請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50277完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林琬琬 | |
| dc.contributor.author | De-Wei Huang | en |
| dc.contributor.author | 黃得維 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:34:46Z | - |
| dc.date.available | 2021-08-26 | |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-01 | |
| dc.identifier.citation | Abraham, C., & Cho, J. H. (2009). IL-23 and autoimmunity: new insights into the pathogenesis of inflammatory bowel disease. Annu Rev Med, 60, 97-110. doi:10.1146/annurev.med.60.051407.123757
Aoki, N., Kimura, Y., Kimura, S., Nagato, T., Azumi, M., Kobayashi, H., Tateno, M. (2009). Expression and functional role of MDL-1 (CLEC5A) in mouse myeloid lineage cells. J Leukoc Biol, 85(3), 508-517. doi:10.1189/jlb.0508329 Bakker, A. B., Baker, E., Sutherland, G. R., Phillips, J. H., & Lanier, L. L. (1999). Myeloid DAP12-associating lectin (MDL)-1 is a cell surface receptor involved in the activation of myeloid cells. Proc Natl Acad Sci U S A, 96(17), 9792-9796. Batliner, J., Mancarelli, M. M., Jenal, M., Reddy, V. A., Fey, M. F., Torbett, B. E., & Tschan, M. P. (2011). CLEC5A (MDL-1) is a novel PU.1 transcriptional target during myeloid differentiation. Mol Immunol, 48(4), 714-719. doi:10.1016/j.molimm.2010.10.016 Beauchemin, V., Villeneuve, L., Rodriguez-Cimadevilla, J. C., Rajotte, D., Kenney, J. S., Clark, S. C., & Hoang, T. (1991). Interleukin-6 production by the blast cells of acute myeloblastic leukemia: regulation by endogenous interleukin-1 and biological implications. J Cell Physiol, 148(3), 353-361. doi:10.1002/jcp.1041480305 Benoit, M., Desnues, B., & Mege, J. L. (2008). Macrophage polarization in bacterial infections. J Immunol, 181(6), 3733-3739. Blander, J. M., & Medzhitov, R. (2004). Regulation of phagosome maturation by signals from toll-like receptors. Science, 304(5673), 1014-1018. doi:10.1126/science.1096158 Bodammer, P., Zirzow, E., Klammt, S., Maletzki, C., & Kerkhoff, C. (2013). Alteration of DSS-mediated immune cell redistribution in murine colitis by oral colostral immunoglobulin. BMC Immunol, 14, 10. doi:10.1186/1471-2172-14-10 Bone, R. C., Balk, R. A., Cerra, F. B., Dellinger, R. P., Fein, A. M., Knaus, W. A., Sibbald, W. J. (1992). Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest, 101(6), 1644-1655. Botoman, V. A., Bonner, G. F., & Botoman, D. A. (1998). Management of inflammatory bowel disease. Am Fam Physician, 57(1), 57-68, 71-52. Brown, G. D. (2006). Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol, 6(1), 33-43. doi:10.1038/nri1745 Buonocore, S., Ahern, P. P., Uhlig, H. H., Ivanov, II, Littman, D. R., Maloy, K. J., & Powrie, F. (2010). Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature, 464(7293), 1371-1375. doi:10.1038/nature08949 Calandra, T., Baumgartner, J. D., Grau, G. E., Wu, M. M., Lambert, P. H., Schellekens, J., Glauser, M. P. (1990). Prognostic values of tumor necrosis factor/cachectin, interleukin-1, interferon-alpha, and interferon-gamma in the serum of patients with septic shock. Swiss-Dutch J5 Immunoglobulin Study Group. J Infect Dis, 161(5), 982-987. Cannon, J. G., Tompkins, R. G., Gelfand, J. A., Michie, H. R., Stanford, G. G., van der Meer, J. W., et al. (1990). Circulating interleukin-1 and tumor necrosis factor in septic shock and experimental endotoxin fever. J Infect Dis, 161(1), 79-84. Cha, Y., & Park, K. S. (2010). SHP2 is a downstream target of ZAP70 to regulate JAK1/STAT3 and ERK signaling pathways in mouse embryonic stem cells. FEBS Lett, 584(19), 4241-4246. doi:10.1016/j.febslet.2010.09.016 Chassaing, B., Aitken, J. D., Malleshappa, M., & Vijay-Kumar, M. (2014). Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol, 104, Unit 15 25. doi:10.1002/0471142735.im1525s104 Chen, D. Y., Yao, L., Chen, Y. M., Lin, C. C., Huang, K. C., Chen, S. T., Hsieh, S. L. (2014). A potential role of myeloid DAP12-associating lectin (MDL)-1 in the regulation of inflammation in rheumatoid arthritis patients. PLoS One, 9(1), e86105. doi:10.1371/journal.pone.0086105 Chen, S. T., Lin, Y. L., Huang, M. T., Wu, M. F., Cheng, S. C., Lei, H. Y., Hsieh, S. L. (2008). CLEC5A is critical for dengue-virus-induced lethal disease. Nature, 453(7195), 672-676. doi:10.1038/nature07013 Cheung, R., Shen, F., Phillips, J. H., McGeachy, M. J., Cua, D. J., Heyworth, P. G., & Pierce, R. H. (2011). Activation of MDL-1 (CLEC5A) on immature myeloid cells triggers lethal shock in mice. J Clin Invest, 121(11), 4446-4461. doi:10.1172/JCI57682 Cohen, J. (2002). The immunopathogenesis of sepsis. Nature, 420(6917), 885-891. doi:10.1038/nature01326 Cox, J. H., Kljavin, N. M., Ota, N., Leonard, J., Roose-Girma, M., Diehl, L., Ghilardi, N. (2012). Opposing consequences of IL-23 signaling mediated by innate and adaptive cells in chemically induced colitis in mice. Mucosal Immunol, 5(1), 99-109. doi:10.1038/mi.2011.54 Cummings, R. D., & McEver, R. P. (2009). C-type Lectins. In A. Varki, R. D. Cummings, J. D. Esko, H. H. Freeze, P. Stanley, C. R. Bertozzi, G. W. Hart, & M. E. Etzler (Eds.), Essentials of Glycobiology (2nd ed.). Cold Spring Harbor (NY). D'Souza, A. A., & Devarajan, P. V. (2015). Asialoglycoprotein receptor mediated hepatocyte targeting - strategies and applications. J Control Release, 203, 126-139. doi:10.1016/j.jconrel.2015.02.022 Danese, S., & Fiocchi, C. (2011). Ulcerative colitis. N Engl J Med, 365(18), 1713-1725. doi:10.1056/NEJMra1102942 Dillon, S., Agrawal, S., Banerjee, K., Letterio, J., Denning, T. L., Oswald-Richter, K., Pulendran, B. (2006). Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J Clin Invest, 116(4), 916-928. doi:10.1172/JCI27203 Fiorentino, D. F., Zlotnik, A., Mosmann, T. R., Howard, M., & O'Garra, A. (1991). IL-10 inhibits cytokine production by activated macrophages. J Immunol, 147(11), 3815-3822. Fournier, B. M., & Parkos, C. A. (2012). The role of neutrophils during intestinal inflammation. Mucosal Immunol, 5(4), 354-366. doi:10.1038/mi.2012.24 Geijtenbeek, T. B., & Gringhuis, S. I. (2009). Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol, 9(7), 465-479. doi:10.1038/nri2569 Ghasemlou, N., Chiu, I. M., Julien, J. P., & Woolf, C. J. (2015). CD11b+Ly6G- myeloid cells mediate mechanical inflammatory pain hypersensitivity. Proc Natl Acad Sci U S A, 112(49), E6808-6817. doi:10.1073/pnas.1501372112 Gomes, A. L., Wee, L. J., Khan, A. M., Gil, L. H., Marques, E. T., Jr., Calzavara-Silva, C. E., & Tan, T. W. (2010). Classification of dengue fever patients based on gene expression data using support vector machines. PLoS One, 5(6), e11267. doi:10.1371/journal.pone.0011267 Haan, C., Rolvering, C., Raulf, F., Kapp, M., Druckes, P., Thoma, G., Zerwes, H. G. (2011). Jak1 has a dominant role over Jak3 in signal transduction through gammac-containing cytokine receptors. Chem Biol, 18(3), 314-323. doi:10.1016/j.chembiol.2011.01.012 Hansen, J. J. (2015). Immune Responses to Intestinal Microbes in Inflammatory Bowel Diseases. Curr Allergy Asthma Rep, 15(10), 61. doi:10.1007/s11882-015-0562-9 Heper, Y., Akalin, E. H., Mistik, R., Akgoz, S., Tore, O., Goral, G., Helvaci, S. (2006). Evaluation of serum C-reactive protein, procalcitonin, tumor necrosis factor alpha, and interleukin-10 levels as diagnostic and prognostic parameters in patients with community-acquired sepsis, severe sepsis, and septic shock. Eur J Clin Microbiol Infect Dis, 25(8), 481-491. doi:10.1007/s10096-006-0168-1 Howard, M., Muchamuel, T., Andrade, S., & Menon, S. (1993). Interleukin 10 protects mice from lethal endotoxemia. J Exp Med, 177(4), 1205-1208. Hughes, C. E., Sinha, U., Pandey, A., Eble, J. A., O'Callaghan, C. A., & Watson, S. P. (2013). Critical Role for an acidic amino acid region in platelet signaling by the HemITAM (hemi-immunoreceptor tyrosine-based activation motif) containing receptor CLEC-2 (C-type lectin receptor-2). J Biol Chem, 288(7), 5127-5135. doi:10.1074/jbc.M112.411462 Hyde, S. R., Stith, R. D., & McCallum, R. E. (1990). Mortality and bacteriology of sepsis following cecal ligation and puncture in aged mice. Infect Immun, 58(3), 619-624. Inoue, D., Kitaura, J., Togami, K., Nishimura, K., Enomoto, Y., Uchida, T., Kitamura, T. (2013). Myelodysplastic syndromes are induced by histone methylation-altering ASXL1 mutations. J Clin Invest, 123(11), 4627-4640. doi:10.1172/JCI70739 Inui, M., Kikuchi, Y., Aoki, N., Endo, S., Maeda, T., Sugahara-Tobinai, A., Takai, T. (2009). Signal adaptor DAP10 associates with MDL-1 and triggers osteoclastogenesis in cooperation with DAP12. Proc Natl Acad Sci U S A, 106(12), 4816-4821. doi:10.1073/pnas.0900463106 Joyce-Shaikh, B., Bigler, M. E., Chao, C. C., Murphy, E. E., Blumenschein, W. M., Adamopoulos, I. E., Cua, D. J. (2010). Myeloid DAP12-associating lectin (MDL)-1 regulates synovial inflammation and bone erosion associated with autoimmune arthritis. J Exp Med, 207(3), 579-589. doi:10.1084/jem.20090516 Kadl, A., Pontiller, J., Exner, M., & Leitinger, N. (2007). Single bolus injection of bilirubin improves the clinical outcome in a mouse model of endotoxemia. Shock, 28(5), 582-588. doi:10.1097/shk.0b013e31804d41dd Kerrigan, A. M., & Brown, G. D. (2010). Syk-coupled C-type lectin receptors that mediate cellular activation via single tyrosine based activation motifs. Immunol Rev, 234(1), 335-352. doi:10.1111/j.0105-2896.2009.00882.x Kinnebrew, M. A., & Pamer, E. G. (2012). Innate immune signaling in defense against intestinal microbes. Immunol Rev, 245(1), 113-131. doi:10.1111/j.1600-065X.2011.01081.x Kobayashi, T., Okamoto, S., Hisamatsu, T., Kamada, N., Chinen, H., Saito, R., Hibi, T. (2008). IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn's disease. Gut, 57(12), 1682-1689. doi:10.1136/gut.2007.135053 Kopf, M., Baumann, H., Freer, G., Freudenberg, M., Lamers, M., Kishimoto, T., Kohler, G. (1994). Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature, 368(6469), 339-342. doi:10.1038/368339a0 Kornbluth, A., Sachar, D. B., & Practice Parameters Committee of the American College of, G. (2004). Ulcerative colitis practice guidelines in adults (update): American College of Gastroenterology, Practice Parameters Committee. Am J Gastroenterol, 99(7), 1371-1385. doi:10.1111/j.1572-0241.2004.40036.x Kruidenier, L., van Meeteren, M. E., Kuiper, I., Jaarsma, D., Lamers, C. B., Zijlstra, F. J., & Verspaget, H. W. (2003). Attenuated mild colonic inflammation and improved survival from severe DSS-colitis of transgenic Cu/Zn-SOD mice. Free Radic Biol Med, 34(6), 753-765. Kushner, I., & Rzewnicki, D. L. (1994). The acute phase response: general aspects. Baillieres Clin Rheumatol, 8(3), 513-530. Lee, M. S., & Kim, Y. J. (2007). Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu Rev Biochem, 76, 447-480. doi:10.1146/annurev.biochem.76.060605.122847 Ley, K. (2003). The role of selectins in inflammation and disease. Trends Mol Med, 9(6), 263-268. Linskens, R. K., Huijsdens, X. W., Savelkoul, P. H., Vandenbroucke-Grauls, C. M., & Meuwissen, S. G. (2001). The bacterial flora in inflammatory bowel disease: current insights in pathogenesis and the influence of antibiotics and probiotics. Scand J Gastroenterol Suppl(234), 29-40. Low, D., Nguyen, D. D., & Mizoguchi, E. (2013). Animal models of ulcerative colitis and their application in drug research. Drug Des Devel Ther, 7, 1341-1357. doi:10.2147/DDDT.S40107 Ma, J., & Underhill, D. M. (2013). beta-Glucan signaling connects phagocytosis to autophagy. Glycobiology, 23(9), 1047-1051. doi:10.1093/glycob/cwt046 Marks, D. J., Harbord, M. W., MacAllister, R., Rahman, F. Z., Young, J., Al-Lazikani, B., Segal, A. W. (2006). Defective acute inflammation in Crohn's disease: a clinical investigation. Lancet, 367(9511), 668-678. doi:10.1016/S0140-6736(06)68265-2 Martinez, F. O., & Gordon, S. (2014). The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep, 6, 13. doi:10.12703/P6-13 Martinez, F. O., Gordon, S., Locati, M., & Mantovani, A. (2006). Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol, 177(10), 7303-7311. Michie, H. R., Manogue, K. R., Spriggs, D. R., Revhaug, A., O'Dwyer, S., Dinarello, C. A., Wilmore, D. W. (1988). Detection of circulating tumor necrosis factor after endotoxin administration. N Engl J Med, 318(23), 1481-1486. doi:10.1056/NEJM198806093182301 Mills, C. D. (2012). M1 and M2 Macrophages: Oracles of Health and Disease. Crit Rev Immunol, 32(6), 463-488. Miyoshi, J., & Chang, E. B. (2016). The gut microbiota and inflammatory bowel diseases. Transl Res. doi:10.1016/j.trsl.2016.06.002 Mocsai, A., Abram, C. L., Jakus, Z., Hu, Y., Lanier, L. L., & Lowell, C. A. (2006). Integrin signaling in neutrophils and macrophages uses adaptors containing immunoreceptor tyrosine-based activation motifs. Nat Immunol, 7(12), 1326-1333. doi:10.1038/ni1407 Mocsai, A., Ruland, J., & Tybulewicz, V. L. (2010). The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol, 10(6), 387-402. doi:10.1038/nri2765 Mogensen, T. H. (2009). Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev, 22(2), 240-273, Table of Contents. doi:10.1128/CMR.00046-08 Mullin, N. P., Hitchen, P. G., & Taylor, M. E. (1997). Mechanism of Ca2+ and monosaccharide binding to a C-type carbohydrate-recognition domain of the macrophage mannose receptor. J Biol Chem, 272(9), 5668-5681. Neurath, M. F. (2014). Cytokines in inflammatory bowel disease. Nat Rev Immunol, 14(5), 329-342. doi:10.1038/nri3661 Ng, S. C., Benjamin, J. L., McCarthy, N. E., Hedin, C. R., Koutsoumpas, A., Plamondon, S., Stagg, A. J. (2011). Relationship between human intestinal dendritic cells, gut microbiota, and disease activity in Crohn's disease. Inflamm Bowel Dis, 17(10), 2027-2037. doi:10.1002/ibd.21590 O'Riordan, D. M., Standing, J. E., Kwon, K. Y., Chang, D., Crouch, E. C., & Limper, A. H. (1995). Surfactant protein D interacts with Pneumocystis carinii and mediates organism adherence to alveolar macrophages. J Clin Invest, 95(6), 2699-2710. doi:10.1172/JCI117972 Obata, Y., Takahashi, D., Ebisawa, M., Kakiguchi, K., Yonemura, S., Jinnohara, T., Ohno, H. (2012). Epithelial cell-intrinsic Notch signaling plays an essential role in the maintenance of gut immune homeostasis. J Immunol, 188(5), 2427-2436. doi:10.4049/jimmunol.1101128 Ofek, I., Mesika, A., Kalina, M., Keisari, Y., Podschun, R., Sahly, H., Crouch, E. (2001). Surfactant protein D enhances phagocytosis and killing of unencapsulated phase variants of Klebsiella pneumoniae. Infect Immun, 69(1), 24-33. doi:10.1128/IAI.69.1.24-33.2001 Papadakis, K. A., & Targan, S. R. (1999). Current theories on the causes of inflammatory bowel disease. Gastroenterol Clin North Am, 28(2), 283-296. Pardi, D. S., Loftus, E. V., Jr., & Camilleri, M. (2002). Treatment of inflammatory bowel disease in the elderly: an update. Drugs Aging, 19(5), 355-363. Ramirez-Carrozzi, V., Sambandam, A., Luis, E., Lin, Z., Jeet, S., Lesch, J., Pappu, R. (2011). IL-17C regulates the innate immune function of epithelial cells in an autocrine manner. Nat Immunol, 12(12), 1159-1166. doi:10.1038/ni.2156 Robinson, M. J., Sancho, D., Slack, E. C., LeibundGut-Landmann, S., & Reis e Sousa, C. (2006). Myeloid C-type lectins in innate immunity. Nat Immunol, 7(12), 1258-1265. doi:10.1038/ni1417 Saleh, M., & Trinchieri, G. (2011). Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nat Rev Immunol, 11(1), 9-20. doi:10.1038/nri2891 Schulte, W., Bernhagen, J., & Bucala, R. (2013). Cytokines in sepsis: potent immunoregulators and potential therapeutic targets--an updated view. Mediators Inflamm, 2013, 165974. doi:10.1155/2013/165974 Seksik, P., Sokol, H., Lepage, P., Vasquez, N., Manichanh, C., Mangin, I., Marteau, P. (2006). Review article: the role of bacteria in onset and perpetuation of inflammatory bowel disease. Aliment Pharmacol Ther, 24 Suppl 3, 11-18. doi:10.1111/j.1365-2036.2006.03053.x Shepherd, N. A. (2002). Granulomas in the diagnosis of intestinal Crohn's disease: a myth exploded? Histopathology, 41(2), 166-168. Shuai, K., & Liu, B. (2003). Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol, 3(11), 900-911. doi:10.1038/nri1226 Siegmund, B. (2010). Interleukin-18 in intestinal inflammation: friend and foe? Immunity, 32(3), 300-302. doi:10.1016/j.immuni.2010.03.010 Siegmund, B., Fantuzzi, G., Rieder, F., Gamboni-Robertson, F., Lehr, H. A., Hartmann, G., Eigler, A. (2001). Neutralization of interleukin-18 reduces severity in murine colitis and intestinal IFN-gamma and TNF-alpha production. Am J Physiol Regul Integr Comp Physiol, 281(4), R1264-1273. Singer, M., Deutschman, C. S., Seymour, C. W., Shankar-Hari, M., Annane, D., Bauer, M., Angus, D. C. (2016). The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315(8), 801-810. doi:10.1001/jama.2016.0287 Stark, M. A., Huo, Y., Burcin, T. L., Morris, M. A., Olson, T. S., & Ley, K. (2005). Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity, 22(3), 285-294. doi:10.1016/j.immuni.2005.01.011 Tas, S. W., Maracle, C. X., Balogh, E., & Szekanecz, Z. (2016). Targeting of proangiogenic signalling pathways in chronic inflammation. Nat Rev Rheumatol, 12(2), 111-122. doi:10.1038/nrrheum.2015.164 Toscano, M. G., Ganea, D., & Gamero, A. M. (2011). Cecal ligation puncture procedure. J Vis Exp(51). doi:10.3791/2860 Turner, M., Schweighoffer, E., Colucci, F., Di Santo, J. P., & Tybulewicz, V. L. (2000). Tyrosine kinase SYK: essential functions for immunoreceptor signalling. Immunol Today, 21(3), 148-154. Ungaro, R., Babyatsky, M. W., Zhu, H., & Freed, J. S. (2012). Protein-losing enteropathy in ulcerative colitis. Case Rep Gastroenterol, 6(1), 177-182. doi:10.1159/000338191 Vaishnavi, C. (2013). Translocation of gut flora and its role in sepsis. Indian J Med Microbiol, 31(4), 334-342. doi:10.4103/0255-0857.118870 van der Poll, T., Levi, M., Hack, C. E., ten Cate, H., van Deventer, S. J., Eerenberg, A. J., et al. (1994). Elimination of interleukin 6 attenuates coagulation activation in experimental endotoxemia in chimpanzees. J Exp Med, 179(4), 1253-1259. van der Poll, T., Marchant, A., Buurman, W. A., Berman, L., Keogh, C. V., Lazarus, D. D., Lowry, S. F. (1995). Endogenous IL-10 protects mice from death during septic peritonitis. J Immunol, 155(11), 5397-5401. Van Praet, L., Jacques, P., Van den Bosch, F., & Elewaut, D. (2012). The transition of acute to chronic bowel inflammation in spondyloarthritis. Nat Rev Rheumatol, 8(5), 288-295. doi:10.1038/nrrheum.2012.42 Watson, A. A., Lebedev, A. A., Hall, B. A., Fenton-May, A. E., Vagin, A. A., Dejnirattisai, W., O'Callaghan, C. A. (2011). Structural flexibility of the macrophage dengue virus receptor CLEC5A: implications for ligand binding and signaling. J Biol Chem, 286(27), 24208-24218. doi:10.1074/jbc.M111.226142 Whittem, C. G., Williams, A. D., & Williams, C. S. (2010). Murine Colitis modeling using Dextran Sulfate Sodium (DSS). J Vis Exp(35). doi:10.3791/1652 Wortham, B. W., Eppert, B. L., Flury, J. L., Garcia, S. M., Donica, W. R., Osterburg, A., Borchers, M. T. (2016). Cutting Edge: CLEC5A Mediates Macrophage Function and Chronic Obstructive Pulmonary Disease Pathologies. J Immunol, 196(8), 3227-3231. doi:10.4049/jimmunol.1500978 Wragg, S., & Drickamer, K. (1999). Identification of amino acid residues that determine pH dependence of ligand binding to the asialoglycoprotein receptor during endocytosis. J Biol Chem, 274(50), 35400-35406. Yan, F., Wang, L., Shi, Y., Cao, H., Liu, L., Washington, M. K., Polk, D. B. (2012). Berberine promotes recovery of colitis and inhibits inflammatory responses in colonic macrophages and epithelial cells in DSS-treated mice. Am J Physiol Gastrointest Liver Physiol, 302(5), G504-514. doi:10.1152/ajpgi.00312.2011 Yen, D., Cheung, J., Scheerens, H., Poulet, F., McClanahan, T., McKenzie, B., Rennick, D. (2006). IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest, 116(5), 1310-1316. doi:10.1172/JCI21404 Zelensky, A. N., & Gready, J. E. (2005). The C-type lectin-like domain superfamily. FEBS J, 272(24), 6179-6217. doi:10.1111/j.1742-4658.2005.05031.x Zhang, X., Majlessi, L., Deriaud, E., Leclerc, C., & Lo-Man, R. (2009). Coactivation of Syk kinase and MyD88 adaptor protein pathways by bacteria promotes regulatory properties of neutrophils. Immunity, 31(5), 761-771. doi:10.1016/j.immuni.2009.09.016 Zhu, W., Yu, J., Nie, Y., Shi, X., Liu, Y., Li, F., & Zhang, X. L. (2014). Disequilibrium of M1 and M2 macrophages correlates with the development of experimental inflammatory bowel diseases. Immunol Invest, 43(7), 638-652. doi:10.3109/08820139.2014.909456 Zhu, Y., Li, X., Chen, J., Chen, T., Shi, Z., Lei, M., Fei, X. (2016). The pentacyclic triterpene Lupeol switches M1 macrophages to M2 and ameliorates experimental inflammatory bowel disease. Int Immunopharmacol, 30, 74-84. doi:10.1016/j.intimp.2015.11.031 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50277 | - |
| dc.description.abstract | CLEC5A是先天免疫受體中C型凝集素(C-type lectin)受體的一員,並且廣泛的表現在骨髓細胞。過去的研究顯示CLEC5A在登革熱病毒與日本腦炎病毒的感染、類風溼性關節炎和抽菸造成的肺部發炎扮演著重要的角色。我們使用CLEC5A基因剔除的老鼠來研究CLEC5A在盲腸穿刺的敗血症疾病模式和葡聚醣硫酸鈉(DSS)引起的結腸炎扮演的角色。同時我們使用CLEC5A基因剔除老鼠的骨髓衍生的巨噬細胞來探討CLEC5A在TLR4訊息傳遞、TLRs引發的發炎基因表現、M1和M2巨噬細胞極化所扮演的角色。在盲腸穿刺的敗血症疾病模式中,我們發現CLEC5A基因剔除的老鼠有較低的死亡率、較溫和的臨床症狀、血清中較低的白細胞介素1β (IL-1β)和腫瘤壞死因子α (TNF-α),並且肺臟與肝臟的促炎細胞因子的基因表現也較WT低。在葡聚醣硫酸鈉引起的結腸炎的動物疾病模式中,CLEC5A基因剔除的老鼠的腸道出血、腹瀉、體重減輕與腸道縮短與野生型(WT)的老鼠相比較不嚴重,且CLEC5A基因剔除老鼠的大腸中促炎細胞因子的基因表現相較於野生型老鼠也減少。在CLEC5A基因剔除骨髓衍生的巨噬細胞中,脂多醣 (LPS;TLR4 配體)、pam3 (TLR2配體) 和CpG (TLR9配體)引發的促炎細胞因子在誘發的晚期(約6到12小時)較野生型老鼠低,除了腫瘤壞死因子α的基因表現在兩小時即已明顯降低。我們也發現脂多醣刺激所引發的IKK 和 MAPKs的訊息活化在CLEC5A基因剔除的巨噬細胞中並未與野生型巨噬細胞有所不同。值得注意的是,缺乏CLEC5A有利於巨噬細胞傾向於M2的極化,並且在脂多醣/干擾素γ和白細胞介素-4 (IL-4) 的訊息傳遞有相反的效果。綜上所述,我們認為CLEC5A與腸道微生物所引發的敗血症和腸道發炎有關,而其原因可能歸因於CLEC5A對於TLRs誘導的發炎反應和對巨噬細胞M1極化反應具有正向調控的功能。 | zh_TW |
| dc.description.abstract | CLEC5A is an innate immunity receptor belonging to C-type lectin receptors and widely expressed on myeloid cells. Previous studies showed that CLEC5A plays an important role in the pathology of dengue virus and Japanese encephalitis virus infection, rheumatoid arthritis and cigarette smoke-induced lung inflammation. In this study we used CLEC5A-/- mice to determine the roles of CLEC5A in the pathological severity of cecal ligation and puncture (CLP)-induced sepsis and dextran sodium sulfate (DSS)-induced colitis. In vitro we also used CLEC5A-/- bone marrow-derived macrophages (BMDM) to explore the roles of CLEC5A in TLR4 signaling, TLRs-induced inflammatory cytokine gene expression, and M1/M2 polarization. In CLP-induced polymicrobial bacterial peritonitis, we found CLEC5A-/- mice displayed lower responses of lethality, clinical symptoms, serum levels of IL-1β and TNF-α, and the gene expression of proinflammatory cytokines in lung and liver. In DSS-induced colitis model, intestinal bleeding, diarrhea, body weight loss, shorten of colon and proinflammatory cytokines expression in colon were reduced in CLEC5A-/- mice as compared to WT control. In TLR ligands-activated BMDM, we found that the proinflammatory cytokines mRNA induced by LPS (TLR4 ligand), pam3 (TLR2 ligand) and CpG (TLR9 ligand) at late phase around 6-12 h were attenuated in CLEC5A-/- cells. Nevertheless, TNF-α gene expression was reduced at 2 h. We also found that LPS-induced signaling activation of IKK and MAPKs were unaltered in CLEC5A-/- cells. Notably, CLEC5A deficiency favors macrophage polarization to M2 status, and exerts opposite effects on LPS/IFNγ and IL-4 signaling. Taken together, we suggest that CLEC5A is involved in microbiota-induced sepsis and gut inflammation, and these actions might be ascribed to the functions of CLEC5A in positive regulation of TLRs-induced inflammation responses and M1 macrophage polarization. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:34:46Z (GMT). No. of bitstreams: 1 ntu-105-R03443013-1.pdf: 3189081 bytes, checksum: b67be1d5df94b076e48f6bc4d6303e1b (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Abbreviations i
Abstract v 中文摘要 vii 1. Introduction 1 1.1 Innate immunity 1 1.2 C-type lectin receptors 3 1.2.1 General structures and functions of C-type lectin receptors 3 1.2.2 CLRs in innate immunity 5 1.2.3 Syk-coupled C-type lectins 6 1.3 C-type lectin domain family 5 8 1.3.1 The structure and expression of CLEC5A 8 1.3.2 The function of CLEC5A 9 1.3.3 Crosstalk between CLEC5A and TLRs 12 1.4 Inflammatory bowel disease 13 1.5 Sepsis 14 2. Specific aim 18 3. Materials and methods 19 3.1 Mice and ethics statement 19 3.2 Reagents and antibody 19 3.3 Cell culture 20 3.4 DSS colitis model 21 3.5 Cecal ligation and puncture (CLP) sepsis model 22 3.6 Immunoblotting 23 3.7 Cytokine enzyme-linked immunosorbent assay (ELISA) 24 3.8 Cytometric Bead Array (CBA) kit 25 3.9 Reverse-transcription (RT) real-time polymerase chain reaction (PCR) 25 3.10 Statistical evaluation and image quantification 27 4. Result 28 4.1. CLEC5A deficiency protects mice against sepsis in CLP model 28 4.2. DSS induces less colitis pathology in CLEC5A-/- mice 30 4.3 CLEC5A deficiency reduces TLRs-induced inflammatory responses in BMDM 33 4.4 CLEC5A knockout does not affect LPS-induced early signaling pathways 34 4.5 CLEC5A deficiency favors macrophage polarization to M2 phenotype 34 5. Discussion 37 Figure 42 References 53 | |
| dc.language.iso | en | |
| dc.subject | 發炎 | zh_TW |
| dc.subject | CLEC5A | zh_TW |
| dc.subject | CLEC5A | zh_TW |
| dc.subject | 發炎 | zh_TW |
| dc.subject | 巨噬細胞 | zh_TW |
| dc.subject | 巨噬細胞 | zh_TW |
| dc.subject | macrophages | en |
| dc.subject | CLEC5A | en |
| dc.subject | inflammatory responses | en |
| dc.subject | macrophages | en |
| dc.subject | CLEC5A | en |
| dc.subject | inflammatory responses | en |
| dc.title | 探討CLEC5A參與巨噬細胞引發的發炎反應及相關疾病 | zh_TW |
| dc.title | The roles of CLEC5A in the inflammatory responses in macrophages and associated diseases | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝世良,符文美,曾賢忠,蔡丰喬 | |
| dc.subject.keyword | CLEC5A,發炎,巨噬細胞, | zh_TW |
| dc.subject.keyword | CLEC5A,inflammatory responses,macrophages, | en |
| dc.relation.page | 61 | |
| dc.identifier.doi | 10.6342/NTU201601634 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-01 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 3.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
