Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50283
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭卜壬(Pu-Jen Cheng)
dc.contributor.authorTing-Chang Houen
dc.contributor.author侯廷璋zh_TW
dc.date.accessioned2021-06-15T12:34:57Z-
dc.date.available2021-08-03
dc.date.copyright2016-08-03
dc.date.issued2016
dc.date.submitted2016-08-01
dc.identifier.citation[1] J. S. Beis and D. G. Lowe. Shape indexing using approximate nearest-neighbour search in high-dimensional spaces. In Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR ’97), CVPR ’97,pages 1000–, Washington, DC, USA, 1997. IEEE Computer Society.
[2] J. L. Bentley. Multidimensional binary search trees used for associative searching. Commun. ACM, 18:509–517, September 1975.
[3] N. Bhatia and Vandana. Survey of nearest neighbor techniques. CoRR, abs/1007.0085, 2010.
[4] J. Chen, H.-r. Fang, and Y. Saad. Fast approximate knn graph construction for high dimensional data via recursive lanczos bisection. J. Mach. Learn. Res., 10:1989–2012, Dec. 2009.
[5] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Trans. Inf. Theor., 13(1):21–27, Sept. 2006.
[6] M. Dolatshah, A. Hadian, and B. Minaei-Bidgoli. Ball*-tree: Efficient spatial indexing for constrained nearest-neighbor search in metric spaces. CoRR, abs/1511.00628, 2015.
[7] W. Dong, C. Moses, and K. Li. Efficient k-nearest neighbor graph construction for generic similarity measures. In Proceedings of the 20th International Conference on World Wide Web, WWW ’11, pages 577–586, New York, NY, USA, 2011. ACM.
[8] Y.-C. Liaw, M.-L. Leou, and C.-M. Wu. Fast exact k nearest neighbors search using an orthogonal search tree. Pattern Recognition, 43(6):2351–2358, 2010.
[9] T. Liu, A. W. Moore, and A. Gray. New algorithms for efficient high-dimensional nonparametric classification. J. Mach. Learn. Res., 7:1135–1158, Dec. 2006.
[10] A. W. Moore. The anchors hierarchy: Using the triangle inequality to survive high dimensional data. In In Twelfth Conference on Uncertainty in Artificial Intelligence, pages 397–405. AAAI Press, 2000.
[11] F. Nielsen, P. Piro, and M. Barlaud. Tailored Bregman Ball Trees for Effective Nearest Neighbors. In Proceedings of the 25th European Workshop on Computational Geometry (EuroCG), pages 29–32, Brussels, Belgium, Mar. 2009.
[12] S. M. Omohundro. Five balltree construction algorithms. Technical report, 1989.
[13] M. Otair. Approximate k-nearest neighbour based spatial clustering using k-d tree. CoRR, abs/1303.1951, 2013.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50283-
dc.description.abstract最近鄰居法是一種在機器學習及資料探勘應用上相當常見的演算法。有相當多種方法可以實作最近鄰居法,其中樹狀結構演算法包含k維樹及球樹。球樹搜尋法是一種在高維度資料裡表現相當好的演算法。本工作專注於增進球樹搜尋法的效能。我們提出同心球樹搜尋法用來改變球樹的根結點結構。我們也提出了幾種策略法用來改變樹狀搜尋的順序。實驗結果顯示我們的方法能有效地降低拜訪的資料點個數及樹狀節點個數,以提升效能,節省不少搜尋時間。另外我們發現同心球樹在高維度的資料上表現相當良好,能增進更多的效能。最後我們的實驗也發現,如同傳統的球樹,同心球樹在不同的資料集的表現差異相當大。zh_TW
dc.description.abstractThe K-nearest neighbors(KNN) is often a necessary algorithm in many machine learning and data mining applications.There are several tree structure algorithm to implement KNN, like K-d tree search and Ball-tree search.Ball-tree search is a powerful algorithm to search KNN for high dimension.In this work, we focus on improving the efficiency of ball-tree.We propose concentric ball-tree which change the leaf node structure of ball-tree.We also use several heuristic to change the traverse order of ball-tree search.We empirically show that our approach can improve the efficiency a lot to save search time of KNN by reducing the number of visited data points, the number of visited node in tree structure.In addition, we find that concentric ball-tree scale well with the number of dimensions. It can improve more efficiency for traditional ball-tree at high dimension.We also show that the performance of ball-tree is data driven, and so dose concentric ball-tree.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:34:57Z (GMT). No. of bitstreams: 1
ntu-105-R03922041-1.pdf: 1872509 bytes, checksum: 515b0877e880107e458d836269ff4b90 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 iii
誌謝 v
摘要 vii
Abstract ix
1 Introduction 1
2 Related Work 5
3 Preliminary 7
3.1 Ball-Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.1 Ball-Tree Construction . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 KNN Search on Ball-Tree . . . . . . . . . . . . . . . . . . . . . 10
3.1.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4 Methodology 13
4.1 Concentric Ball-Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.1 How to Partition the Points . . . . . . . . . . . . . . . . . . . . . 14
4.1.2 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Best First Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.1 BFS Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.2 Difficulty of BFS . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 BFS Conball-Tree construction . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 BFS Conball-Tree Search . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.1 Leaf Node Search . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.2 Search Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 Complexity of BFS Conball-Tree . . . . . . . . . . . . . . . . . . . . . . 24
5 Experiment 25
5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 Conball-Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4 BFS Conball-Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6 Conclusion 31
Bibliography 33
dc.language.isoen
dc.title最佳優先及同心球樹:優化球樹在最近鄰居法的效能zh_TW
dc.titleBest First and Concentric Ball Tree : Improving Efficiency of K-Nearest Neighbors Searchen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蒙以亨(I-Heng Meng),徐典裕(Tien-Yu Hsu),盧文祥(Wen-Hsiang Lu)
dc.subject.keyword最近鄰居法,球樹,同心球樹,策略法,變動優先佇列,zh_TW
dc.subject.keywordK-nearest Neighbors,Ball-tree,Concentric Ball-tree,Heuristic,Unstable Priority Queue,en
dc.relation.page34
dc.identifier.doi10.6342/NTU201601731
dc.rights.note有償授權
dc.date.accepted2016-08-01
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
1.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved