請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50261
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 錢義隆(I-Lung Chien) | |
dc.contributor.author | Ka-Man Lo | en |
dc.contributor.author | 羅嘉敏 | zh_TW |
dc.date.accessioned | 2021-06-15T12:34:13Z | - |
dc.date.available | 2026-12-31 | |
dc.date.copyright | 2016-08-03 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-01 | |
dc.identifier.citation | [1] Tyreus, B. D., Distillation-Energy Conservation and Process Control, A 35 Year Perspective, AIChE Annual Meeting, Oct, 16-21, 2011, Minneapolis, MN, U.S.A
[2] Julka, V.; Chiplunkar, M.; O'Young, L, Selecting entrainers for azeotropic distillation, Chem. Eng. Prog., 2009, 105, 47. [3] Luyben, W. L.; Chien, I. L., Design and control of distillation systems for separating azeotropes, Wiley: Hoboken, New Jersey, 2010. [4] Beuther, H.; Kobylinski, T.P., The Chemistry of oxygenates suitable for use in gasoline, Am. Chem. Soc. Div. Pet. Chem., 1982, 27, 4. [5] Yadav, G. D.; Kirthivasan, N., Single-pot synthesis of methyl tert-butyl ether from tert-butyl alcohol and methanol: dodecatungstophosphoric acid supported on clay as an efficient catalyst,J. Chem. Soc. Chem. Commun.,1995, 2, 203-4. [6] Trent, D. L. Propylene oxide. In: Arza S, Mickey B, editors. Kirk-Othmer Encyclopedia of Chemical Technology, Wiley: 2001, p. 10. [7] Arifin, S.; Chien, I. L., Design and control of an isopropyl alcohol dehydration process via extractive distillation using dimethyl sulfoxide as an entrainer,Ind. Eng. Chem. Res.,2008, 47, 790-803. [8] You, X.; Rodriguez-Donis, I.; Gerbaud, V., Low pressure design for reducing energy cost of extractive distillation for separating diisopropyl ether and isopropyl alcohol, Chem. Eng. Res. Des.,2016, 109, 540-52. [9] Liu, W. Z.; Wong, D. S. H.; Wang, S. J.; Hsu, H. C., Effect of mass transfer on the design of an extractive distillation process for separating DMC and methanol,J. Taiwan. Inst. Chem. Eng.,2016, 60, 205-12. [10] Pla-Franco, J.; Lladosa, E.; Loras, S.; Montón, J. B., Thermodynamic analysis and process simulation of ethanol dehydration via heterogeneous azeotropic distillation,Ind. Eng. Chem. Res.,2014, 53, 6084-93. [11] Chien, I. L.; Zeng, K. L.; Chao, H. Y.; Liu, J. H., Design and control of acetic acid dehydration system via heterogeneous azeotropic distillation, Chem. Eng. Sci.,2004, 59, 4547-67. [12] Chien, I. L.; Zeng, K. L.; Chao, H. Y., Design and control of a complete heterogeneous azeotropic distillation column system,Ind. Eng. Chem. Res.,2004, 43, 2160-2174. [13] Sun, L. Y.; Chang, X. W.; Qi, C. X.; Li, Q. S., Implementation of ethanol dehydration using dividing-wall heterogeneous azeotropic distillation column,Separ. Sci. Technol.,2011, 46, 1365-1375. [14] Wu, Y. C.; Lee, H. Y.; Huang, H. P.; Chien, I. L., Energy-Saving Dividing-Wall Column Design and Control for Heterogeneous Azeotropic Distillation Systems,Ind. Eng. Chem. Res., 2014, 53, 1537-1552. [15] Yu, H.; Ye, Q.; Xu, H.; Zhang, H.; Dai, X., Design and control of dividing-wall column for tert-Butanol dehydration system via heterogeneous azeotropic distillation,Ind. Eng. Chem. Res.,2015, 54, 3384-97. [16] Berg, L.; Yang, Z., Separation of tertiary butyl alcohol from water by azeotropic or extractive distillation. U.S. Patent 5,084,142, 1992. [17] Gu, Y.; Jérôme, F., Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry,Chem. Soc. Rev.,2013, 42, 9550-70. [18] Yang, D.; Hou, M.; Ning, H.; Zhang, J.; Ma, J.; Yang, G.; Han, B., Efficient SO2 absorption by renewable choline chloride−glycerol deep eutectic solvents,Green. Chem.,2013, 15, 2261-5. [19] Gil, I. D.; Gómez, J. M.; Rodríguez, G., Control of an extractive distillation process to dehydrate ethanol using glycerol as entrainer,Comput. Chem. Eng.,2012, 39, 129-42. [20] Raeva, V. M.; Sazonova, A. Y., Separation of ternary mixtures by extractive distillation with 1,2-ethandiol and glycerol,Chem. Eng. Res. Des.,2015, 99,125-31. [21] 張亞利.二甲基乙醯胺的合成進展及應用.河北化工, 2006, 29, 41-42 . [22] Verbovy,D.M.; Smagala,T.G.; Brynda,M.A.; Fawcett,W.R., A FTIR study of ionsolvent interactions in N,N-dimethylacetamide, J. Mol. Liq.,2006, 129,13-17. [23] Dincer, N.E.; Erkey,C., Measurement and thermodynamic modeling of partition coefficients in N,N-dimethylacetamide-water-carbon dioxide system, J. Supercrit. Fluids,2010, 55, 690-695. [24] Zhan,J.R.; Song,Z.;An,G.C., The market analysis and research development of the synthesis technology for N, N-dimethylacetamide, Chem. Reag.,2008, 8, 577-850. [25] Xiao,J.P., Study for the synthesis routes and market prospect of N, N-dimethylacetamide, Friend Chem.,2006, 2, 28-29. [26] http://www.inclusive-science-engineering.com/dimethylacetamide-production-acetic-acid-dimethylamine/chemical-prrocess-flow-diagram-of-dimethylacetamide-production/#main (Written by Sam kk published on Jan. 9, 2013.) [27] Akell, R. B.; Kemp, H. S., U.S. Patent 3,687,820. 1972. [28] Luyben, W. L., Pressure-swing distillation for minimum-and maximum-boiling homogeneous azeotropes, Ind. Eng. Chem. Res., 2012, 51, 10881-10886. [29] Luyben, W. L.. Methanol/trimethoxysilane azeotrope separation using pressure-swing distillation, Ind. Eng. Chem. Res.,2014, 53, 5590-5597. [30] Lei, Z.; Dai, C.; Zhu, J.; Chen, B., Extractive distillation with ionic liquids: A review, AIChE Journal,2014, 60, 3312-3329. [31] Seiler, M.; Jork, C.; Kavarnou, A.; Arlt, W.; Hirsch, R., Separation of azeotropic mixtures using hyperbranched polymers or ionic liquids, AIChE Journal, 2004, 50, 2439-2454. [32] Jongmans, M. T.; Trampé, J.; Schuur, B.; de Haan, A. B., Solute recovery from ionic liquids: A conceptual design study for recovery of styrene monomer from [4-mebupy][BF4], Chem. Eng. Process.,2013, 70, 148-161. [33] Kulajanpeng, K.; Suriyapraphadilok, U.; Gani, R., Systematic screening methodology and energy efficient design of ionic liquid-based separation processes,J. Clean. Prod., 2016, 111, 93-107. [34] Dai, C.; Lei, Z.; Xi, X.; Zhu, J.; Chen, B., Extractive distillation with a mixture of organic solvent and ionic liquid as entrainer, Ind. Eng. Chem. Res., 2014, 53, 15786-15791. [35] Lin, R.; Cui, X.; Yu, X.; Zhang, Y.; Feng, T.; Li, X.; Jie, H., Isobaric vapor–liquid equilibrium of acetic acid+N, N-dimethylacetamide+ 1-butyl-3-methylimidazolium Bis [(trifluoromethyl) sulfonyl]-imide, Fluid Phase Equilib.,2016, 410, 1-8. [36] Hahn, H. D.; Dämbkes, G.; Rupprich, N.; Bahl, H.; Frey, G. D., Butanols. In: Giuseppe B, Matthias B, editors. Ullmann’s Encyclopedia of Industrial Chemistry, Wiley: New York,2013, p. 3 [37] Doherty, M. F.; Malone, M. F., Distillation, Azeotropic, and Extractive in Kirk-Othmer Encyclopedia of Chemical Technology, 5th ed., Vol. 8; Wiley: Hoboken, New Jersey, 2007. [38] Morrison, L. R., Glycerol. In: Arza S, Mickey B, editors. Kirk-Othmer Encyclopedia of Chemical Technology, Wiley: New York, 2001, p. 6. [39] Carli, A.; Di Cave, S.; Sebastiani, E., Thermodynamic characterization of vapor—liquid equilibria of mixtures acetic acid—dimethylacetamide and water—dimethylacetamide. Chemical Engineering Science, 1972, 27, 993-1001. [40] Gmehling, J.; Möllmann, C., Synthesis of distillation processes using thermodynamic models and the Dortmund data bank, Ind. Eng. Chem. Res., 1998, 37, 3112-3123. [41] Valderrama, J. O.; Forero, L. A.; Rojas, R. E., Extension of a Group Contribution Method To Estimate the Critical Properties of Ionic Liquids of High Molecular Mass,Ind. Eng. Chem. Res., 2015, 54, 3480-3487. [42] Heym, F.; Korth, W.; Thiessen, J.; Kern, C.; Jess, A., Evaporation and Decomposition Behavior of Pure and Supported Ionic Liquids under Thermal Stress, Chemie. Ingenieur.Technik.,2015,87, 791-802. [43] Ge, R.; Hardacre, C.; Jacquemin, J.; Nancarrow, P.; Rooney, D. W., Heat capacities of ionic liquids as a function of temperature at 0.1MPa. Measurement and prediction,J. Chem. Eng. Data., 2008, 53, 2148-2153. [44] Zaitsau, D. H.; Verevkin, S. P.; Emel‘yanenko, V. N.; Heintz, A., Vaporization enthalpies of imidazolium based ionic liquids: Dependence on alkyl chain length,Chem. Phys. Chem., 2011, 12, 3609-3613. [45] Luyben, W. L.,Principles and Case Studies of Simultaneous Design, Wiley: New York, 2011. [46] Doherty, M. F.; Malone, M. F., Distillation, Azeotropic, and Extractive in Kirk-Othmer Encyclopedia of Chemical Technology, 5th ed., Vol. 8; Wiley: Hoboken, New Jersey, 2007. [47] Seider, W. D.; Seider, J. D.; Daniel, R. L.; Soemantri, W.,Product and Process Design Principles Synthesis, Analysis and Evaluation, 3rd ed. Wiley:New York, 2009. [48] Douglas, J. M.,Conceptual Design of Chemical Processes. McGraw Hill: New York, 1998. [49] Chang, W. T.; Huang, C. T.; Cheng, S. H., Design and control of a complete azeotropic distillation system incorporating stripping columns for isopropyl alcohol dehydration,Ind. Eng. Chem. Res.,2012, 51, 2997-3006. [50] Heym, F.; Korth, W.; Thiessen, J.; Kern, C.; Jess, A., Evaporation and Decomposition Behavior of Pure and Supported Ionic Liquids under Thermal Stress, Chemie. Ingenieur.Technik., 2015, 87, 791-802. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50261 | - |
dc.description.abstract | 本文探討各類共沸混合物分離之節能設計流程。首先討論共沸物質三級丁醇(tert-butyl alcohol,TBA)和水之各種分離設計流程,包括非均勻相共沸蒸餾(heterogeneous azeotropic distillation)、共沸隔牆塔(azeotropic dividing-wall column)與萃取蒸餾 (extractivedistillation)系統,並透過熱整合的方式節能。若採用非均勻相共沸蒸餾系統,則非均勻共沸蒸餾塔塔頂需產生高流率的汽相出流,造成該塔再沸器之高能秏。若採用共沸隔牆塔系統,隔牆塔的下半部分可視為兩根氣堤塔,故與原來之非均勻相共沸蒸餾系統比較,預濃縮塔的冷凝器被移除,節省了原來冷凝其汽相流所需的能秏及冷凝器之設備成本 (capital cost)。最後發現以甘油 (glycerol)作為萃取劑 (entrainer) 之萃取蒸餾系統,並加上一進料/出流熱交換器(feed-effluent heat exchanger, FEHE) 進行熱整合之設計流程最具經濟效益。
本文亦針對二甲基乙醯胺 (n,n-dimethylacetamide, DMAC) 與醋酸 (acetic acid, HAC)共沸系統的各種分離方法,討論以變壓蒸餾 (pressure swing distillation)、萃取蒸餾系統之程序設計。其中萃取蒸餾系統,除了討論採用傳統有機溶劑三甘醇 (triethylene glyceol, TEG) 作為萃取劑的系統外,也會對分別以純離子液體 (ionic liquid) 1-butyl-3-methylimidazolium Bis [(trifluoromethyl) sulfonyl]-imide ([BMIM][TF2N]) 以及混合溶劑 ([BMIM][TF2N]和TEG) 作為萃取劑的系統進行探討。結果發現以純離子液體[BMIM][TF2N] 作為萃取劑之萃取蒸餾系統最為節能,其次則為以混合溶劑 ([BMIM][TF2N] 和TEG) 作為萃取劑之萃取蒸餾系統。 藉由討論上述之兩個共沸物之節能設計流程,能發現儘管對於特定的混合物系統可以用不只一種方式來完成分離,但若是能夠選擇使用最適合之分離方式則可以大幅節省蒸汽費用與年度總成本。 | zh_TW |
dc.description.abstract | In this thesis, energy-saving design for the separation of azeotropic mixtures will be discussed. For the separation of azeotropicmixture, tert-buyl alcohol (TBA) and water, there are several alternative designs, including heterogeneous azeotropic distillation, azeotropic dividing-wall column (A-DWC) and extractive distillation system, all are investigated in order to save the steam cost and the total annual cost (TAC). For the separation using heterogeneous azeotropic distillation, since large amount of the top vapor of the heterogeneous azeotropic column is requied to generate, more energy is needed for the reboiler.For the separation using A-DWC, the lower part of it can be treated as two stripping columns, compared to the original heterogeneous azeotropic distillation design, the condenser of the preconcentrator is removed and therefore energy carried by the top vapor is conserved, which resulting in lower capital cost and utility cost. Finally, extractive distillation system using glycerol as entrainer with a feed-effluent heat exchanger (FEHE) is considered to be the most economic design.
For the separation of the n,n-dimethylacetamide (DMAC) and acetic acid (HAC), the process design of the pressure-swing distillation and extractive distillation is proposed. In addition to use the conventional entrainer triethylene glycol (TEG), using pure ionic liquid 1-butyl-3-methylimidazolium Bis [(trifluoromethyl) sulfonyl]-imide ([BMIM][TF2N]) and mixed entrainer ([BMIM][TF2N] and TEG) is investigated too. The result showed that the most promising method is the extractive distillation system using pure ionic liquid [BMIM][TF2N] as entrainer, and then is the extractive distillation system using the mixed entrainer ([BMIM][TF2N]:TEG=0.6:0.4). In summary, for a particular azeotropic mixture, there are more than one ways to achieve the separation task. However, significant savings on the steam cost and TAC can be achieved if the most suitable separation method can be selected. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T12:34:13Z (GMT). No. of bitstreams: 1 ntu-105-R03524094-1.pdf: 2048742 bytes, checksum: 597c5bbb0bae3d085cc82bd0b738f4b7 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 目錄
誌謝 I 摘要 II ABSTRACT III 目錄 V 圖目錄 VII 表目錄 X 1. 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 三級丁醇去水系統 3 1.2.2 二甲基乙醯胺與醋酸分離系統 9 1.3 研究動機 13 1.4 論文組織架構 13 2. 熱力學模式 14 2.1 引言 14 2.2 三級丁醇去水系統 15 2.3 二甲基乙醯胺與醋酸分離系統 22 3. 三級丁醇去水系統 36 3.1 引言 36 3.2 萃取蒸餾系統 37 3.2.1 雙塔萃取蒸餾系統 37 3.3 結果與比較 52 4. 二甲基乙醯胺與醋酸分離系統 53 4.1 引言 53 4.2 變壓蒸餾系統 54 4.3 萃取蒸餾系統 59 4.3.1 純離子液體 [BMIM][TF2N] 作為萃取劑之萃取蒸餾系統 59 4.3.2 不同質量比例 [BMIM][TF2N]/TEG作為萃取劑之萃取蒸餾系統 66 4.4 結果與比較 76 5. 結論及未來工作 77 參考文獻 79 附錄分項年度總成本計算公式 83 | |
dc.language.iso | zh-TW | |
dc.title | 兩類共沸混合物分離之節能設計 | zh_TW |
dc.title | Energy-saving Design for the Separation of Two Azeotropic Mixtures | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 汪上曉(Shan-Hill Wong),鄭西顯(Shi-Shang Jang),陳誠亮(Cheng-Liang Chen),吳哲夫(Jeffrey D. Ward) | |
dc.subject.keyword | 共沸,非勻相共沸蒸餾,隔牆塔,萃取蒸餾,變壓蒸餾,程序設計, | zh_TW |
dc.subject.keyword | azeotropes,heterogeneous azeotropic distillation,dividing-wall column,extractive distillation,pressure swing distillation,process design, | en |
dc.relation.page | 85 | |
dc.identifier.doi | 10.6342/NTU201601743 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-02 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。