請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50275完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 符文美 | |
| dc.contributor.author | Yu-Chuan Liu | en |
| dc.contributor.author | 劉羽娟 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:34:42Z | - |
| dc.date.available | 2021-08-26 | |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-01 | |
| dc.identifier.citation | Abbott, N. J., & Friedman, A. (2012). Overview and introduction: the blood-brain barrier in health and disease. Epilepsia, 53 Suppl 6, 1-6. doi:10.1111/j.1528-1167.2012.03696.x
Abbott, N. J., Patabendige, A. A. K., Dolman, D. E. M., Yusof, S. R., & Begley, D. J. (2010). Structure and function of the blood–brain barrier. Neurobiol Dis, 37(1), 13-25. doi:http://dx.doi.org/10.1016/j.nbd.2009.07.030 Akins, P. T., & Atkinson, R. P. (2002). Glutamate AMPA receptor antagonist treatment for ischaemic stroke. Curr Med Res Opin, 18 Suppl 2, s9-13. Al-Abed, Y., Dabideen, D., Aljabari, B., Valster, A., Messmer, D., Ochani, M., . . . Tracey, K. J. (2005). ISO-1 binding to the tautomerase active site of MIF inhibits its pro-inflammatory activity and increases survival in severe sepsis. J Biol Chem, 280(44), 36541-36544. doi:10.1074/jbc.C500243200 Al-Abed, Y., & VanPatten, S. (2011). MIF as a disease target: ISO-1 as a proof-of-concept therapeutic. Future Med Chem, 3(1), 45-63. doi:10.4155/fmc.10.281 Anderson, J. M., & Van Itallie, C. M. (2009). Physiology and function of the tight junction. Cold Spring Harb Perspect Biol, 1(2), a002584. doi:10.1101/cshperspect.a002584 Arvin, B., Neville, L. F., Barone, F. C., & Feuerstein, G. Z. (1996). The role of inflammation and cytokines in brain injury. Neurosci Biobehav Rev, 20(3), 445-452. Bacher, M., Metz, C. N., Calandra, T., Mayer, K., Chesney, J., Lohoff, M., . . . Bucala, R. (1996). An essential regulatory role for macrophage migration inhibitory factor in T-cell activation. Proc Natl Acad Sci U S A, 93(15), 7849-7854. Balda, M. S., Whitney, J. A., Flores, C., Gonzalez, S., Cereijido, M., & Matter, K. (1996). Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J Cell Biol, 134(4), 1031-1049. Ballabh, P., Braun, A., & Nedergaard, M. (2004). The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis, 16(1), 1-13. doi:10.1016/j.nbd.2003.12.016 Bano, D., & Nicotera, P. (2007). Ca2+ signals and neuronal death in brain ischemia. Stroke, 38(2 Suppl), 674-676. doi:10.1161/01.str.0000256294.46009.29 Barone, F. C., Arvin, B., White, R. F., Miller, A., Webb, C. L., Willette, R. N., . . . Feuerstein, G. Z. (1997). Tumor necrosis factor-alpha. A mediator of focal ischemic brain injury. Stroke, 28(6), 1233-1244. Basic Kes, V., Simundic, A. M., Nikolac, N., Topic, E., & Demarin, V. (2008). Pro-inflammatory and anti-inflammatory cytokines in acute ischemic stroke and their relation to early neurological deficit and stroke outcome. Clin Biochem, 41(16-17), 1330-1334. doi:10.1016/j.clinbiochem.2008.08.080 Belayev, L., Busto, R., Zhao, W., & Ginsberg, M. D. (1996). Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats. Brain Res, 739(1-2), 88-96. Bolin, L. M., Murray, R., Lukacs, N. W., Strieter, R. M., Kunkel, S. L., Schall, T. J., & Bacon, K. B. (1998). Primary sensory neurons migrate in response to the chemokine RANTES. J Neuroimmunol, 81(1-2), 49-57. Bruno, V., Copani, A., Besong, G., Scoto, G., & Nicoletti, F. (2000). Neuroprotective activity of chemokines against N-methyl-d-aspartate or β-amyloid-induced toxicity in culture. European Journal of Pharmacology, 399(2–3), 117-121. doi:http://dx.doi.org/10.1016/S0014-2999(00)00367-8 Cabezas, R., Avila, M., Gonzalez, J., El-Bacha, R. S., Baez, E., Garcia-Segura, L. M., . . . Barreto, G. E. (2014). Astrocytic modulation of blood brain barrier: perspectives on Parkinson's disease. Front Cell Neurosci, 8, 211. doi:10.3389/fncel.2014.00211 Calandra, T., & Roger, T. (2003). Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol, 3(10), 791-800. Retrieved from http://dx.doi.org/10.1038/nri1200 Campbell, M., Hanrahan, F., Gobbo, O. L., Kelly, M. E., Kiang, A. S., Humphries, M. M., . . . Humphries, P. (2012). Targeted suppression of claudin-5 decreases cerebral oedema and improves cognitive outcome following traumatic brain injury. Nat Commun, 3, 849. doi:10.1038/ncomms1852 Carmichael, S. T. (2005). Rodent models of focal stroke: size, mechanism, and purpose. NeuroRx, 2(3), 396-409. doi:10.1602/neurorx.2.3.396 Ceulemans, A.-G., Zgavc, T., Kooijman, R., Hachimi-Idrissi, S., Sarre, S., & Michotte, Y. (2010). The dual role of the neuroinflammatory response after ischemic stroke: modulatory effects of hypothermia. J Neuroinflammation, 7(1), 1-18. doi:10.1186/1742-2094-7-74 Chen, J., Li, Y., Wang, L., Zhang, Z., Lu, D., Lu, M., & Chopp, M. (2001). Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke, 32(4), 1005-1011. Chiba, H., Osanai, M., Murata, M., Kojima, T., & Sawada, N. (2008). Transmembrane proteins of tight junctions. Biochim Biophys Acta, 1778(3), 588-600. doi:10.1016/j.bbamem.2007.08.017 Dayawansa, Nalin H., Gao, X.-M., White, David A., Dart, Anthony M., & Du, X.-J. (2014). Role of MIF in myocardial ischaemia and infarction: insight from recent clinical and experimental findings. Clinical Science, 127(3), 149-161. doi:10.1042/cs20130828 Denkinger, C. M., Metz, C., Fingerle-Rowson, G., Denkinger, M. D., & Forsthuber, T. (2004). Macrophage migration inhibitory factor and its role in autoimmune diseases. Arch Immunol Ther Exp (Warsz), 52(6), 389-400. Desai, B. S., Monahan, A. J., Carvey, P. M., & Hendey, B. (2007). Blood-brain barrier pathology in Alzheimer's and Parkinson's disease: implications for drug therapy. Cell Transplant, 16(3), 285-299. Disorders, T. N. I. o. N., & Group, S. r.-P. S. S. (1995). Tissue Plasminogen Activator for Acute Ischemic Stroke. New England Journal of Medicine, 333(24), 1581-1588. doi:doi:10.1056/NEJM199512143332401 Ebnet, K., Suzuki, A., Ohno, S., & Vestweber, D. (2004). Junctional adhesion molecules (JAMs): more molecules with dual functions? Journal of Cell Science, 117(1), 19-29. doi:10.1242/jcs.00930 Estaquier, J., Vallette, F., Vayssiere, J. L., & Mignotte, B. (2012). The mitochondrial pathways of apoptosis. Adv Exp Med Biol, 942, 157-183. doi:10.1007/978-94-007-2869-1_7 Fonarow, G. C., Smith, E. E., Saver, J. L., Reeves, M. J., Hernandez, A. F., Peterson, E. D., . . . Schwamm, L. H. (2011). Improving door-to-needle times in acute ischemic stroke: the design and rationale for the American Heart Association/American Stroke Association's Target: Stroke initiative. Stroke, 42(10), 2983-2989. doi:10.1161/strokeaha.111.621342 Goldlust, E. J., Paczynski, R. P., He, Y. Y., Hsu, C. Y., & Goldberg, M. P. (1996). Automated measurement of infarct size with scanned images of triphenyltetrazolium chloride-stained rat brains. Stroke, 27(9), 1657-1662. Halliday, G. M., Cullen, K. M., Kril, J. J., Harding, A. J., & Harasty, J. (1996). Glial fibrillary acidic protein (GFAP) immunohistochemistry in human cortex: a quantitative study using different antisera. Neuroscience Letters, 209(1), 29-32. doi:http://dx.doi.org/10.1016/0304-3940(96)12592-1 Hamer, P. W., McGeachie, J. M., Davies, M. J., & Grounds, M. D. (2002). Evans Blue Dye as an in vivo marker of myofibre damage: optimising parameters for detecting initial myofibre membrane permeability. J Anat, 200(Pt 1), 69-79. Hudson, J. D., Shoaibi, M. A., Maestro, R., Carnero, A., Hannon, G. J., & Beach, D. H. (1999). A proinflammatory cytokine inhibits p53 tumor suppressor activity. J Exp Med, 190(10), 1375-1382. Inacio, A. R., Ruscher, K., Leng, L., Bucala, R., & Deierborg, T. (2011). Macrophage migration inhibitory factor promotes cell death and aggravates neurologic deficits after experimental stroke. J Cereb Blood Flow Metab, 31(4), 1093-1106. doi:10.1038/jcbfm.2010.194 Jauch, E. C., Saver, J. L., Adams, H. P., Jr., Bruno, A., Connors, J. J., Demaerschalk, B. M., . . . Yonas, H. (2013). Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 44(3), 870-947. doi:10.1161/STR.0b013e318284056a Jiang, Y., Wei, N., Zhu, J., Lu, T., Chen, Z., Xu, G., & Liu, X. (2010). Effects of Brain-Derived Neurotrophic Factor on Local Inflammation in Experimental Stroke of Rat. Mediators of Inflammation, 2010, 10. doi:10.1155/2010/372423 Jin, R., Yang, G., & Li, G. (2010). Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol, 87(5), 779-789. doi:10.1189/jlb.1109766 Kadar, A., Wittmann, G., Liposits, Z., & Fekete, C. (2009). Improved method for combination of immunocytochemistry and Nissl staining. J Neurosci Methods, 184(1), 115-118. doi:10.1016/j.jneumeth.2009.07.010 Kaul, M., Ma, Q., Medders, K. E., Desai, M. K., & Lipton, S. A. (2006). HIV-1 coreceptors CCR5 and CXCR4 both mediate neuronal cell death but CCR5 paradoxically can also contribute to protection. Cell Death Differ, 14(2), 296-305. Retrieved from http://dx.doi.org/10.1038/sj.cdd.4402006 Kitagawa, K., Matsumoto, M., Mabuchi, T., Yagita, Y., Ohtsuki, T., Hori, M., & Yanagihara, T. (1998). Deficiency of intercellular adhesion molecule 1 attenuates microcirculatory disturbance and infarction size in focal cerebral ischemia. J Cereb Blood Flow Metab, 18(12), 1336-1345. doi:10.1097/00004647-199812000-00008 Koto, T., Takubo, K., Ishida, S., Shinoda, H., Inoue, M., Tsubota, K., . . . Ikeda, E. (2007). Hypoxia disrupts the barrier function of neural blood vessels through changes in the expression of claudin-5 in endothelial cells. Am J Pathol, 170(4), 1389-1397. doi:10.2353/ajpath.2007.060693 Kudrin, A., & Ray, D. (2007). Cunning factor: macrophage migration inhibitory factor as a redox-regulated target. Immunol Cell Biol, 86(3), 232-238. Retrieved from http://dx.doi.org/10.1038/sj.icb.7100133 Lakhan, S. E., Kirchgessner, A., & Hofer, M. (2009). Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med, 7, 97. doi:10.1186/1479-5876-7-97 Larochelle, C., Alvarez, J. I., & Prat, A. (2011). How do immune cells overcome the blood-brain barrier in multiple sclerosis? FEBS Lett, 585(23), 3770-3780. doi:10.1016/j.febslet.2011.04.066 Leech, M., Lacey, D., Xue, J. R., Santos, L., Hutchinson, P., Wolvetang, E., . . . Morand, E. F. (2003). Regulation of p53 by macrophage migration inhibitory factor in inflammatory arthritis. Arthritis Rheum, 48(7), 1881-1889. doi:10.1002/art.11165 Li, Y. N., Pan, R., Qin, X. J., Yang, W. L., Qi, Z., Liu, W., & Liu, K. J. (2014). Ischemic neurons activate astrocytes to disrupt endothelial barrier via increasing VEGF expression. J Neurochem, 129(1), 120-129. doi:10.1111/jnc.12611 Lue, H., Kapurniotu, A., Fingerle-Rowson, G., Roger, T., Leng, L., Thiele, M., . . . Bernhagen, J. (2006). Rapid and transient activation of the ERK MAPK signalling pathway by macrophage migration inhibitory factor (MIF) and dependence on JAB1/CSN5 and Src kinase activity. Cell Signal, 18(5), 688-703. doi:10.1016/j.cellsig.2005.06.013 Mehta, S. L., & Vemuganti, R. (2014). Mechanisms of stroke induced neuronal death: multiple therapeutic opportunities. Advances in Animal and Veterinary Sciences, 2(8), 438-446. doi:10.14737/journal.aavs/2014/2.8.438.446 Meldrum, B. S. (2000). Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr, 130(4S Suppl), 1007s-1015s. Miller, E. J., Li, J., Leng, L., McDonald, C., Atsumi, T., Bucala, R., & Young, L. H. (2008). Macrophage migration inhibitory factor stimulates AMP-activated protein kinase in the ischaemic heart. Nature, 451(7178), 578-582. doi:http://www.nature.com/nature/journal/v451/n7178/suppinfo/nature06504_S1.html Morand, E. F. (2005). New therapeutic target in inflammatory disease: macrophage migration inhibitory factor. Intern Med J, 35(7), 419-426. doi:10.1111/j.1445-5994.2005.00853.x Morand, E. F., Leech, M., & Bernhagen, J. (2006). MIF: a new cytokine link between rheumatoid arthritis and atherosclerosis. Nat Rev Drug Discov, 5(5), 399-410. doi:10.1038/nrd2029 Nguyen, M. T., Lue, H., Kleemann, R., Thiele, M., Tolle, G., Finkelmeier, D., . . . Bernhagen, J. (2003). The cytokine macrophage migration inhibitory factor reduces pro-oxidative stress-induced apoptosis. J Immunol, 170(6), 3337-3347. Niizuma, K., Yoshioka, H., Chen, H., Kim, G. S., Jung, J. E., Katsu, M., . . . Chan, P. H. (2010). Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim Biophys Acta, 1802(1), 92-99. doi:10.1016/j.bbadis.2009.09.002 Oby, E., & Janigro, D. (2006). The blood-brain barrier and epilepsy. Epilepsia, 47(11), 1761-1774. doi:10.1111/j.1528-1167.2006.00817.x Pease, J. E. (2006). Tails of the unexpected - an atypical receptor for the chemokine RANTES/CCL5 expressed in brain. Br J Pharmacol, 149(5), 460-462. doi:10.1038/sj.bjp.0706910 Prabhakaran, S., Ruff, I., & Bernstein, R. A. (2015). Acute stroke intervention: A systematic review. Jama, 313(14), 1451-1462. doi:10.1001/jama.2015.3058 Pradillo, J. M., Denes, A., Greenhalgh, A. D., Boutin, H., Drake, C., McColl, B. W., . . . Allan, S. M. (2012). Delayed administration of interleukin-1 receptor antagonist reduces ischemic brain damage and inflammation in comorbid rats. J Cereb Blood Flow Metab, 32(9), 1810-1819. doi:10.1038/jcbfm.2012.101 Rassaf, T., Weber, C., & Bernhagen, J. (2014). Macrophage migration inhibitory factor in myocardial ischaemia/reperfusion injury. Cardiovascular Research, 102(2), 321-328. doi:10.1093/cvr/cvu071 Rodrigo, R., Fernandez-Gajardo, R., Gutierrez, R., Matamala, J. M., Carrasco, R., Miranda-Merchak, A., & Feuerhake, W. (2013). Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS Neurol Disord Drug Targets, 12(5), 698-714. Ryan, L. A., Cotter, R. L., Zink, W. E., 2nd, Gendelman, H. E., & Zheng, J. (2002). Macrophages, chemokines and neuronal injury in HIV-1-associated dementia. Cell Mol Biol (Noisy-le-grand), 48(2), 137-150. Sandoval, K. E., & Witt, K. A. (2008). Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis, 32(2), 200-219. doi:10.1016/j.nbd.2008.08.005 Saver, J. L., Fonarow, G. C., Smith, E. E., Reeves, M. J., Grau-Sepulveda, M. V., Pan, W., . . . Schwamm, L. H. (2013). Time to treatment with intravenous tissue plasminogen activator and outcome from acute ischemic stroke. Jama, 309(23), 2480-2488. doi:10.1001/jama.2013.6959 Scalzo, P., de Miranda, A. S., Guerra Amaral, D. C., de Carvalho Vilela, M., Cardoso, F., & Teixeira, A. L. (2011). Serum levels of chemokines in Parkinson's disease. Neuroimmunomodulation, 18(4), 240-244. doi:10.1159/000323779 Shi, X., Leng, L., Wang, T., Wang, W., Du, X., Li, J., . . . Bucala, R. (2006). CD44 is the signaling component of the macrophage migration inhibitory factor-CD74 receptor complex. Immunity, 25(4), 595-606. doi:10.1016/j.immuni.2006.08.020 Shichita, T., Sakaguchi, R., Suzuki, M., & Yoshimura, A. (2012). Post-ischemic inflammation in the brain. Front Immunol, 3, 132. doi:10.3389/fimmu.2012.00132 Shlosberg, D., Benifla, M., Kaufer, D., & Friedman, A. (2010). Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol, 6(7), 393-403. doi:10.1038/nrneurol.2010.74 Sofroniew, M. V. (2009). Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci, 32(12), 638-647. doi:10.1016/j.tins.2009.08.002 Sorce, S., Bonnefont, J., Julien, S., Marq-Lin, N., Rodriguez, I., Dubois-Dauphin, M., & Krause, K. H. (2010). Increased brain damage after ischaemic stroke in mice lacking the chemokine receptor CCR5. Br J Pharmacol, 160(2), 311-321. doi:10.1111/j.1476-5381.2010.00697.x Streit, W. J., Conde, J. R., & Harrison, J. K. (2001). Chemokines and Alzheimer's disease. Neurobiol Aging, 22(6), 909-913. Terao, S., Yilmaz, G., Stokes, K. Y., Russell, J., Ishikawa, M., Kawase, T., & Granger, D. N. (2008). Blood cell-derived RANTES mediates cerebral microvascular dysfunction, inflammation, and tissue injury after focal ischemia-reperfusion. Stroke, 39(9), 2560-2570. doi:10.1161/strokeaha.107.513150 Tokami, H., Ago, T., Sugimori, H., Kuroda, J., Awano, H., Suzuki, K., . . . Kitazono, T. (2013). RANTES has a potential to play a neuroprotective role in an autocrine/paracrine manner after ischemic stroke. Brain Res, 1517, 122-132. doi:10.1016/j.brainres.2013.04.022 Tripathy, D., Thirumangalakudi, L., & Grammas, P. (2010). RANTES upregulation in the Alzheimer's disease brain: a possible neuroprotective role. Neurobiol Aging, 31(1), 8-16. doi:10.1016/j.neurobiolaging.2008.03.009 Tuttolomondo, A., Di Raimondo, D., di Sciacca, R., Pinto, A., & Licata, G. (2008). Inflammatory cytokines in acute ischemic stroke. Curr Pharm Des, 14(33), 3574-3589. Uyama, O., Okamura, N., Yanase, M., Narita, M., Kawabata, K., & Sugita, M. (1988). Quantitative evaluation of vascular permeability in the gerbil brain after transient ischemia using Evans blue fluorescence. J Cereb Blood Flow Metab, 8(2), 282-284. doi:10.1038/jcbfm.1988.59 Van Itallie, C. M., Fanning, A. S., Bridges, A., & Anderson, J. M. (2009). ZO-1 stabilizes the tight junction solute barrier through coupling to the perijunctional cytoskeleton. Mol Biol Cell, 20(17), 3930-3940. doi:10.1091/mbc.E09-04-0320 Wang, H. L., & Lai, T. W. (2014). Optimization of Evans blue quantitation in limited rat tissue samples. Sci Rep, 4, 6588. doi:10.1038/srep06588 Wang, L., Zis, O., Ma, G., Shan, Z., Zhang, X., Wang, S., . . . Song, W. (2009). Upregulation of macrophage migration inhibitory factor gene expression in stroke. Stroke, 40(3), 973-976. doi:10.1161/strokeaha.108.530535 Westmoreland, S. V., Alvarez, X., deBakker, C., Aye, P., Wilson, M. L., Williams, K. C., & Lackner, A. A. (2002). Developmental expression patterns of CCR5 and CXCR4 in the rhesus macaque brain. J Neuroimmunol, 122(1-2), 146-158. Yeh, W. L., Lu, D. Y., Lin, C. J., Liou, H. C., & Fu, W. M. (2007). Inhibition of hypoxia-induced increase of blood-brain barrier permeability by YC-1 through the antagonism of HIF-1alpha accumulation and VEGF expression. Mol Pharmacol, 72(2), 440-449. doi:10.1124/mol.107.036418 Yu, T. M., Palanisamy, K., Sun, K. T., Day, Y. J., Shu, K. H., Wang, I. K., . . . Li, C. Y. (2016). RANTES mediates kidney ischemia reperfusion injury through a possible role of HIF-1α and LncRNA PRINS. Sci Rep, 6. doi:10.1038/srep18424 Yuan, J. (2009). Neuroprotective strategies targeting apoptotic and necrotic cell death for stroke. Apoptosis, 14(4), 469-477. doi:10.1007/s10495-008-0304-8 Zhang, R. L., Chopp, M., Jiang, N., Tang, W. X., Prostak, J., Manning, A. M., & Anderson, D. C. (1995). Anti-intercellular adhesion molecule-1 antibody reduces ischemic cell damage after transient but not permanent middle cerebral artery occlusion in the Wistar rat. Stroke, 26(8), 1438-1442; discussion 1443. Zhang, S., Zis, O., Ly, P. T. T., Wu, Y., Zhang, S., Zhang, M., . . . Song, W. (2014). Down-regulation of MIF by NFκB under hypoxia accelerated neuronal loss during stroke. Faseb j, 28(10), 4394-4407. doi:10.1096/fj.14-253625 Zis, O., Zhang, S., Dorovini-Zis, K., Wang, L., & Song, W. (2015). Hypoxia signaling regulates macrophage migration inhibitory factor (MIF) expression in stroke. Mol Neurobiol, 51(1), 155-167. doi:10.1007/s12035-014-8727-4 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50275 | - |
| dc.description.abstract | 腦中風在十大死因中排行第三位,在惡性腫瘤和心臟疾病之後,根據WHO的調查顯示,每年約有1500萬人發生腦中風,而腦中風後造成的死亡及長久的行動不便,無法工作又或生活無法自理,這些問題不僅對個人甚至家庭及社會造成沈重的經濟負擔,在逐漸高齡化的社會中,腦中風是不容忽視的疾病。
然而,造成腦中風的致病原因及腦部損傷的機轉十分的複雜,雖然投入大量的研究,但仍舊無法了解透徹。在中風患者中,缺血性中風佔多數,約80%。血栓溶解劑(t-PA)被用在缺血性中風後的治療,但是使用血栓溶解劑會受到黃金三小時的限制,當中風發生後經過的時間愈長,使用血栓溶解劑的效果就會隨之減小,甚至會導致出血的副作用增加,不利於神經功能的恢復。因此,研究新的治療方法用於缺血性中風,以改善其預後是十分重要且急迫的。 在臨床方面,我們以人類細胞激素檢測盤(human cytokine array)來測定使用血栓溶解劑前後中風病患血漿中細胞激素的改變。由此,我們發現MIF與RANTES在缺血性中風發生時,濃度明顯的上升,而在使用血栓溶解劑後24小時也顯著地降低其濃度,而其他的細胞激素則沒有如此的表現。因此,我們認為這兩個細胞激素應該與缺血性中風有緊密的關聯,之後,又以ELISA針對MIF和RANTES進行更多的檢體檢測,再次確認這兩個細胞激素在中風時的濃度變化。 此外我們也以大鼠的腦中風模式(tMCAO),在24小時後觀察兩種細胞激素對於中風後腦部受損體積的體積的影響,發現MIF會增加神經損傷,而RANTES則是有神經保護的作用,但這兩種激素在缺氧缺糖(oxygen glucose deprivation)的離體神經細胞實驗中卻沒有促使神經死亡之作用,因此推斷MIF和RANTES在中風病理並非是直接的對腦神經細胞產生毒性或是保護因子,而是有其他細胞參與其中。 接著,為了研究MIF和RANTES的機轉,我們使用大鼠的血腦障壁實驗(Evans blue assay)及離體的大鼠腦內皮細胞實驗中發現MIF會顯著的造成中風後血腦障壁的破壞,使得內皮細胞間的緊密連接(tight junctions)減少,因而導致中風後的損傷加重。反之,RANTES在中風後會降低血腦障壁的通透性,推測是RANTES產生保護效果的原因之一。 在現代醫療的進步下,中風後的死亡率在過去的十年中不斷降低,但社會朝向高齡化的方向發展,造成中風的人口不斷攀升,中風伴隨而來的神經功能受損變成了另一個嚴重且迫切需要解決的問題。目前,在中風後的治療上,雖然各大藥廠皆投入大量心血研發,但市場上仍然需要更有效之藥物。我們運用各種實驗釐清MIF和RANTES兩種細胞激素在腦中風時所扮演的角色,期盼我們的研究能提供一個未來藥物研發的方向。 | zh_TW |
| dc.description.abstract | Stroke is the third leading cause of death, after cancer and heart disease. WHO reported that about 15 million people have a stroke each year. The post-stroke disability leads to serious financial issues for patients, their families and the whole society.
About 80% of stroke belongs to ischemic stroke, which occurs by the obstruction in cerebral blood vessel and causes neuronal damage. The best and common treatment for ischemic stroke is intravenous injection of t-PA within 3 hours of stroke onset; however, the benefit of t-PA is time-dependent, there is no significant benefit after 4.5 hours of stroke onset. Therefore, developing the new strategy to treat stroke is important and urgent. Macrophage migration inhibitory factor (MIF) and Regulated on Activation, Normal T Cell Expressed and Secreted (RANTES) are well-known pro-inflammatory cytokines, but the roles in ischemic stroke remain controversial. Here we found that, the human plasma levels of MIF and RANTES are elevated after ischemia. In addition, the rodent model of ischemic stroke also showed the significant elevation of MIF and RANTES in serum. We thus examined the roles of these two cytokines in ischemic stroke. Male Wistar rats were used in this study. Rats were subjected to two common carotid arteries and right middle cerebral artery occlusion (tMCAO) for 50 min, and then treated with MIF, RANTES or ISO-1 (MIF antagonist) following occlusion/reperfusion. Twenty- hours later, infarct sizes were quantified with TTC stain and Modified Neurological Severity Score was used to investigate the motor function of rats. The experimental results show that exogenous administration of MIF promotes neuronal death and aggravates neurological deficit in experimental stroke. In contrast, treatment of RANTES can significantly improve the neurological score and reduce infarct volume. Blood-brain barrier (BBB), a highly selective permeability barrier, prevents harmful substances such as inflammatory molecules from entering the brain. However, stroke can disrupt the BBB and lead to the brain damage. To investigate the details in ischemic stroke, Evans blue assay was used to examine the BBB function after administration of MIF and RANTES in tMCAO models. It was found that, MIF aggravated BBB leakage in ischemic stroke models by decreasing the integrity of tight junctions. However, ISO-1 (MIF antagonist) could reduce the BBB leakage after stroke. On the other hand, RANTES may protect neurons in cerebral ischemia by reducing the BBB permeability. Our studies indicate that administration of MIF antagonist and RANTES during ischemic stroke exerts significant neuroprotection in rodent models by reducing the BBB leakage following ischemia/reperfusion. MIF and RANTES may be a good drug target for developing drugs for the treatment of ischemic stroke. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:34:42Z (GMT). No. of bitstreams: 1 ntu-105-R03443010-1.pdf: 3111336 bytes, checksum: 5d1a768776c4024cab02f132d6f31c7b (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Abbreviations VI
摘要 IX Abstract XI Chapter 1 Introduction 1 1-1. Stroke 1 1-2. Macrophage migration inhibitory factor (MIF) 10 1-3. Regulated on Activation, Normal T Cell Expressed and Secreted (RANTES) 17 1-4. Blood-Brain Barrier 21 Chapter 2 Materials and Methods 29 2-1. Blood biomarker study and measure for ischemic stroke patients 29 2-2. Animals 29 2-3. Animal model of ischemic stroke (Transient Middle Cerebral Artery Occlusion) 30 2-4. Infarct measurement in focal cerebral ischemia 31 2-5. Functional tests 31 2-6. The concentrations of blood MIF and RANTES in ischemic stroke animal model 32 2-7. Evaluation of blood-brain barrier permeability in ischemic stroke animal model 32 2-8. Brain tissue lysate preparation and western blotting 34 2-9. Primary cortex neuronal cultures 35 2-10. Cell culture of ARBEC 36 2-11. Oxygen-glucose deprivation of cell culture 36 2-12. MTT viability assay 37 2-13. Immunocytofluorescence 38 2-14. Frozen section of rat brain 38 2-15. Immunohistochemistry 39 2-16. Nissl staining 40 2-17. Statistical analysis 40 Chapter 3 Results 43 3-1. Plasma levels of MIF and RANTES are elevated following ischemic stroke in stroke patients 43 3-2. The upregulation of MIF and RANTES in tMCAO rats 44 3-3. Exogenous administration of MIF increases infarct volume in tMCAO rats 45 3-4. The MIF antagonist of ISO-1 antagonizes the detrimental role of MIF in tMCAO rats 47 3-5. RANTES exerts the neuroprotective effect in tMCAO rats 48 3-6. MIF and RANTES do not affect the cell viability in primary cortical neuron culture 49 3-7. MIF increases the BBB permeability following tMCAO 49 3-8. RANTES reduces the BBB permeability following ischemia/reperfusion 51 Chapter 4 Discussion 53 References 77 | |
| dc.language.iso | en | |
| dc.subject | 缺血性中風 | zh_TW |
| dc.subject | 缺血性中風 | zh_TW |
| dc.subject | 細胞激素 | zh_TW |
| dc.subject | 細胞激素 | zh_TW |
| dc.subject | 血腦障壁 | zh_TW |
| dc.subject | 血腦障壁 | zh_TW |
| dc.subject | Blood-brain barrier | en |
| dc.subject | Ischemic stroke | en |
| dc.subject | tMCAO | en |
| dc.subject | MIF | en |
| dc.subject | RANTES | en |
| dc.subject | Blood-brain barrier | en |
| dc.subject | Ischemic stroke | en |
| dc.subject | tMCAO | en |
| dc.subject | MIF | en |
| dc.subject | RANTES | en |
| dc.title | 探討Chemokines RANTES與MIF在中風的病理角色及治療策略-從臨床到基礎之研究 | zh_TW |
| dc.title | Studies of the pathological role of two chemokines RANTES and MIF in stroke and development of treatment strategy, from bedside to bench | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林琬琬,劉宏輝,鄭建興,林滿玉 | |
| dc.subject.keyword | 缺血性中風,細胞激素,血腦障壁, | zh_TW |
| dc.subject.keyword | Ischemic stroke,tMCAO,MIF,RANTES,Blood-brain barrier, | en |
| dc.relation.page | 86 | |
| dc.identifier.doi | 10.6342/NTU201601749 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-01 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 3.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
