
1-1. Small GTP-binding proteins 1
1-2. ADP-ribosylation factor (Arf) family 2
1-3. Human Arf-like proteins (Arls) 3
1-4. Characteristics of ADP-ribosylation factor-like 4 4
1-5. Arl4A interacting protein: HYPK 5
1-5-1 HYPK in huntington’s disease 5
1-5-2 Known functions of HYPK 6
1-5-3 Arl4s and HYPK 7
1-6. Arl4A interacting protein: INPP5E 7
1-6-1 Coordination of small GTPase and phosphoinositide regulations 7
1-6-2 Arf6-PIPKI dependent membrane protrusion 9
1-6-3 INPP5E and Hedgehog signaling 9
2. Materials and Methods 11
3. Results-Part 1. Arl4A and HYPK 27
3-1-1. Identification of HYPK as an Arl4A andArl4D interacting protein 27
3-1-2. HYPK specifically interacts with Arl4A and Arl4D but not Arl4C 28
3-1-3. Arl4A and Arl4D interact within the conserved NPAA domain of HYPK 28
3-1-4. HYPK A1 to A5 mutants could not interact with Arl4A and Arl4D 29
3-1-5. Pull down and in vitro binding assays indicate the direct interaction between Arl4A and HYPK 30
3-1-6. Active form of Arl4A enables HYPK targeting to plasma membrane 32
3-1-7. HYPK and Arl4A can physically interact in vivo 34
3-1-8. HYPK promotes the abundancy of Arl4A during induction in E. coli 34
3-1.9. HYPK has slight impact on oligomerization of Arl4A 36
3-1-10. Arl4A can promote cell migration in the presence of HYPK 37
3. Results-Part 2. Arl4A and INPP5E 39
3-2-1. PI4P and PI(4,5)P2 are enriched in Arl4A bound membrane 39
3-2-2. Depletion of both PI4P and PI(4,5)P2 has mild impact on Arl4s membrane targeting 40
3-2-3. Arl4s are able to recruit PJ phosphatase to plasma membrane 41
3-2-4. INPP5E is the emerging candidate to interact with Arl4s on plasma membrane 43
3-2-5. INPP5E may not through Arf6-PIPKI dependent pathway to recruit INPP5E 44
3-2-6. Arl4A can physically interact with INPP5E and Sac1 phosphatase in vivo 46
3-2-7. Knockdown of Arl4A probably has impact on cilia signaling transduction 46
4. Discussion-Part 1. Arl4A and HYPK 48
4. Discussion-Part 2. Arl4A and INPP5E 52
7. Supplementary figures -Part 1. Arl4A and HYPK 101
7. Supplementary figures -Part 2. Arl4A and INPP5E 103
8. Reference 109
dc.language.isoen
dc.subject亨丁頓酵母雙雜交蛋白?Kzh_TW
dc.subject腺嘌呤核?二磷酸核醣化相似因子zh_TW
dc.subject磷酸肌醇zh_TW
dc.subject亨丁頓酵母雙雜交蛋白?Kzh_TW
dc.subject腺嘌呤核?二磷酸核醣化相似因子zh_TW
dc.subject磷酸肌醇zh_TW
dc.subjectphosphoinositideen
dc.subjectArl4en
dc.subjectHYPKen
dc.subjectINPP5Een
dc.subjectphosphoinositideen
dc.subjectArl4en
dc.subjectHYPKen
dc.subjectINPP5Een
dc.title人類腺嘌呤核苷二磷酸核醣化相似因子四與其結合蛋白之特性探討zh_TW
dc.titleFunctional characterization of human Arl4A and its interacting proteinsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳瑞華(Ruey-Hwa Chen),周祖述(Tzuu-Shuh Jou),黃佩欣(Pei-Hsing Huang),劉雅雯(Ya-Wen Liu)
dc.subject.keyword腺嘌呤核?二磷酸核醣化相似因子,亨丁頓酵母雙雜交蛋白?K,磷酸肌醇,zh_TW
dc.subject.keywordArl4,HYPK,INPP5E,phosphoinositide,en
dc.relation.page114
dc.identifier.doi10.6342/NTU201601692
dc.rights.note有償授權
dc.date.accepted2016-08-01
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
Appears in Collections:分子醫學研究所

Files in This Item:
File SizeFormat 
ntu-105-1.pdf
  Restricted Access
8.58 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved