Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50298Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 游文岳(Wen-Yueh Yu) | |
| dc.contributor.author | Yo-Hsiang Chen | en |
| dc.contributor.author | 陳祐祥 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:35:29Z | - |
| dc.date.available | 2025-07-31 | |
| dc.date.copyright | 2020-08-14 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-12 | |
| dc.identifier.citation | [1] Choi, D.; Gao, Z.; Jiang, W., Attention to global warming. The Review of Financial Studies 2020, 33 (3), 1112-1145. [2] Bui, M.; Adjiman, C. S.; Bardow, A.; Anthony, E. J.; Boston, A.; Brown, S.; Fennell, P. S.; Fuss, S.; Galindo, A.; Hackett, L. A., Carbon capture and storage (CCS): the way forward. Energy Environmental Science 2018, 11 (5), 1062-1176. [3] Koytsoumpa, E. I.; Bergins, C.; Kakaras, E., The CO2 economy: Review of CO2 capture and reuse technologies. The Journal of Supercritical Fluids 132 2018, 3-16. [4] Din, I. U.; Shaharun, M. S.; Alotaibi, M. A.; Alharthi, A. I.; Naeem, A., Recent developments on heterogeneous catalytic CO2 reduction to methanol. Journal of CO2 Utilization 2019, 34, 20-33. [5] Massari, S.; Ruberti, M., Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resources Policy 2013, 38 (1), 36-43. [6] Younis, A.; Chu, D.; Li, S., Cerium oxide nanostructures and their applications. Functionalized Nanomaterials 2016, 53-68. [7] Gong, Z.-J.; Li, Y.-R.; Wu, H.-L.; Lin, S. D.; Yu, W.-Y., Direct copolymerization of carbon dioxide and 1, 4-butanediol enhanced by ceria nanorod catalyst. Applied Catalysis B: Environmental 2020, 265, 118524. [8] Santos, B. A.; Silva, V. M.; Loureiro, J. M.; Rodrigues, A. E., Review for the direct synthesis of dimethyl carbonate. ChemBioEng Reviews 2014, 1 (5), 214-229. [9] 尤躍誠; 杜芳毅; 龔子傑; 李祐任; 游文岳, 二氧化碳與甲醇直接合成碳酸二甲酯: 異相觸媒, 除水系統與催化機制. 化工會刊 2019, 66 (4), 59-82. [10] Shukla, K.; Srivastava, V. C., Synthesis of organic carbonates from alcoholysis of urea: A review. Catalysis Reviews 2017, 59 (1), 1-43. [11] Honda, M.; Tamura, M.; Nakagawa, Y.; Sonehara, S.; Suzuki, K.; Fujimoto, K. i.; Tomishige, K., Ceria‐catalyzed conversion of carbon dioxide into dimethyl carbonate with 2‐cyanopyridine. ChemSusChem 2013, 6 (8), 1341-1344. [12] Delpech, M. C.; Coutinho, F. M. B.; Habibe, M. E. S., Bisphenol A-based polycarbonates: characterization of commercial samples. Polymer Testing 2002, 21 (2), 155-161. [13] Hoekstra, E. J.; Simoneau, C., Release of bisphenol A from polycarbonate—a review. Critical Reviews in Food Science and Nutrition 2013, 53 (4), 386-402. [14] Rogulska, M., Polycarbonate-based thermoplastic polyurethane elastomers modified by DMPA. Polymer Bulletin 2019, 76 (9), 4719-4733. [15] Rogulska, M.; Kultys, A., Aliphatic polycarbonate-based thermoplastic polyurethane elastomers containing diphenyl sulfide units. Journal of Thermal Analysis and Calorimetry 2016, 126 (1), 225-243. [16] Deng, W.; Shi, L.; Yao, J.; Zhang, Z., A review on transesterification of propylene carbonate and methanol for dimethyl carbonate synthesis. Carbon Resources Conversion 2019, 2 (3), 198-212. [17] Tamura, M.; Ito, K.; Honda, M.; Nakagawa, Y.; Sugimoto, H.; Tomishige, K., Direct copolymerization of CO2 and diols. Scientific Reports 2016, 6, 24038. [18] Kunioka, M.; Masuda, T.; Tachibana, Y.; Funabashi, M.; Oishi, A., Highly selective synthesis of biomass-based 1,4-butanediol monomer by alcoholysis of 1,4-diacetoxybutane derived from furan. Polymer Degradation and Stability 2014, 109, 393-397. [19] Amada, Y.; Watanabe, H.; Hirai, Y.; Kajikawa, Y.; Nakagawa, Y.; Tomishige, K., Production of biobutanediols by the hydrogenolysis of erythritol. ChemSusChem 2012, 5 (10), 1991-1999. [20] Matsuo, J.; Sanda, F.; Endo, T., Cationic ring‐opening polymerization behavior of an aliphatic seven‐membered cyclic carbonate, 1, 3‐dioxepan‐2‐one. Macromolecular Chemistry and Physics 1998, 199 (1), 97-102. [21] D'Alessandro, D. M.; Smit, B.; Long, J. R., Carbon dioxide capture: prospects for new materials. Angewandte Chemie International Edition 2010, 49 (35), 6058-6082. [22] Inoue, S.; Koinuma, H.; Tsuruta, T., Copolymerization of carbon dioxide and epoxide. Journal of Polymer Science Part B: Polymer Letters 1969, 7 (4), 287-292. [23] Pêgo, A. P.; Grijpma, D. W.; Feijen, J., Enhanced mechanical properties of 1, 3-trimethylene carbonate polymers and networks. Polymer 2003, 44 (21), 6495-6504. [24] Kricheldorf, H. R.; Mahler, A., Polymers of carbonic acid 18: polymerizations of cyclobis (hexamethylene carbonate) by means of BuSnCl3 or Sn (II) 2-ethylhexanoate. Polymer 1996, 37 (19), 4383-4388. [25] Zhu, W.; Huang, X.; Li, C.; Xiao, Y.; Zhang, D.; Guan, G., High‐molecular‐weight aliphatic polycarbonates by melt polycondensation of dimethyl carbonate and aliphatic diols: synthesis and characterization. Polymer International 2011, 60 (7), 1060-1067. [26] Olah, G. A., Beyond oil and gas: the methanol economy. Angewandte Chemie International Edition 2005, 44 (18), 2636-2639. [27] Leino, E.; Mäki-Arvela, P.; Eta, V.; Murzin, D. Y.; Salmi, T.; Mikkola, J.-P., Conventional synthesis methods of short-chain dialkylcarbonates and novel production technology via direct route from alcohol and waste CO2. Applied Catalysis A: General 2010, 383 (1-2), 1-13. [28] Bustamante, F.; Orrego, A. s. F.; Villegas, S. n.; Villa, A. L., Modeling of chemical equilibrium and gas phase behavior for the direct synthesis of dimethyl carbonate from CO2 and methanol. Industrial Engineering Chemistry Research 2012, 51 (26), 8945-8956. [29] Wu, X.; Meng, Y.; Xiao, M.; Lu, Y., Direct synthesis of dimethyl carbonate (DMC) using Cu-Ni/VSO as catalyst. Journal of Molecular Catalysis A: Chemical 2006, 249 (1-2), 93-97. [30] Bian, J.; Xiao, M.; Wang, S.; Lu, Y.; Meng, Y., Novel application of thermally expanded graphite as the support of catalysts for direct synthesis of DMC from CH3OH and CO2. Journal of Colloid and Interface Science 2009, 334 (1), 50-57. [31] Almusaiteer, K., Synthesis of dimethyl carbonate (DMC) from methanol and CO2 over Rh-supported catalysts. Catalysis Communications 2009, 10 (7), 1127-1131. [32] Zhang, M.; Xiao, M.; Wang, S.; Han, D.; Lu, Y.; Meng, Y., Cerium oxide-based catalysts made by template-precipitation for the dimethyl carbonate synthesis from Carbon dioxide and methanol. Journal of Cleaner Production 2015, 103, 847-853. [33] Choi, J.-C.; He, L.-N.; Yasuda, H.; Sakakura, T., Selective and high yield synthesis of dimethyl carbonate directly from carbon dioxide and methanol. Green Chemistry 2002, 4 (3), 230-234. [34] Huiling, C.; Shuanjin, W.; Min, X.; Dongmei, H.; Yixin, L.; Yuezhong, M., Direct synthesis of dimethyl carbonate from CO2 and CH3OH using 0.4 nm molecular sieve supported Cu-Ni bimetal catalyst. Chinese Journal of Chemical Engineering 2012, 20 (5), 906-913. [35] Stoian, D.; Taboada, E.; Llorca, J.; Molins, E.; Medina, F.; Segarra, A., Boosted CO2 reaction with methanol to yield dimethyl carbonate over Mg–Al hydrotalcite-silica lyogels. Chemical Communications 2013, 49 (48), 5489-5491. [36] Tomishige, K.; Kunimori, K., Catalytic and direct synthesis of dimethyl carbonate starting from carbon dioxide using CeO2-ZrO2 solid solution heterogeneous catalyst: effect of H2O removal from the reaction system. Applied Catalysis A: General 2002, 237 (1-2), 103-109. [37] Sakakura, T.; Choi, J.-C.; Saito, Y.; Masuda, T.; Sako, T.; Oriyama, T., Metal-catalyzed dimethyl carbonate synthesis from carbon dioxide and acetals. The Journal of Organic Chemistry 1999, 64 (12), 4506-4508. [38] Honda, M.; Suzuki, A.; Noorjahan, B.; Fujimoto, K.-i.; Suzuki, K.; Tomishige, K., Low pressure CO2 to dimethyl carbonate by the reaction with methanol promoted by acetonitrile hydration. Chemical Communications 2009, (30), 4596-4598. [39] Kašpar, J.; Fornasiero, P.; Graziani, M., Use of CeO2-based oxides in the three-way catalysis. Catalysis Today 1999, 50 (2), 285-298. [40] Tomishige, K.; Gu, Y.; Chang, T.; Tamura, M.; Nakagawa, Y., Catalytic function of CeO2 in non-reductive conversion of CO2 with alcohols. Materials Today Sustainability 2020, 9, 100035. [41] Deshpande, S.; Patil, S.; Kuchibhatla, S. V.; Seal, S., Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Applied Physics Letters 2005, 87 (13), 133113. [42] Dhall, A.; Self, W., Cerium oxide nanoparticles: a brief review of their synthesis methods and biomedical applications. Antioxidants 2018, 7 (8), 97. [43] Cui, M.; He, J.; Lu, N.; Zheng, Y.; Dong, W.; Tang, W.; Chen, B.; Li, C., Morphology and size control of cerium carbonate hydroxide and ceria micro/nanostructures by hydrothermal technology. Materials Chemistry and Physics 2010, 121 (1-2), 314-319. [44] Mai, H. X.; Sun, L. D.; Zhang, Y. W.; Si, R.; Feng, W.; Zhang, H.-P.; Liu, H.-C.; Yan, C.-H., Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. The Journal of Physical Chemistry B 2005, 109 (51), 24380-24385. [45] Zhang, D.; Li, F.; Gu, J.; Xie, Q.; Li, S.; Zhang, X.; Han, G.; Ying, A.; Tong, Z., Controlled synthesis of Ce(OH)CO3 flowers by a hydrothermal method and their thermal conversion to CeO2 flowers. Particuology 2012, 10 (6), 771-776. [46] Choudhury, B.; Choudhury, A., Lattice distortion and corresponding changes in optical properties of CeO2 nanoparticles on Nd doping. Current Applied Physics 2013, 13 (1), 217-223. [47] McBride, J.; Hass, K.; Poindexter, B.; Weber, W., Raman and x‐ray studies of Ce1− x RE x O2− y, where RE= La, Pr, Nd, Eu, Gd, and Tb. Journal of Applied Physics 1994, 76 (4), 2435-2441. [48] Hennings, U.; Reimert, R., Investigation of the structure and the redox behavior of gadolinium doped ceria to select a suitable composition for use as catalyst support in the steam reforming of natural gas. Applied Catalysis A: General 2007, 325 (1), 41-49. [49] Dutta, G.; Saha, S. K.; Waghmare, U. V., Effects of Zr and Ti doping on the dielectric response of CeO2: A comparative first-principles study. Solid State Communications 2010, 150 (41-42), 2020-2022. [50] Liu, B.; Li, C.; Zhang, G.; Yao, X.; Chuang, S. S.; Li, Z., Oxygen vacancy promoting dimethyl carbonate synthesis from CO2 and methanol over Zr-doped CeO2 nanorods. ACS Catalysis 2018, 8 (11), 10446-10456. [51] Ranjith, K. S.; Dong, C.-L.; Lu, Y.-R.; Huang, Y.-C.; Chen, C.-L.; Saravanan, P.; Asokan, K.; Rajendra Kumar, R. T., Evolution of visible photocatalytic properties of Cu-doped CeO2 nanoparticles: role of Cu2+-mediated oxygen vacancies and the mixed-valence states of ce ions. ACS Sustainable Chemistry Engineering 2018, 6 (7), 8536-8546. [52] Varshney, M.; Sharma, A.; Chae, K. H.; Kumar, S.; Won, S. O., Electronic structure and dielectric properties of ZrO2-CeO2 mixed oxides. Journal of Physics and Chemistry of Solids 2018, 119, 242-250. [53] Tamura, M.; Kishi, R.; Nakagawa, Y.; Tomishige, K., Self-assembled hybrid metal oxide base catalysts prepared by simply mixing with organic modifiers. Nature Communications 2015, 6 (1), 1-9. [54] Tamura, M.; Kishi, R.; Nakayama, A.; Nakagawa, Y.; Hasegawa, J.-y.; Tomishige, K., Formation of a new, strongly basic nitrogen anion by metal oxide modification. Journal of the American Chemical Society 2017, 139 (34), 11857-11867. [55] Gu, Y.; Matsuda, K.; Nakayama, A.; Tamura, M.; Nakagawa, Y.; Tomishige, K., Direct synthesis of alternating polycarbonates from CO2 and diols by using a catalyst system of CeO2 and 2-furonitrile. ACS Sustainable Chemistry Engineering 2019, 7 (6), 6304-6315. [56] 李祐任, 製備氧化鈰觸媒應用於二氧化碳與二元醇直接合成聚碳酸酯. 國立台灣大學化學工程研究所 2019. [57] 李志甫, X 光吸收光譜術在觸媒特性分析上的應用. 化學 1995, 53 (3), 280-293. [58] Yano, J.; Yachandra, V. K., X-ray absorption spectroscopy. Photosynthesis Research 2009, 102 (2-3), 241. [59] Barrett, E. P.; Joyner, L. G.; Halenda, P. P., The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical society 1951, 73 (1), 373-380. [60] Danielis, M.; Colussi, S.; de Leitenburg, C.; Soler, L.; Llorca, J.; Trovarelli, a., outstanding methane oxidation performance of palladium‐embedded ceria catalysts prepared by a one‐step dry ball‐milling method. Angewandte Chemie 2018, 130 (32), 10369-10373. [61] Daniel, M.; Loridant, S., Probing reoxidation sites by in situ Raman spectroscopy: differences between reduced CeO2 and Pt/CeO2. Journal of Raman Spectroscopy 2012, 43 (9), 1312-1319. [62] Filtschew, A.; Hofmann, K.; Hess, C., Ceria and its defect structure: new insights from a combined spectroscopic approach. The Journal of Physical Chemistry C 2016, 120 (12), 6694-6703. [63] Schilling, C.; Hofmann, A.; Hess, C.; Ganduglia-Pirovano, M. V. n., Raman spectra of polycrystalline CeO2: A density functional theory study. The Journal of Physical Chemistry C 2017, 121 (38), 20834-20849. [64] Schilling, C.; Ganduglia-Pirovano, M. V. n.; Hess, C., Experimental and theoretical study on the nature of adsorbed oxygen species on shaped ceria nanoparticles. The Journal of Physical Chemistry Letters 2018, 9 (22), 6593-6598. [65] Spanier, J. E.; Robinson, R. D.; Zhang, F.; Chan, S.-W.; Herman, I. P., Size-dependent properties of CeO2− y nanoparticles as studied by Raman scattering. Physical Review B 2001, 64 (24), 245407. [66] Matović, B.; Dukić, J.; Babić, B.; Bučevac, D.; Dohčević-Mitrović, Z.; Radović, M.; Bošković, S., Synthesis, calcination and characterization of Nanosized ceria powders by self-propagating room temperature method. Ceramics International 2013, 39 (5), 5007-5012. [67] Kumar, S.; Srivastava, M.; Singh, J.; Layek, S.; Yashpal, M.; Materny, A.; Ojha, A. K., Controlled synthesis and magnetic properties of monodispersed ceria nanoparticles. AIP Advances 2015, 5 (2), 027109. [68] Della Mea, G. B.; Matte, L. P.; Thill, A. S.; Lobato, F. O.; Benvenutti, E. V.; Arenas, L. T.; Jürgensen, A.; Hergenröder, R.; Poletto, F.; Bernardi, F., Tuning the oxygen vacancy population of cerium oxide (CeO2−x, 0< x< 0.5) nanoparticles. Applied Surface Science 2017, 422, 1102-1112. [69] Schneller, T.; Kohlstedt, H.; Petraru, A.; Waser, R.; Guo, J.; Denlinger, J.; Learmonth, T.; Glans, P.-A.; Smith, K., Investigation of the amorphous to crystalline phase transition of chemical solution deposited Pb(Zr0.3Ti0.7)O3 thin films by soft X-ray absorption and soft X-ray emission spectroscopy. Journal of Sol-Gel Science and Technology 2008, 48 (1-2), 239-252. [70] Asakura, D.; Hosono, E.; Nanba, Y.; Zhou, H.; Okabayashi, J.; Ban, C.; Glans, P.-A.; Guo, J.; Mizokawa, T.; Chen, G., Material/element-dependent fluorescence-yield modes on soft X-ray absorption spectroscopy of cathode materials for Li-ion batteries. AIP Advances 2016, 6 (3), 035105. [71] de Bettencourt‐Dias, A., Lanthanides: electronic structure. Encyclopedia of Inorganic and Bioinorganic Chemistry 2011. [72] Paidi, V. K.; Brewe, D. L.; Freeland, J. W.; Roberts, C. A.; van Lierop, J., Role of Ce 4f hybridization in the origin of magnetism in nanoceria. Physical Review B 2019, 99 (18), 180403. [73] Sham, T.; Gordon, R.; Heald, S., Resonant inelastic x-ray scattering at the Ce L3 edge of CePO4 and CeO2: Implications for the valence of CeO2 and related phenomena. Physical Review B 2005, 72 (3), 035113. [74] Peng, D.-Z.; Chen, S.-Y.; Chen, C.-L.; Gloter, A.; Huang, F.-T.; Dong, C.-L.; Chan, T.-S.; Chen, J.-M.; Lee, J.-F.; Lin, H.-J., Understanding and tuning electronic structure in modified ceria nanocrystals by defect engineering. Langmuir 2014, 30 (34), 10430-10439. [75] Yoshida, Y.; Arai, Y.; Kado, S.; Kunimori, K.; Tomishige, K., Direct synthesis of organic carbonates from the reaction of CO2 with methanol and ethanol over CeO2 catalysts. Catalysis Today 2006, 115 (1-4), 95-101. [76] Honda, M.; Tamura, M.; Nakagawa, Y.; Nakao, K.; Suzuki, K.; Tomishige, K., Organic carbonate synthesis from CO2 and alcohol over CeO2 with 2-cyanopyridine: Scope and mechanistic studies. Journal of Catalysis 2014, 318, 95-107. [77] Santos, B.; Pereira, C.; Silva, V.; Loureiro, J.; Rodrigues, A., Kinetic study for the direct synthesis of dimethyl carbonate from methanol and CO2 over CeO2 at high pressure conditions. Applied Catalysis A: General 2013, 455, 219-226. [78] Wada, S.; Oka, K.; Watanabe, K.; Izumi, Y., Catalytic conversion of carbon dioxide into dimethyl carbonate using reduced copper-cerium oxide catalysts as low as 353 K and 1.3 MPa and the reaction mechanism. Frontiers in Chemistry 2013, 1, 8. [79] Marin, C. M.; Li, L.; Bhalkikar, A.; Doyle, J. E.; Zeng, X. C.; Cheung, C. L., Kinetic and mechanistic investigations of the direct synthesis of dimethyl carbonate from carbon dioxide over ceria nanorod catalysts. Journal of Catalysis 2016, 340, 295-301. [80] Fu, Z.; Zhong, Y.; Yu, Y.; Long, L.; Xiao, M.; Han, D.; Wang, S.; Meng, Y., TiO2-doped CeO2 nanorod catalyst for direct conversion of CO2 and CH3OH to dimethyl carbonate: Catalytic performance and kinetic study. ACS Omega 2018, 3 (1), 198-207. [81] Binet, C.; Daturi, M.; Lavalley, J.-C., IR study of polycrystalline ceria properties in oxidised and reduced states. Catalysis Today 1999, 50 (2), 207-225. [82] Yoshikawa, K.; Sato, H.; Kaneeda, M.; Kondo, J. N., Synthesis and analysis of CO2 adsorbents based on cerium oxide. Journal of CO2 Utilization 2014, 8, 34-38. [83] Wu, Z.; Mann, A. K.; Li, M.; Overbury, S. H., Spectroscopic investigation of surface-dependent acid–base property of ceria nanoshapes. The Journal of Physical Chemistry C 2015, 119 (13), 7340-7350. [84] Tomishige, K.; Ikeda, Y.; Sakaihori, T.; Fujimoto, K., Catalytic properties and structure of zirconia catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Journal of Catalysis 2000, 192 (2), 355-362. [85] Jung, K. T.; Bell, A. T., An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over zirconia. Journal of Catalysis 2001, 204 (2), 339-347. [86] Svec, F.; Belenkii, B. G., Macroporous polymeric membranes for the separation of polymers and a method of their application. United States Patent 1990. [87] Flory, P. J., Principles of Polymer Chemistry. Cornell University Press: 1953. [88] Fulmer, G. R.; Miller, A. J.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I., NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics 2010, 29 (9), 2176-2179. [89] Gottlieb, H. E.; Kotlyar, V.; Nudelman, A., NMR chemical shifts of common laboratory solvents as trace impurities. The Journal of Organic Chemistry 1997, 62 (21), 7512-7515. [90] Aresta, M.; Dibenedetto, A.; Pastore, C.; Cuocci, C.; Aresta, B.; Cometa, S.; De Giglio, E., Cerium (IV) oxide modification by inclusion of a hetero-atom: A strategy for producing efficient and robust nano-catalysts for methanol carboxylation. Catalysis Today 2008, 137 (1), 125-131. [91] Li, Y.; Zhao, Y.; Wang, S.; Ma, X., Silica supported potassium oxide catalyst for dehydration of 2-picolinamide to form 2-cyanopyridine. Chinese Chemical Letters 2019, 30 (2), 494-498. [92] Shinkai, Y.; Liu, H.; Harada, H.; Isahaya, Y.; Tomishige, K.; Nakagawa, Y.; Tamura, M.; Suzuki, K.; Namiki, Y., Method for producing aromatic nitrile compound and method for producing carbonate ester. United States Patent: 2020. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50298 | - |
| dc.description.abstract | 本研究中分為兩主題:(1)透過球磨、鍛燒方法提升半微米氧化鈰觸媒於甲醇與二氧化碳合成碳酸二甲酯之反應活性;(2)以二階段製程合成聚碳酸酯。
(1) 球磨處理氧化鈰對於碳酸二甲酯合成活性之影響 近年來由二氧化碳與甲醇以非還原反應合成碳酸二甲酯逐漸受到關注,其特點在於二氧化碳的再利用以及合成碳酸酯的過程中避免使用有毒的光氣。目前市售氧化鈰觸媒中,半微米等級往往價錢便宜但催化活性不佳。在本研究中,我們嘗試透過球磨處理提升市售半微米等級氧化鈰觸媒於碳酸二甲酯反應之合成活性。活性測試結果顯示觸媒經過球磨處理後可顯著提升其反應活性,從6 μmol g-cat-1 h-1提升至378 μmol g-cat-1 h-1,進一步將觸媒以鍛燒處理可提升至538 μmol g-cat-1 h-1。透過X光吸收光譜發現球磨能提升觸媒表面的氧空缺濃度,從原位擴散反射傅立葉轉換紅外線光譜(DRIFTS)結果得知,球磨所產生的氧空缺有利於二氧化碳活化,而鍛燒處理則可降低二氧化碳以及甲醇吸附物與觸媒表面間的作用力,進而有利於碳酸二甲酯的合成。 (2) 聚碳酸酯之二階段製程 以二氧化碳以及雙醇透過氧化鈰催化輔以2-氰基吡啶作為脫水劑為一綠色製程。然而此新興製程目前一大困難在於其聚合度受限,產物分子量低。本研究將透過二階段製程合成出高子量之聚碳酸酯:第一階段以二氧化碳與1,4-丁二醇透過非還原轉換合成碳酸酯寡聚物,並在第二階段以減壓濃縮使其自聚合成聚碳酸酯。為順利實行二階段製程,解決在第一階段中碳酸酯寡聚物受脫水劑封端的狀況為首要目標。我們發現透過改變製程條件(如時間、溫度)可有效抑制脫水劑封端產物的情況。在第二階段製程中,使用製程純化後之碳酸酯寡聚物可藉由減壓濃縮將分子量從1000 Da提升至20000 Da,並且透過調整減壓濃縮的溫度及時間可達到分子量可控之目的。 | zh_TW |
| dc.description.abstract | This thesis includes two parts. (1) treatment of ceria catalyst with ball-milling and calcination to enhance its activity for dimethyl carbonate synthesis; (2) development of two-step process for polycarbonate polyol synthesis.
(1) Enhanced production of dimethyl carbonate from carbon dioxide and methanol over ball-milled ceria catalysts. Recently the direct synthesis of dimethyl carbonate (DMC) from CO2 and CH3OH over CeO2 catalysts has attracted massive attention for its usage of CO2 as reactant and absence of toxic regents in the process. Commercial CeO2 submircoparticle (CeO2) is generally inexpensive while much less catalytically active than commercial CeO2 nanoparticle. In this study, we have treated CeO2 by ball milling with an attempt to enhance its catalytic activity for direct synthesis of DMC from CO2 and CH3OH. Reaction testing shows that ball milling of CeO2 could significantly increase the DMC yield from 6 to 378 μmol g-cat-1 h-1, and further air calcination of ball-milled CeO2 leads to a higher DMC yield of 538 μmol g-cat-1 h-1. X-ray absorption spectroscopy (XAS) characterizations show ball milling increases the amount of oxygen vacancies at CeO2 surface. In-situ temperature-dependent diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) results suggest that mechanochemically-generated surface oxygen vacancies are beneficial for CO2 activation, and air calcination decreases the adsorption strengths of both CO2-derived (i.e., bidentate carbonate) and CH3OH-derived adspecies (i.e., on-top methoxy) to facilitate the production of DMC. (2) Polycarbonate polyol synthesized through two-step Process. Direct copolymerization of CO2 and diols over CeO2 catalysts with 2-cyanopyrinde (2-CP) as the dehydration reagent is a green process to produce polycarbonate polyol (PCPO) oligomer. Nevertheless, this emerging process is currently limited by the low molecular weight of PCPO product obtained. In this study, we have strived to synthesize high-molecular-weight poly(butylene carbonate) (or PBC) by a two-step process involving direct copolymerization of CO2 and 1,4-butanediol to yield PBC oligomer followed by melt polycondensation. In order to enable this two-step process, it is essential to prevent the end group of PCPO oligomer from capping with 2-CP derivative, a key requirement for subsequent melt polymerization. It is found that the capping with 2-CP derivative in PBC oligomer can be efficiently suppressed by engineering the reaction conditions (e.g., reaction time and reaction temperature) of direct copolymerization. Our results show that melt polymerization of PBC oligomer with suppressed capping 2-CP derivative can substantially increase the molecular weight of PBC from ca. 1000 to ca. 20000 Da. Furthermore, the molecular weight of obtained PBC can be controlled by tuning the temperature and period during melt polycondensation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:35:29Z (GMT). No. of bitstreams: 1 U0001-1108202014111000.pdf: 8578739 bytes, checksum: e02141a324ab08915764e4309fe93aa4 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 目錄 口試委員會審定書 i 致謝 ii 摘要 iii Abstract v 目錄 vii 表目錄 vii 第一章 緒論 1 1-1研究背景 1 1-1-1二氧化碳對於地球環境影響及其潛在解決方法 1 1-1-2市售觸媒對於製程之經濟效應 3 1-1-3碳酸酯類及其應用 4 1-2反應介紹 6 1-2-1以非還原法將二氧化碳與醇類合成碳酸酯類 6 1-2-2以減壓濃縮將碳酸酯類自聚合 8 1-3觸媒介紹 10 1-3-1 二氧化碳與醇類之觸媒發展 10 1-3-2 氧化鈰之特性及其改質研究 13 1-3-3 氧化鈰與脫水劑之偕同效應 16 1-4 研究目標 20 第二章 實驗方法 22 2-1實驗藥品 22 2-2 觸媒製備 23 2-3 碳酸酯合成反應 24 2-3-1二氧化碳與甲醇合成碳酸二甲酯 24 2-3-2二氧化碳與1,4-丁二醇合成碳酸酯寡聚物 (polybutylene carbonate oligomer, PBC oligomer) 25 2-3-3以減壓濃縮將寡聚物碳酸酯聚合成聚碳酸酯 (polybutylene carbonate polymer, PBC polymer) 26 2-4 觸媒鑑定 28 2-4-1描式電子顯微鏡 (SEM) 28 2-4-2穿透式電子顯微鏡 (TEM) 28 2-4-3 X光繞射儀 (XRD) 28 2-4-4 X光吸收光譜 (XAS) 29 2-4-5比表面積及孔隙分佈測定儀 (ASAP) 32 2-4-6拉曼光譜儀 (Raman) 33 2-4-7 X光光電子能譜儀 (XPS) 33 2-4-8傅立葉轉換紅外線光譜儀 (FTIR) 34 2-4-9二氧化碳程溫脫附儀 (CO2-TPD) 35 2-5 產物鑑定 36 2-5-1氣相層析儀 (GC) 36 2-5-2凝膠層析儀 (GPC) 37 2-5-3傅立葉轉換紅外線光譜儀 (FTIR) 38 2-5-4核磁共振光譜儀 (NMR) 38 2-5-5基質輔助雷射脫附游離飛行時間質譜儀 (MALDI-TOF) 39 第三章 結果與討論 - 以球磨鍛燒後之氧化鈰催化甲醇與二氧化碳合成碳酸二甲酯 40 3-1球磨、鍛燒對於氧化鈰影響 40 3-1-1觸媒之形貌、物理特性變化 40 3-1-2觸媒之電子結構變化 49 3-2球磨、鍛燒對於氧化鈰反應活性影響 58 3-3以原位光譜鑑定氧化鈰表面吸附情形 64 3-3-1二氧化碳於氧化鈰表面之吸附情形 64 3-3-2甲醇於氧化鈰表面之吸附情形 68 3-4碳酸二甲酯合成之反應機制探討 71 3-4-1原位光譜對於反應中間體之觀察 71 3-4-2反應機制推測 74 第四章 結果與討論 - 二階段製程合成聚碳酸酯 76 4-1碳酸酯寡聚物尾端官能基之純化 76 4-1-1碳酸酯寡聚物尾端官能基生成及分析 76 4-1-2反應條件對於碳酸酯寡聚物尾端官能基的影響 79 4-2以減壓濃縮聚合碳酸酯寡聚物 85 4-2-1減壓濃縮條件對於聚碳酸酯性質的影響 85 第五章 總結 92 第六章 未來展望 94 附錄 96 參考文獻 102 | |
| dc.language.iso | zh-TW | |
| dc.subject | 減壓濃縮 | zh_TW |
| dc.subject | 氧化鈰 | zh_TW |
| dc.subject | 機械化學式合成 | zh_TW |
| dc.subject | 二氧化碳 | zh_TW |
| dc.subject | 碳酸二甲酯 | zh_TW |
| dc.subject | 原位擴散反射傅立葉轉換紅外線光譜 | zh_TW |
| dc.subject | X光吸收光譜 | zh_TW |
| dc.subject | 聚丁烯碳酸酯 | zh_TW |
| dc.subject | 氧化鈰 | zh_TW |
| dc.subject | 機械化學式合成 | zh_TW |
| dc.subject | 二氧化碳 | zh_TW |
| dc.subject | 碳酸二甲酯 | zh_TW |
| dc.subject | 原位擴散反射傅立葉轉換紅外線光譜 | zh_TW |
| dc.subject | X光吸收光譜 | zh_TW |
| dc.subject | 聚丁烯碳酸酯 | zh_TW |
| dc.subject | 減壓濃縮 | zh_TW |
| dc.subject | melt polycondensation | en |
| dc.subject | DRIFTS | en |
| dc.subject | XAS | en |
| dc.subject | polybutylene carbonate | en |
| dc.subject | CeO2 | en |
| dc.subject | CeO2 | en |
| dc.subject | mechanochemical synthesis | en |
| dc.subject | CO2 | en |
| dc.subject | dimethyl carbonate | en |
| dc.subject | DRIFTS | en |
| dc.subject | XAS | en |
| dc.subject | polybutylene carbonate | en |
| dc.subject | melt polycondensation | en |
| dc.subject | mechanochemical synthesis | en |
| dc.subject | CO2 | en |
| dc.subject | dimethyl carbonate | en |
| dc.title | 二氧化碳的非還原性轉換:氧化鈰觸媒的機械化學合成和聚碳酸酯之二階段製程 | zh_TW |
| dc.title | Non-Reductive Conversion of Carbon Dioxide: Mechanochemical Synthesis of Ceria Catalysts and Two-Step Synthesis of Polycarbonates | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林錕松 (Kuen-Song Lin),談駿嵩(Chung-Sung Tan) | |
| dc.subject.keyword | 氧化鈰,機械化學式合成,二氧化碳,碳酸二甲酯,原位擴散反射傅立葉轉換紅外線光譜,X光吸收光譜,聚丁烯碳酸酯,減壓濃縮, | zh_TW |
| dc.subject.keyword | CeO2,mechanochemical synthesis,CO2,dimethyl carbonate,DRIFTS,XAS,polybutylene carbonate,melt polycondensation, | en |
| dc.relation.page | 110 | |
| dc.identifier.doi | 10.6342/NTU202002943 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| Appears in Collections: | 化學工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-1108202014111000.pdf Restricted Access | 8.38 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
