請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50285
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃建璋 | |
dc.contributor.author | Ting-Yang Chen | en |
dc.contributor.author | 陳挺瑒 | zh_TW |
dc.date.accessioned | 2021-06-15T12:35:01Z | - |
dc.date.available | 2019-08-03 | |
dc.date.copyright | 2016-08-03 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-01 | |
dc.identifier.citation | [1] P. O. Brown and D. Botstein, 'Exploring the new world of the genome with DNA microarrays,' Nature genetics, vol. 21, pp. 33-37, 1999.
[2] F. N. Ishikawa, H.-K. Chang, M. Curreli, H.-I. Liao, C. A. Olson, P.-C. Chen, et al., 'Label-free, electrical detection of the SARS virus N-protein with nanowire biosensors utilizing antibody mimics as capture probes,' Acs Nano, vol. 3, pp. 1219-1224, 2009. [3] E. Stern, A. Vacic, N. K. Rajan, J. M. Criscione, J. Park, B. R. Ilic, et al., 'Label-free biomarker detection from whole blood,' Nature nanotechnology, vol. 5, pp. 138-142, 2010. [4] F. Yan, S. M. Mok, J. Yu, H. L. Chan, and M. Yang, 'Label-free DNA sensor based on organic thin film transistors,' Biosensors and Bioelectronics, vol. 24, pp. 1241-1245, 2009. [5] K. E. Sapsford, C. Bradburne, J. B. Delehanty, and I. L. Medintz, 'Sensors for detecting biological agents,' Materials today, vol. 11, pp. 38-49, 2008. [6] C. V. Sapan, R. L. Lundblad, and N. C. Price, 'Colorimetric protein assay techniques,' Biotechnology and applied Biochemistry, vol. 29, pp. 99-108, 1999. [7] P. Pattnaik, 'Surface plasmon resonance,' Applied biochemistry and biotechnology, vol. 126, pp. 79-92, 2005. [8] B. T. Kurien and R. H. Scofield, 'Western Blotting: An Introduction,' Western Blotting: Methods and Protocols, pp. 17-30, 2015. [9] E. A. Garber, 'Detection of melamine using commercial enzyme-linked immunosorbent assay technology,' Journal of Food Protection, vol. 71, pp. 590-594, 2008. [10] S. V. Dzyadevich, Y. I. Korpan, V. N. Arkhipova, M. Y. Alesina, C. Martelet, V. Anna, et al., 'Application of enzyme field-effect transistors for determination of glucose concentrations in blood serum,' Biosensors and bioelectronics, vol. 14, pp. 283-287, 1999. [11] H. Komori, K. Niitsu, J. Tanaka, Y. Ishige, M. Kamahori, and K. Nakazato, 'An extended-gate CMOS sensor array with enzyme-immobilized microbeads for redox-potential glucose detection,' in 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings, 2014, pp. 464-467. [12] B.-K. Sohn and C.-S. Kim, 'A new pH-ISFET based dissolved oxygen sensor by employing electrolysis of oxygen,' Sensors and Actuators B: Chemical, vol. 34, pp. 435-440, 1996. [13] P. Lamberti, S. Mousavi, V. Tucci, and V. Wagner, 'Label-free biosensor for detection of specific protein based on carbon nanotubes network thin film transistor,' in Nanotechnology Materials and Devices Conference (NMDC), 2014 IEEE 9th, 2014, pp. 140-144. [14] F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, and C. M. Lieber, 'Electrical detection of single viruses,' Proceedings of the National Academy of Sciences of the United States of America, vol. 101, pp. 14017-14022, 2004. [15] Y. Ohno, K. Maehashi, Y. Yamashiro, and K. Matsumoto, 'Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption,' Nano Letters, vol. 9, pp. 3318-3322, 2009. [16] J.-K. Park and W.-J. Cho, 'Development of high-performance fully depleted silicon-on-insulator based extended-gate field-effect transistor using the parasitic bipolar junction transistor effect,' Applied Physics Letters, vol. 101, p. 133703, 2012. [17] O. Wieland and H. Bergmeyer, 'Methods of enzymatic analysis,' Academic Press, New York and London, vol. 1, pp. 485-486, 1965. [18] M. O. MANSSON, P. O. LARSSON, and K. MOSBACH, 'Covalent Binding of an NAD Analogue to Liver Alcohol Dehydrogenase Resulting in an Enzyme‐Coenzyme Complex not Requiring Exogenous Coenzyme for Activity,' European Journal of Biochemistry, vol. 86, pp. 455-463, 1978. [19] C. Thorne and N. O. Kaplan, 'Physicochemical properties of pig and horse heart mitochondrial malate dehydrogenase,' Journal of Biological Chemistry, vol. 238, pp. 1861-1868, 1963. [20] Y.-C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, 'Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,' Lab on a Chip, vol. 4, pp. 292-298, 2004. [21] K.-i. Miyamoto, H. Ichimura, T. Wagner, M. J. Schoning, and T. Yoshinobu, 'Chemical imaging of the concentration profile of ion diffusion in a microfluidic channel,' Sensors and Actuators B: Chemical, vol. 189, pp. 240-245, 2013. [22] K. Choi, J.-Y. Kim, J.-H. Ahn, J.-M. Choi, M. Im, and Y.-K. Choi, 'Integration of field effect transistor-based biosensors with a digital microfluidic device for a lab-on-a-chip application,' Lab on a Chip, vol. 12, pp. 1533-1539, 2012. [23] D. Erickson and D. Li, 'Integrated microfluidic devices,' Analytica Chimica Acta, vol. 507, pp. 11-26, 2004. [24] H. Li, J.-h. Jang, and S.-x. Cai, 'Fabrication of microfluidic systems in poly (dimethylsiloxane),' Polym. Bull, vol. 1, 2005. [25] R. Chand, J.-H. Jeun, M.-H. Park, J.-M. Kim, I.-S. Shin, and Y.-S. Kim, 'Electroimmobilization of DNA for ultrafast detection on a microchannel integrated pentacene TFT,' Journal of Industrial and Engineering Chemistry, vol. 21, pp. 126-128, 2015. [26] T. Scientific, 'Avidin-Biotin Technical Handbook,' pp. 30-32, 2009. [27] T. Hutchens and J. Porath, 'Protein recognition of immobilized ligands: promotion of selective adsorption,' Clinical chemistry, vol. 33, pp. 1502-1508, 1987. [28] J. Manning, M. Pellegrini, and N. Davidson, 'A method for gene enrichment based on the avidin-biotin interaction. Application to the Drosophila ribosomal RNA genes,' Biochemistry, vol. 16, pp. 1364-1370, 1977. [29] M. Pellegrini, D. S. Holmes, and J. Manning, 'Application of the avidin-biotin method of gene enrichment to the isolation of long double-stranded DNA containing specific gene sequences,' Nucleic acids research, vol. 4, pp. 2961-2974, 1977. [30] J. A. Swack, G. L. Zander, and M. F. Utter, 'Use of avidin-sepharose to lsolate and identify biotin polypeptides from crude extracts,' Analytical biochemistry, vol. 87, pp. 114-126, 1978. [31] H. H. Lee, M. Bae, S.-H. Jo, J.-K. Shin, D. H. Son, C.-H. Won, et al., 'Fabrication and Characterization of an Extended-Gate AlGaN/GaN-Based Heterostructure Field-Effect Transistor-Type Biosensor for Detecting Immobilized Streptavidin-Biotin Protein Complexes,' Sensors and Materials, vol. 27, pp. 575-583, 2015. [32] 鄭. Reist and 劉希平, 微粒導論. ed: 國立編譯館, 2001. [33] C. C. Han and A. Z. Akcasu, 'Concentration dependence of diffusion coefficient at various molecular weights and temperatures,' Polymer, vol. 22, pp. 1165-1168, 1981. [34] D. J. Scott, S. E. Harding, and D. J. Winzor, 'Concentration dependence of translational diffusion coefficients for globular proteins,' Analyst, vol. 139, pp. 6242-6248, 2014. [35] D.-S. Kim, J.-E. Park, J.-K. Shin, P. K. Kim, G. Lim, and S. Shoji, 'An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes,' Sensors and Actuators B: Chemical, vol. 117, pp. 488-494, 2006. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50285 | - |
dc.description.abstract | 本論文包含兩個部分。首先是以氧化銦鎵鋅薄膜電晶體為基底的生物感測器應用於生物化學反應的偵測,第二部分是偵測蛋白質複合物之間的反應行為。
第一部分所討論的生物化學反應在人體代謝途徑中是很重要的一環。當此反應中的生物分子被金感應板上的連結分子抓住時,會被我們的生物感測器偵測到。藉由量測不同濃度組成的溶液,我們可以得到電流變化及濃度的關係,進而分辨此生物化學反應中完全反應與不完全反應的兩種情況。 蛋白質複合物的反應行為一直以來被廣泛的運用在生物化學的領域中。在第二部分的研究中,我們將以電晶體為基底的生物感測器與外接的微流道系統結合應用於偵測蛋白質複合物的電特性與流體擴散性質。由於濃度梯度的關係待測物溶液會經由微流道流至金感應板而被生物感測器偵測到。我們首先分別量測蛋白質與配體的訊號,得到擴散性質與電流的關係,最後將蛋白質與配體混合並量測其隨時間變化的電流性質,以探究兩者之間的反應行為。此外我們也進行螢光染色的影像拍攝去驗證蛋白質複合物間的結合。 | zh_TW |
dc.description.abstract | In this thesis, bio-chemical reaction and protein complexes interaction are detected by an IGZO thin film transistor-based (TFT-based) biosensor. These two issues are discussed separately in two parts.
In the first part, a bio-chemical reaction is detected. This reaction is a part of the metabolic pathway and it is a step in malate-aspartate shuttle, which is one of the most important bio-chemical system in human body. The reaction system involving different concentrations of composition are investigated. By measuring the electrical signals of TFT, the relation between current change and complete/incomplete reactions is revealed. The second part is about the detection of Streptavidin-Biotin protein complexes. The TFT-based biosensor is integrated with microfluidic channels in order to investigate the diffusion behaviors of target analytes. The diffusion experiments of Streptavidin and Biotin were first conducted separately to understand the diffusion properties. Then the binding interaction of Streptavidin-Biotin complexes is detected and analyzed in time domain. We also verified the binding among Streptavidin and Biotin by using the fluorescence microscope. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T12:35:01Z (GMT). No. of bitstreams: 1 ntu-105-R03941004-1.pdf: 7550334 bytes, checksum: 6cb2ad7385214fa768eb5e5940f436e0 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III Table of Contents IV List of Figures VI List of Tables IX Chapter 1 Introduction 1 1.1 Background Knowledge of Biosensors 1 1.1.1 Overview of Biochemical Detection 1 1.1.2 Introduction of FET-based Biosensors 4 1.2 Thesis Outline 8 Chapter 2 TFT-based Biosensor and Bio-chemical Reaction 9 2.1 Introduction 9 2.1.1 Introduction of Bio-chemical Reaction in Malate-aspartate Shuttle 9 2.2 Device Fabrication and Measurement 11 2.2.1 Fabrication and Structure of TFT-based Biosensor 11 2.2.2 Method of Measurement 13 2.3 Results and Discussion 14 2.4 Summary 22 Chapter 3 TFT-based Biosensor Integrated with Microfluidic Channels for Detecting Protein Complexes 23 3.1 Introduction 23 3.1.1 Introduction of Microfluidic System 23 3.1.2 Introduction of Streptavidin and Biotin 26 3.2 Device Fabrication and Measurement 28 3.2.1 Fabrication of TFT-based Biosensors Integrated with Microfluidic Channels 28 3.2.2 Method of Measurement 31 3.3 Results and Discussion 33 3.3.1 Time Domain Analysis of Biotin and Streptavidin 33 3.3.2 Detection of Biotin and Streptavidin Binding Interaction 41 3.4 Summary 46 Chapter 4 Conclusion 47 4.1 Detection of Bio-chemical Reaction by TFT-based Biosensors 47 4.2 Time Domain Analysis of Protein Complexes by TFT-based Biosensor Integrated with Microfluidic Channels 48 Reference 49 | |
dc.language.iso | en | |
dc.title | 氧化銦鎵鋅薄膜電晶體結合微流道系統於蛋白質複合物之感測 | zh_TW |
dc.title | Time Domain Analysis of Protein Complexes Using An IGZO Thin Film Transistor-based Biosensor Integrated with Microfluidic Channels | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳育任,吳肇欣,陳奕君,林致廷 | |
dc.subject.keyword | 非晶相銦鎵鋅氧化物,薄膜電晶體,生物感測器,微流道系統,蛋白質複合物反應行為, | zh_TW |
dc.subject.keyword | a-IGZO,TFT,biosensor,microfluidic channel,protein complexes, | en |
dc.relation.page | 51 | |
dc.identifier.doi | 10.6342/NTU201601639 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-01 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 7.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。