請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50295完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 胡植慶(Jyr- Ching Hu) | |
| dc.contributor.author | Ruo-Lin Kuo | en |
| dc.contributor.author | 郭若琳 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:35:23Z | - |
| dc.date.available | 2016-08-24 | |
| dc.date.copyright | 2016-08-24 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-31 | |
| dc.identifier.citation | Allen, A. R., 1979. Mechanism of frictional fusion in fault zones. Journal of Structural Geology 1, 231- 243.
Allen, J. L., Shaw, C. A., 2013. Seismogenic fault-zone processes and heterogeneity recorded by pseudotachylyte: New insights from the Homestake shear zone, Colorado, in, Abbott, L.D., and Hancock, G.S., eds., Exploring 125 Years of GSA Discoveries in the Rocky Mountain Region: Geological Society of America Field Guide 33, 165–183. doi:10.1130/2013.0033(05). Angelier, J., Barrier, E., Chu, H. T., 1986. Plate collision and paleostress trajectories in a fold-thrust belt: The foothills of Taiwan. Tectonophysics 125, 161- 178. Chai, B. H. T., 1972. Structure and tectonic evolution of Taiwan: America Journal of Science 272, 389- 422. Chiao, C. H., 1991. The geologic structure and evolution of the Hoping area in eastern Taiwan. MS thesis, National Taiwan University, Taipei. Chu, H. T., Huang, S. L., Shen, P. Y., Yui, T. F., 2012. Pseudotachylyte in the Tananao Metamorphic Complex, Taiwan: Occurrence and dynamic phase changes of fossil earthquakes. Tectonophysics 581, 62- 75. doi:10.1016/j.tecto.2012.01.017. Cowan, D. S., 1999. Do faults preserve a record of seismic slip? A field geologist's opinion. Journal of Structural Geology 21, 995- 1001. Di Toro, G., Pennacchioni G., 2004. Superheated friction-induced melts in zoned pseudotachylytes within the Adamello tonalities (Italian Southern Alps). Journal of Structural Geology 26, 1783- 1801. Di Toro, G., Pennacchioni, G., 2005. Fault plane processes and mesoscopic structure of strong-type seismogenic fault in tonalities (Adamello batholith, Southern Alps). Tectonophysics 402, 55- 80. Di Toro, G., Pennacchioni, G., Teza, G., 2005. Can pseudotachylytes be used to infer earthquake source parameters? An example limitations in the study of exhumed faults. Tectonophysics 402, 3- 20. Di Toro, G., Hirose, T., Nielsen, S., Pennacchioni, G., Shimamoto, T., 2006. Natural experimental evidence of melt lubrication of faults during earthquakes. Science 31, 647- 649. Ermanovics, I. F., Helmstaedt, H., Plant, A. G., 1972. An occurrence of Archean pseudotachylyte from Southeastern Manitoba. Canadian Journal of Earth Science 9, 257- 265. Fabbri, O., Lin, A., Tokushige, H., 2000. Coeval formation of cataclasite and pseudotachylyte in a Miocene forearc granodior- ite, southern Kyushu, Japan. Journal of Structural Geology 22, 1015- 1025. Ferre, E. C., Geissman, J. W., Zechmeister, M. S., 2012. Magnetic properties of fault pseudotachylytes in granites. Journal of Geophysical Research 117, B01106. doi:10.1029/2011JB008762. Ferre, E. C., Yeh, E. C., Chou, Y. M., Kuo, R. L., Chu, H. T., Korren, C.S., 2016. Brushlines in fault pseudotachylytes: a new criterion for coseismic slip direction. Geology (submitted). Fukuchi, T., 2003. Strong ferromagnetic resonance signal and magnetic susceptibility of the Nojima pseudotachylyte in Japan and their implication for coseismic electronmagnetic changes. Journal of Geophysical Research 108, 2312. Fukuchi, T., Mizoguchi, K., Shimamoto, T., 2005. Ferrimagnetic resonance signal produced by frictional heating: A new indicator of paleo- seismicity. Journal of Geophysical Research 110, B12404. doi:10.1029/2004JB003485. Gifkins, C. C., Allen, R. L., McPhie, J., 2005. Apparent welding textures in altered pumice-rich rocks. Journal of Volcanology and Geothermal Research 142 (1–2), 29- 47. Grocott, J., 1981. Fracture geometry of pseudotachylyte generation zones: a study of shear fractures formed during seismic events. Journal of Structural Geology 3, 169- 178. Hirono, T., Ikehara, M., Otsuki, K., Mishima, T., Sakaguchi, M., Soh, W., Omori, M., Lin, W. R., Yeh, E. C., Tanikawa, W., Wang, C., 2006. Nondestructive continuous measurements of physical and chemical properties in fault rocks recovered from Hole B, TCDP, Geophysical Research Letters, 33, L15303. doi:10.1029/2006GL026133. Ho, C. S., 1988. An introduction to the geology of Taiwan (second edition): Explanatory text for the geologic map of Taiwan. Ministry Economic Affairs, Taipei, 164. Korren, C. S., Ferre, E. C., Yeh, E. C., Chou, Y. M., Chu, H. T., 2016. Seismic rupture parameters deduced from a Pliocene fault pseudotachylyte in Taiwan. AGU Monograph “Evolution of Fault Zone Properties and Dynamic Processes during Seismic Rupture”, edited by Marion, Y. T., Harsha, S. B., Thomas, M. M. (in press). Lee, C. Y., Tsai, J. H., Ho, H. H., Yang, T. F., Chung, S. L., Chen, C. H., 1997. Quantitative analysis in rock samples by an X-ray fluorescence spectrometer (I) major elements. Annual meeting of the Geological Society of China. Geological Society of China, Taipei, 418-420. Lin, A. 1991. Origin of fault-generated pseudotachylites. Ph. D. Thesis, The University of Tokyo, Tokyo. Lin, A., Shimamoto T., 1994a. Chemical composition of experimentally-generated pseudotachylytes. Journal of Structural Geology 39, 84- 101. Lin, A., Matsuda, T., Shimamoto, T., 1994b. Pseudotachylyte from the Iida-Matsukawa fault, Nagano Prefecture: Pseudotachylyte of crush origin? Journal of Structural Geology 39, 51- 64. Lin, A., Maruyama, T., Stallard, A., Michibayashi, K., Camacho, A., Kano, K., 2005. Propagation of seismic slip from brittle to ductile regimes: evidence from the pseudotachylyte of Woodroffe thrust, central Australia. Tectonophysics 402, 21- 35. Lin, A., 2008. Fossil earthquakes: The formation and preservation of pseudotachylytes, 345pp., Springer, New York. Maddock, R. H., 1983. Melt origin of fault-generated pseudotachylytes demonstrated by textures. Geology 11, 105- 108. Maddock, R. H., 1992. Effects of lithology, cataclasis and melting on the composition of fault-generated pseudotachylytes in Lewisian gneiss, Scotland. Tectonophysics 204, 261- 278. Magloughlin, J. F., 1989. The nature and significance of pseudotachylite from the Nason terrane, North Cascade Mountains, Washington. Journal of Structural Geollogy 11, 907- 917. Magloughlin, J. F., 1992. Microstructural and chemical changes associated with cataclasis and frictional melting at shallow crust levels: the cataclasite- pseudotachylyte connection. Tectonophysics 204, 243- 260. Magloughlin, J.F., Spray, J. G., 1992. Frictional melting process and products in geological materials: introduction and discussion. Tectonophysics 204, 197- 206. Masch, L., Wenk, H. R., Preuss, E., 1985. Electron microscope study of hyalomylonites evidence for frictional melting in landslides. Tectonophysics 115, 131- 160. McKenzie, D., Brune, J. N., 1972. Melting on fault planes during large earthquakes. Geophysical Journal of the Royal Astronomical Society 29, 65- 78. Nakamura, N., Hirose, T., Borradaile, G. J., 2002. Laboratory verification of submicron magnetite production in pseudotachylytes: relevance for paleointensity studies. Earth Planet Science Letters 201, 13- 18. Obata, M., Karato, S., 1995. Ultramafic pseudotachylite from the Balmucca peridotite, Ivrea-Verbano zone, northern Italy. Tectonophysics 242, 313- 328. Philpotts, A. R., 1964. Origin of pseudotachylites. American Journal of Science 262, 1008- 1035. Piccardo, G.B., Ranalli, G., Guarnieri, L., 2010. Seismogenic shear zone in the lithospheric mantle: ultramafic pseudotachylytes in the Lanzo peridotite (Western Alps, NW Italy). Journal of Petrology 51, 81- 100. Scott, J. S., Drever, H. I., 1953. Frictional fusion along a Himalayan thrust. Proceedings of the Royal Society of Edinburgh 65, 121-142. Shand, S. J., 1916. The pseudotachylyte of Parijs (Orange Free State), and its relation to ‘trap-shotten gneiss’ and ‘flinty crush rock’. Quarterly Journal of the Chemical Society of London 72, 198- 221. Shimizu, I., 1995. Kinetics of pressure solution creep in quartz: Theoretical considerations, Tectonophysics, 245, 121- 134. Sibson, R. H., 1973. Interactions between temperature and pore-fluid pressure during earthquake faulting and a mechanism for partial or total stress relief. Nature 243, 66- 68. Sibson, R. H., 1975. Generation of pseudotachylite by ancient seismic faulting. Geophysical Journal of the Royal Astronomical Society 43, 775- 94. Sibson, R. H., 1977. Fault rocks and fault mechanisms. Journal of the Geology Society 133, 191- 213. Song, Y. F., Chang, C. H., Chang, S. H., Liu, C. Y. ,Huang, R. L., Chang, S. H., Tseng, P. C., Chuang, J. M., Chung, J. M., Lee, J. F., Tsang, K. L., Liang, K. L., 2004. X-ray Beamlines on a Superconducting Wavelength Shifter. Synchrotron Radiation Instrumentation: 8th International Conference, American Institution of Physics, 412. Song, Y. F., Chang, C. H., Liu, C. Y., Chang, S. H., Jeng, U. S., Lai, Y. H., Liu, D. G., Chung, S. C., Tsang, K. L., Yin, G. C., Lee, J. F., Sheu, H. S., Tang, M. T., Hwang, C. S., Hwu, Y.K., and Liang, K.S., 2007b. X-ray beamlines for structural studies at the NSRRC superconducting wavelength shifter. Journal of Synchrotron Radiation 14(4), 320- 325. Spray, J. G., 1992. A physical basis for the frictional melting of some rock-forming minerals. Tectonophysics 204, 205- 221. Spray, J. G., 1995. Pseudotachylyte controversy: Fact or friction? Geology 23, 1119- 1122. Stevenson, C., Mazar, J. J., Scheetz, B. E., 1998. Laboratory Obsidian Hydration Rates. In Archaeological Obsidian Studies: Method and Theory. Advances in Archaeological and Museum Science Series, 181- 204. Suppe, J., 1981. Mechanics of mountain building and metamorphism in Taiwan. Memoir of the Geological Society of China 4, 67- 89. Teng, L. S., 1990. Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics 183, 57- 76. Toyoshima, T., 1990. Pseudotachylite from the main zone of the Hidaka metamorphic belt, Hokkaido, northern Japan. Journal of Metamorphic Geology 8, 507- 23. Ueda, T., Obata, M., Di Toro, G., Ozawa, K. and Kanagawa, K., 2008a. Mantle earthquakes frozen in mylonitized ultramafic pseudotachylytes of spinel- lherzolite facies. Geology 36, 607- 610. Wallace, R. C., 1976. Partial fusion along the Alpine fault zone, New Zealand. Geological Society of America Bulletin 87, 1225–1228. Wang Lee, C. M., Lan, C. Y., 1995. Taiwan gneisses: Geology of Taiwan Series. Central Geological Survey 5, 133p. Wenk, H. R., 1978. Are pseudotachylites products of fracture or fusion? Geology 6, 507–511. Wones, D. R., Eugster, H. P., 1965. Stability of biotite: Experimental, theory and application. American Mineralogist 50, 1228–1272. Woodcock, N. H., Mort, K., 2008. Classification of fault breccias and related fault rocks. Geological Magazine 145, 435- 440. Yen, T. P., 1954. The gneisses of Taiwan. Bulletin of the Geological Survey of Taiwan 5, 1- 99. Yui, T. F., Okamoto, K., Usuki, T., Lan, C.Y., Chu, H.T., Liou, J. G., 2009. Late Triassic-Late Cretaceous accretion/subduction in Taiwan region along the east margin of South China— evidence from zircon SHRIMP dating. International Geology Review 51, 304- 328. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50295 | - |
| dc.description.abstract | 斷層假玄武玻璃是一種黑色玻璃質的岩石,它的形成是由於斷層極快速的滑動速率 (1 公尺/ 秒)局部熔融圍岩、冷卻所形成的。因此,和一般斷層岩石不同,斷層假玄武玻璃可以做為古地震曾經發生的重要且有力的指標之一,所以又被稱為”地震化石”。台灣地處地震頻繁的區域,假玄武玻璃的報導是出乎意料的稀少。前人研究所報導的花蓮和平溪假玄武玻璃,是目前台灣東部變質岩區唯一所發現的假玄武玻璃天然露頭。為了了解假玄武玻璃的熔融過程以及形成機制,我們透過化學分析、顯微構造研究以及磁學測量以研究和平溪的假玄武玻璃。
X光螢光分析化學成分結果指示與圍岩和超質碎岩相比,假玄武玻璃中的二氧化矽、氧化鈉相對減少,二氧化三鐵、氧化鉀相對增加,顯示假玄武玻璃是形成於不一致(部分)熔融。X光繞射分析礦物組成結果顯示,假玄武玻璃和圍岩的礦物成分大致相同,由石英、長石、鉀長石、綠泥石、黑雲母和白雲母所組成。在假玄武玻璃的樣本中存在非晶質的訊號,指示在假玄武玻璃中含有玻璃質物質,這也指示和平溪假玄武玻璃是源自於熔融的重要證據之一。原先圍岩中黑雲母的結晶訊號 (8.75度),在假玄武玻璃當中,轉變為微緩隆起,指示黑雲母選擇性熔融形成玻璃質物質,黑雲母的熔融溫度(約750 攝氏) 因此可以用來作為假玄武玻璃熔融溫度的下限。利用掃描式電子顯微鏡,在假玄武玻璃當中找到微米等級的微晶體,支持和平溪假玄武玻璃為熔融起源。從化學分析的結果得知,假玄武玻璃的氧化鐵含量略高於圍岩,因此利用振動式測磁儀量測假玄武玻璃中所含有的磁性礦物的特性。磁滯曲線顯示和平溪假玄武玻璃以順磁性為主帶有非常微弱的飽和等溫殘磁。從磁滯參數(Ms)推算在假玄武玻璃中所含的磁鐵礦僅有百萬分之一的濃度。從穿隧式電子顯微鏡的吸收影像中,也有觀察到一些奈米尺度的黑點,可能是較重元素(鐵、鈦)的存在,且這些黑點侷限於假玄武玻璃熔融的部分。在掃描式電子顯微鏡背向散射影像也有發現一些小圓粒,利用能量散布儀分析為氧化鐵。 和平溪假玄武玻璃形成於不一致熔融,鐵的富集程度有限、氧化環境條件不足,使得和平溪的假玄武玻璃為順磁性。假玄武玻璃的形成機制主要牽涉超質碎化以及非常有限的局部摩擦熔融,超質碎岩和假玄武玻璃為同時期、不同機制所形成,兩者緊密共生,不易區分。在本研究中,透過化學、微構造分析方法,試圖解讀假玄武玻璃的熔融過程、熔融溫度和形成機制,並從而區分出兩種外型相似、經常共生的斷層岩石—假玄武玻璃和超質碎岩,對於假玄武玻璃的磁學性質也有初步的探究。 | zh_TW |
| dc.description.abstract | Unlike other fault rocks, fault pseudotachylytes form through frictional melting during an earthquake. Therefore, these rocks, regarded as earthquake fossils potentially hold valuable information on seismic deformation. Paradoxically, although Taiwan is a seismically active zone, reports of pseudotachylyte outcrops in Taiwan remain rare. Previous studies reported the Hoping River pseudotachylyte locality is by far the only natural pseudotachylyte outcrop in the metamorphic region of Taiwan. To understand the melting process and generation mechanism of pseudotachylyte, we apply geochemical, microstructural and magnetic approaches to investigate the pseudotachylyte veins in this study.
X- ray fluorescence (XRF) geochemical analysis show that the pseudotachylyte melt, formed by incongruent melting, is depleted in SiO2 and N2O, and enriched in Fe2O3,and K2O compared with the result of ultracataclasite and host rock. X-ray diffraction (XRD) analysis suggest the composition of pseudotachylyte and the host rock are dominant by quartz, feldspar, biotite, muscovite, and chlorite. In 4-10 and 20- 30 2-theta degrees, glass humps are prominent in pseudotachylyte, which is an evidence of melt- origin of the pseudotachylyte. The existence of microcrystallite (tiny, new grown crystals) under scanning electron microscope (SEM) also supports its melt- origin. Since iron content of the pseudotachylyte is slightly higher (4 wt. %) than the ultracataclasite and granitic host rock, magnetic hysteresis measurements were performed under high field (up to 1 Tesla) using a vibrating sample magnetometer (VSM) to determine the nature of magnetic minerals. Magnetic hysteresis curves show the pseudotachylyte veins of the Hoping River are dominated by paramagnetic phases, with a very weak saturation isothermal remanent magnetization (SIRM). Magnetite concentration, inferred from these measurements, is on the order of a few ppm only. Submicron iron-oxide (possible) grains are discovered under transmission X-ray microscope (TXM), which may be formed by the breakdown of biotite during melting. The presence of iron oxide grains appears restricted to the melted part of the pseudotachylyte. The pseudotachylyte in the Hoping River are formed by incongruent melting. The enrichment of Fe did not strongly change the nature of magnetic properties, resulting in paramagnetic- dominant of the pseudotachylyte. The generation mechanisms of pseudotachylyte in the Hoping River involve ultracataclasis and extreme limited melting, leading to the coeval formation of ultracataclasite and pseudotachylyte. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:35:23Z (GMT). No. of bitstreams: 1 ntu-105-R03224210-1.pdf: 7970190 bytes, checksum: 56632a64b5ba2b66d759276e360eefdb (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 1 Introduction 1
1-1 Preface 1 1-2 Previous studies 3 1-2-1 Terminology of pseudotachylyte 3 1-2-2 Origin of pseudotachylyte 4 1-2-3 Magnetic properties of pseudotachylyte 5 1-3 Study Motivations 7 2 Geological background 8 2-1 Introduction 8 2-2 Stratigraphy 9 2-3 Structures 11 2-3-1 Fault 11 2-3-2 Fold 11 2-3-3 Mylonite zone 11 2-3-4 Tectonic evolution 11 2-3-5 Pseudotachylyte hosting in granitic gneiss 12 3 Field observations 18 4 Study methods 25 4-1 Geochemical analysis 25 4-1-1 X-ray fluorescence (XRF) 25 4-1-2 X- Ray Diffraction (XRD) 27 4-2 Microscope analysis 28 4-2-1 Scanning Electrical Microscope (SEM) 28 4-2-2 Transmission X-ray Microscope (TXM) 30 4-3 Geophysical measurements 33 4-3-1 Vibrating Sample Magnetometer (VSM) 33 5 Results 35 5-1 Geochemical analysis 35 5-1-1 X-ray fluoresce (XRF) 35 5-1-2 X-ray diffraction (XRD) 41 5-2 Microstructural analysis 45 5-2-1 Scanning Electron Microscope (SEM) 45 5-2-2 Transmission X-ray Microscope (TXM) 57 5-3 Magnetic moment measurements 65 5-3-1 Vibrating Sample Magnetometer (VSM) 65 6 Discussion 75 6-1 Incongruent melting of pseudotachylyte 75 6-2 Evidences for melting 75 6-3 Melting temperature of the pseudotachylyte 77 6-4 Mechanical properties of the pseudotachylyte and the ultracataclasite 78 6-5 Magnetic properties of the pseudotachylyte and its implications 78 7 Conclusions 80 8 Perspectives 81 References 82 | |
| dc.language.iso | en | |
| dc.subject | 假玄武玻璃 | zh_TW |
| dc.subject | 花蓮和平地區 | zh_TW |
| dc.subject | 斷層岩 | zh_TW |
| dc.subject | 古地震 | zh_TW |
| dc.subject | 花蓮和平地區 | zh_TW |
| dc.subject | 古地震 | zh_TW |
| dc.subject | 斷層岩 | zh_TW |
| dc.subject | 假玄武玻璃 | zh_TW |
| dc.subject | Paleoseismicity | en |
| dc.subject | Eastern Taiwan | en |
| dc.subject | Paleoseismicity | en |
| dc.subject | Fault rock | en |
| dc.subject | Pseudotachylyte | en |
| dc.subject | Eastern Taiwan | en |
| dc.subject | Fault rock | en |
| dc.subject | Pseudotachylyte | en |
| dc.title | 花蓮和平地區斷層岩石之微構造與磁學性質研究 | zh_TW |
| dc.title | Microstructural and Magnetic Investigations of Pseudotachylyte and Ultracataclasite in the Hoping River, Tananao Complex, Eastern Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 周祐民(Yu-Ming Chou) | |
| dc.contributor.oralexamcommittee | 朱傚祖,俞震甫,葉恩肇 | |
| dc.subject.keyword | 花蓮和平地區,古地震,斷層岩,假玄武玻璃, | zh_TW |
| dc.subject.keyword | Eastern Taiwan,Paleoseismicity,Fault rock,Pseudotachylyte, | en |
| dc.relation.page | 86 | |
| dc.identifier.doi | 10.6342/NTU201601702 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-01 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 7.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
