請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50236完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 姚宗珍 | |
| dc.contributor.author | Wei-Chung Chen | en |
| dc.contributor.author | 陳威仲 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:33:27Z | - |
| dc.date.available | 2019-08-26 | |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-02 | |
| dc.identifier.citation | 1. Torri S, Weber JoBB. Influence of Low-Level Laser Therapy on the Rate of Orthodontic Movement: A Literature Review. Photomedicine and Laser Surgery. 2013;31(Number 9).
2. Hashimoto F, Kobayashi Y, Mataki S, Kobayashi K, Kato Y, Sakai H. Administration of osteocalcin accelerates orthodontic tooth movement induced by a closed coil spring in rats. Eur J Orthod. 2001;23:535-45. 3. Seifi M, Eslami B, Saffar AS. The effect of prostaglandin E2 and calcium gluconate on orthodontic tooth movement and root resorption in rats. Eur J Orthod. 2003;25:199-204. 4. Murphy KG, Wilcko MT, Wilcko WM, Ferguson DJ. Periodontal Accelerated Osteogenic Orthodontics: A Description of the Surgical Technique. J Oral Maxillofac Surg. 2009;67:2160-6. 5. Hoogeveen EJ, Jansma J, Ren Y. Surgically facilitated orthodontic treatment: a systematic review. Am J Orthod Dentofacial Orthop. 2014;145(4 Suppl):S51-64. 6. Padilla Fdr, Puts R, Vico L, Raum K. Stimulation of bone repair with ultrasound: A review of the possible mechanic effects. Ultrasonics. 2014;54:1125–45. 7. Marie SS, Powers M, Sheridan HJ. Vibratory Stimulation as a Method of Reducing Pain after Orthodontic Appliance Adjustment. Journal of Clinical Orthodontics. 2003;37:205-8. 8. Nishimura M, Chiba M, Ohashi T, Sato M, Shimizu Y, Igarashi K, et al. Periodontal tissue activation by vibration: Intermittent stimulation by resonance vibration accelerates experimental tooth movement in rats. Am J Orthod Dentofacial Orthop. 2008;133(572-583). 9. Carvalho-Lobato P, Garcia VJ, Kasem K, Ustrell-Torrent JM, ́n-Walton VrT, ́spedes MCM-C. Tooth Movement in Orthodontic Treatment with Low-Level Laser Therapy: A Systematic Review of Human and Animal Studies. Photomedicine and Laser Surgery. 2014;Volume 32, Number 5, 2014:302–9. 10. Oliver RG, Knapman YM. Attitudes to orthodontic treatment. British Journal of Orthodontics. 1985;12(4):179-88. 11. Kluemper GT, Hiser DG, Rayens MK, Jay MJ. Efficacy of a wax containing benzocaine in the relief of oral mucosal pain caused by orthodontic appliances. American Journal of Orthodontics and Dentofacial Orthopedics. 2002;122(4):359-65. 12. Krishnan V. Orthodontic pain: from causes to management—a review. European Journal of Orthodontics. 2007;29(170–179). 13. Walker JB, Buring SM. NSAID Impairment of Orthodontic Tooth Movement. Ann Pharmacother. 2001;35:113-5. 14. Alansari S, Sangsuwon C, Vongthongleur T, Kwal R, Teo Mc, Lee YB, et al. Biological principles behind accelerated tooth movement. Seminars in Orthodontics. 2015;21(3):151-61. 15. Taddei SR, Andrade I, Jr., Queiroz-Junior CM, Garlet TP, Garlet GP, Cunha Fde Q, et al. Role of CCR2 in orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 2012;141(2):153-60. 16. Taddei SR, Queiroz-Junior CM, Moura AP, Andrade I, Jr., Garlet GP, Proudfoot AE, et al. The effect of CCL3 and CCR1 in bone remodeling induced by mechanical loading during orthodontic tooth movement in mice. Bone. 2013;52(1):259-67. 17. Andrade IJ, Taddei SRA, Garlet GP, Garlet TP, Teixeira AL, Silva TA, et al. CCR5 down-regulates osteoclast function in orthodontic tooth movement. J Dent Res. 2009;88(11):1037-41. 18. Garlet TP, Coelho U, Silva JS, Garlet GP. Cytokine expression pattern in compression and tension sides of the periodontal ligament during orthodontic tooth movement in humans. Eur J Oral Sci. 2007;115:335-62. 19. Lundy FT, Linden GJ. Neuropeptides and neurogenic mechanisms in oral and periodontal inflammation. Crit Rev Oral Biol Med. 2004;15(2):82-98. 20. Fuller K, Kirstein B, Chambers TJ. Murine osteoclast formation and function: differential regulation by humoral agents. Endocrinology. 2006;147(4):1979-85. 21. Jimi E, Ikebe T, Takahashi N, Hirata M, Suda T, Koga T. Interleukin-1alpha Activates an NF- kappa B-like Factor in Osteoclast-like Cells. The Journal of Biological Chemistry. 1996;271(9):4605-8. 22. O’Brien CA, Gubrij I, Lin S-C, Saylors RL, Manolagas SC. STAT3 Activation in Stromal/Osteoblastic Cells Is Required for Induction of the Receptor Activator of NF- kappa B Ligand and Stimulation of Osteoclastogenesis by gp130-utilizing Cytokines or Interleukin-1 but Not 1,25-Dihydroxyvitamin D3 or Parathyroid Hormone. THE JOURNAL OF BIOLOGICAL CHEMISTRY. 1999;274(27):19301-8. 23. Suzawa T, Miyaura C, Inada M, Maruyama T, Sugimoto Y, Ushikubi F, et al. The Role of Prostaglandin E Receptor Subtypes (EP1, EP2, EP3, and EP4) in Bone Resorption: An Analysis Using Specific Agonists for the Respective EPs. Endocrinology. 2000;141(4):1554-9. 24. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S-I, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin osteoclastogenesis-inhibitory factor and is identical to TRANCE RANKL. Proc Natl Acad Sci USA. 1998;95:3597-602. 25. Scheurer PA, Firestone AR, Burgin WB. Perception of pain as a result of orthodontic treatment with fixed appliances. European Journal of Orthodontics. 1996;18:349-57. 26. Ngan P, Kess B, Wilson S. Perception of discomfort by patients undergoing orthodontic treatment. Am J Orthod Dentofacial Orthop. 1989;96:47-53. 27. Wilson S, Ngan P, Kess B. Time course of the discomfort in young patienta undergoing orthodontic treatment. Pediatric Dentristry. 1989;11(2):107-10. 28. Burstone CJ. The biomechanics of tooth movement. In: Kraus B S, Riedel R A (eds). Vistas in orthodontics Lea & Febiger, Philadelphia. 1962:197-213. 29. Kato J, Wakisaka S, Kurisu K. Immunohistochemical changes in the distribution of nerve fibers in the periodontal ligament during an experimental tooth movement in rat molar. Acta Anatomica. 1996;157(53-62). 30. Vandevska-Radunovic V. Neural modulation of inflammatory reactions in dental tissues incident to orthodontic tooth movement— a review of the literature. European Journal of Orthodontics. 1999;21:231-47. 31. Proffit WR, Fields HW, Sarver DM. Contemporary Orthodontics, 5th Edition. 2013. 32. Reitan K. Tissue rearrangment during retentino of orthodontically rotated teeth. Angle Orthod. 1959. 33. Graber L, Vanarsdall R, Vig K. Orthodontics: Current Principles and Techniques, 5th Edition. 2011. 34. Kim SJ, Chou MY, Park YG. Effect of low-level laser on the rate of tooth movement. Seminars in Orthodontics. 2015;21(3):210-8. 35. 35. Mester E, Szende B, Gartner P. The effect of laser beams on the growth of hair in mice. Radiobiol Radiother (Berl). 1968;9:621-6. 36. Mester E, Spiry T, Szende B, Tota JG. Effect of laser rays on wound healing. The American Journal of Surgery. 1971;122. 37. Mester E, Nagylucskay S, Doklen A, Tisza S. Laser stimulation of wound healing. Acta Chir Acad Sci Hung. 1976;17:49-55. 38. Mester E, Mester AF, Mester A. The Biomedical Effects of Laser Application. Lasers in Surgery and Medicine. 1985;5:31-9. 39. Bjordal JM, Johnson MI, Lopes-Martins RA, Bogen Br, Chow R, Ljunggren AE. Short-term efficacy of physical interventions in osteoarthritic knee pain. A systematic review and meta-analysis of randomised placebo-controlled trials. BMC Musculoskelet Disord. 2007;8:51. 40. Ozcelik O, Haytac MC, Kunin A, Seydaoglu G. Improved wound healing by low-level laser irradiation after gingivectomy operations: a controlled clinical pilot study. Jornal of Clinical Periodontiligy. 2008;35:250-4. 41. Basford JR, Shefield CG, Harmsen WS. Laser Therapy: A Randomized, Controlled Trial of the Effects of Low-Intensity Nd:YAG Laser Irradiation on Musculoskeletal Back Pain. Arch Phy Med Rehabil. 1999;80:647-52. 42. Chow RT, Heller GZ, Barnsley L. The effect of 300 mW, 830 nm laser on chronic neck pain: A double-blind, randomized, placebo-controlled study. IASP. 2006;124:201-10. 43. Junior ECPL, Lopes-Martins RAlBo, Baroni BM, Marchi TD, Taufer D, Manfro DbS, et al. Effect of 830 nm low-level laser therapy applied before high-intensity exercises on skeletal muscle recovery in athletes. Lasers Med Sci. 2009;24(6):857-63. 44. Rochkind S, Drory V, Alon M, Nissan M, Ouaknine GE. Laser Phototherapy (780 nm), a New Modality in Treatment of Long-Term Incomplete Peripheral Nerve Injury: A Randomized Double-Blind Placebo-Controlled Study. Photomedicine and Laser Surgery. 2007;25:436-42. 45. Lampl Y, Zivin JA, Fisher M, Lew R, Welin L, Dahlof B, et al. Infrared laser therapy for ischemic stroke: a new treatment strategy: results of the NeuroThera Effectiveness and Safety Trial-1 (NEST-1). Stroke. 2007;38(6):1843-9. 46. Brown GC. Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochimica et Biophysica Acta. 2001;1504:46-57. 47. Lane N. Power games. Nature. 2006;443. 48. Barushka O, Yaakobi T, Oron U. Effect of Low-Energy Laser (He-Ne) Irradiation on the Process of Bone Repair in the Rat Tibia. Bone. 1995;16:47-55. 49. Ozawa Y, Shimizu N, Kariya G, Abiko Y. Low-Energy Laser Irradiation Stimulates Bone Nodule Formation at Early Stages of Cell Culture in Rat Calvarial Cell. Bone. 1998;22:347-54. 50. Stein A, Benayahu D, Maltz L, Oron U. Low-Level Laser Irradiation Promotes Proliferation and Differentiation of Human Osteoblasts in Vitro. Photomedicine and Laser Surgery. 2005;23:161–6. 51. Aihara N, Yamaguchi M, Kasai K. Low-energy irradiation stimulates formation of osteoclast-like cells via RANK expression in vitro. Lasers Med Sci. 2006;21(1):24-33. 52. Bouvet-Gerbettaz Sb, Merigo E, Rocca J-P, Carle GF, Rochet N. Effects of low-level laser therapy on proliferation and differentiation of murine bone marrow cells into osteoblasts and osteoclasts. Lasers Surg Med. 2009;41(4):291-7. 53. Kawasaki K, Shimizu N. Effects of Low-Energy Laser Irradiation on Bone Remodeling During Experimental Tooth Movement in Rats. Lasers in Surgery and Medicine. 2000;26(3):282-91. 54. Fujita S, Yamaguchi M, Utsunomiya T, Yamamoto H, Kasai K. Low-energy laser stimulates tooth movement velocity via expression of RANK and RANKL. Orthod Craniofac Res. 2008;11:143-55. 55. Yoshida T, Kato MYTUM, Arai Y, Kaneda T, Kasai HYK. Low-energy laser irradiation accelerates the velocity of tooth movement via stimulation of the alveolar bone remodeling. Orthod Craniofac Res. 2009;12:289-98. 56. Marquezan M, Bolognese AM, ́jo MTdSA. Effects of two low-intensity laser therapy protocols on experimental tooth movement. Photomed Laser Surg. 2010;28(6):757-62. 57. Altan BA, Sokucu O, Ozkut MM, Inan S. Metrical and histological investigation of the effects of low-level laser therapy on orthodontic tooth movement. Lasers Med Sci. 2012;27(1):131-40. 58. Gama SKC, Habib FAL, Monteiro JSdC, ́ GMP, ́jo TMA, ́ MCTC, et al. Tooth Movement After Infrared Laser Phototherapy: Clinical Study in Rodents. Photomedicine and Laser Surgery. 2010;28(2):S79–S83. 59. Kim S-J, Moon S-U, Kang S-G, Park Y-G. Effects of low-level laser therapy after Corticision on tooth movement and paradental remodeling. Lasers Surg Med. 2009;41(7):524-33. 60. Tsai M-H, Shih H-Y, Hsiao H-Y, Yao C-CJ. Literature Review: Low Level Laser Therapy In Orthodontics. J Taiwan Assoc Ortho. 2013;25(3):141-9. 61. Goulart CS, Nouer PRA, Martins LM, Garbin IU, Lizarelli RdFZ. Photoradiation and Orthodontic Movement: Experimental Study with Canines. Photomedicine and Laser Surgery. 2006;24(2):192–6. 62. Seifi M, Shafeei HA, Daneshdoost S, Mir M. Effects of two types of low-level laser wave lengths (850 and 630 nm) on the orthodontic tooth movements in rabbits. Lasers Med Sci. 2007;22(4):261-4. 63. Cruz DR, Kohara EK, Ribeiro MS, Wetter NU. Effects of Low-Intensity Laser Therapy on the Orthodontic Movement Velocity of Human Teeth: A Preliminary Study. Lasers in Surgery and Medicine. 2004;35:117-20. 64. Limpanichkul W, Godfrey K, Srisuk N, Rattanayatikul C. Effects of low-level laser therapy on the rate of orthodontic tooth movement. Orthod Craniofacial Res 9. 2006;2006; 38–43:38-43. 65. Youssef M, Ashkar S, Hamade E, Gutknecht N, Lampert F, Mir M. The effect of low-level laser therapy during orthodontic movement: a preliminary study. Lasers Med Sci. 2008;23:27–33. 66. Camacho ADn, Cujar SAV. Acceleration Effect of Orthodontic Movement by Application of Low- intensity Laser. J Oral Laser Applications. 2010;10:99-105. 67. Sousa MVdS, Scanavini MA, Sannomiya EK, Velasco LG, Angelieri F. Influence of low-level laser on the speed of orthodontic movement. Photomed Laser Surg. 2011;29(3):191-6. 68. Doshi-Mehta G, Bhad-Patil WA. Efficacy of low-intensity laser therapy in reducing treatment time and orthodontic pain: A clinical investigation. Am J Orthod Dentofacial Orthop. 2012;141:289-97. 69. Genc G, Kocadereli Il, Tasar F, Kilinc K, El S, Sarkarati B. Effect of low-level laser therapy (LLLT) on orthodontic tooth movement. Lasers Med Sci. 2013;28(1):41-7. 70. Kansal A, Kittur N, Kumbhojkar V, Keluskar KM, Dahiya P. Effects of low-intensity laser therapy on the rate of orthodontic tooth movement: A clinical trial. Dental Research Journal. 2014;11(4):481-8. 71. Sousa MV, Scanavini MA, Sannomiya EK, Velasco LG, Angelieri F. Influence of low-level laser on the speed of orthodontic movement. Photomed Laser Surg. 2011;29(3):191-6. 72. Lim H-M, Lew KKK, Tay DKL. A clinical investigation of the efficacy of low level laser therapy in reducing orthodontic postadjustment pain. Am J Orthod Dentofacial Orthop. 1995;108:614-22. 73. Turhani D, Scheriau M, Kapral D, Benesch T, Jonke E, Bantleond HP. Pain relief by single low-level laser irradiation in orthodontic patients undergoing fixed appliance therapy. Am J Orthod Dentofacial Orthop. 2006;130(3):371-7. 74. Fujiyama K, Deguchi T, Murakami T, Fujii A, Kushima K, Takano-Yamamoto T. Clinical effect of CO(2) laser in reducing pain in orthodontics. Angle Orthod. 2008;78(2):299-303. 75. Tortamano A, Lenzi DC, Haddad ACSS, Bottino MC, Dominguez GC, Vigoritof JW. Low-level laser therapy for pain caused by placement of the first orthodontic archwire: A randomized clinical trial. Am J Orthod Dentofacial Orthop. 2009;136:662-7. 76. Camacho AD, Velasquez SA. Effect of Low-Level Laser Therapy on Pain Following Activation of Orthodontic Final Archwires: A Randomized Controlled Clinical Trial. Photomedicine and Laser Surgery. 2013;31(1):36–40. 77. Kim WT, Bayome M, Park JB, Park JH, Baek SH, Kook YA. Effect of frequent laser irradiation on orthodontic pain. A single-blind randomized clinical trial. Angle Orthod. 2013;83(4):611-6. 78. Qamruddin I, Alam MK, Fida M, Khan AG. Effect of a single dose of low-level laser therapy on spontaneous and chewing pain caused by elastomeric separators. Am J Orthod Dentofacial Orthop. 2016;149(1):62-6. 79. Farias RD, Closs LQ, Jr SAQM. Evaluation of the use of low-level laser therapy in pain control in orthodontic patients: A randomized split-mouth clinical trial. Angle Orthod. 2016;86(2):193-8. 80. Dominguez A, Velasquez SA. Effect of Low-Level Laser Therapy on Pain Following Activation of Orthodontic Final Archwires: A Randomized Controlled Clinical Trial. Photomedicine and Laser Surgery. 2013;31(1):36–40. 81. Ge MK, He WL, Chen J, Wen C, Yin X, Hu ZA, et al. Efficacy of low-level laser therapy for accelerating tooth movement during orthodontic treatment: a systematic review and meta-analysis. Lasers Med Sci. 2015;30(5):1609-18. 82. Long H, Zhou Y, Xue J, Liao L, Ye N, Jian F, et al. The effectiveness of low-level laser therapy in accelerating orthodontic tooth movement: a meta-analysis. Lasers Med Sci. 2015;30(3):1161-70. 83. Almeida VLd, Gois VLdA, Andrade RNM, Cesar CPcHAR, Albuquerque-Junior RLCd, Rode SdM, et al. Efficiency of low-level laser therapy within induced dental movement: A systematic review and meta-analysis. J Photochem Photobiol B. 2016;158:258-66. 84. Bashkatov A, Genina E, Kochubey V, Tuchin V. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. Journal of Physics D: Applied Physics. 2005;38:2543-56. 85. Esnouf A, Wright PA, Moore JC, Ahmed S. Depth of penetration of an 850nm wavelength low level laser in human skin. Acupuncture & electro-therapeutics research. 2007;32:81-6. 86. Tsai M-H, Yao C-C. Influence of low level laser on orthodontic tooth movement and relapse rate in rats. Graduate Institute of Clinical Dentistry School of Dentistry National Taiwan University Master Thesis. 2013. 87. Lee W, Keng AYB, Ann MOM, Krishnaswamy G, Lim L. Facial gingival profiles around teeth in asians. Clinical Oral Implants Research. 2014;25:144-5. 88. Ksv R, P S, V K, R M, Alla RK, D M. Assessment of thickness of palatal masticatory mucosa and maximum graft dimensions at palatal vault associated with age and gender - a clinical study. J Clin Diagn Res. 2014;8(5):ZC09-13. 89. Huang Y-Y, Chen ACH, Carroll JD, Hamblin MR. Biphasic dose response in low level light therapy. Dose Response. 2009;7(4):358-83. 90. Jones M, Chan C. The pain and discomfort experienced during orthodontic treatment/ A randomixed controlled clinical trial of two initial aligning arch wires. Am J Orthod Dentofacial Orthop. 1992;102:383-81. 91. Firestone AR, Scheurer PA, Burgin WB. Patients' anticipation of pain and pain-related side effects, and their perception of pain as a result of orthodontic treatment with fixed appliances. European Journal of Orthodontics. 1999;21:387-96. 92. Bergius M, Kiliaridis S, Berggren U. Pain in orthodontics. Journal of Orofacial Orthopedics. 2000;61:125-37. 93. Erdinc AME, Dincer B. Perception of pain during orthodontic treatment with fixed appliances. European Journal of Orthodontics. 2004;26(1):79-85. 94. Sandhua SS, Leckieb G. Orthodontic pain trajectories in adolescents: Between-subject and within-subject variability in pain perception. Am J Orthod Dentofacial Orthop. 2016;149(4):491-500 e4. 95. Brown DF, Moerenhout RG. The pain experience and psychological adjustment to orthodontic treatment of preadolescents, adolescents, and adults. Am J Orthod Dentofacial Orthop. 1991;100:349-56. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50236 | - |
| dc.description.abstract | 本實驗使用波長970 nm低能量雷射分別對於(1)牙齒移動速率、(2)疼痛控制及(3)矯正後牙齒固位做臨床上的研究。在加速牙齒移動速率實驗中目前收入的病患為7位,病患納入條件為對稱拔除上腭第一小臼齒,在拉動犬齒後退時期,除了原定期每月例行回診外,能每週固定一次回診,以低能量雷射照射。雷射輸出為脈衝模式,模式一平均輸出功率為100 mW,單點照射能量密度為0.5 W/cm2(4 J/cm2),單顆牙齒接受總能量為8 J。模式二平均輸出功率為125 mW,單點照射能量密度為0.64 W/cm2(5.12 J/cm2),單顆牙齒接受總能量為為10 J。最終結果在統計學上有無照射對於牙齒移動並無顯著差別。
在疼痛控制方面,目前納入統計病患為34位,男性19位,平均年齡為25.42 yr ± 4.58 mon;女性15位,平均年齡為25.33 yr ± 5.20 mon。病患在換完矯正主線後採split mouth方法照射雷射,並回家填寫VAS問卷。使用的雷射設定為脈衝模式,模式一平均輸出功率為100 mW,單點照射能量密度為0.5 W/cm2(4 J/cm2),單顆牙齒接受總能量為6.4 J。模式二平均輸出功率為125 mW,單點照射能量密度為0.64 W/cm2(5.12 J/cm2),單顆牙齒接受總能量為8 J。最終結果發現在換完線後的第6小時、第12小時、第24小時男性的VAS數值顯著較女性大;而放置軟線後的第0天、第1天、第3天、第5天、第14天的疼痛指數也較硬線來得高;在換完線後有無照射雷射目前結果顯示對於病患疼痛指數則是沒有顯著影響。 在固位穩定度方面,目前納入實驗病人數為6人。病患納入條件為在未接受矯正治療前下顎雙側齒列擁擠或旋轉程度幾乎對稱。使用的雷射設定為脈衝模式,模式一平均輸出功率為100 mW,單點照射能量密度為0.5 W/cm2(4 J/cm2),單顆牙齒接受總能量為6.4 J。模式二平均輸出功率為125 mW,單點照射能量密度為0.64 W/cm2(5.12 J/cm2),單顆牙齒接受總能量為8 J。照射方式為split mouth,就目前結果發現有無照射雷射對於牙齒拆除矯正器後的維持度是沒有顯著影響的。 | zh_TW |
| dc.description.abstract | In this clinical orthodontic study, we evaluate the benefits of 970 nm low level laser using a split mouth design on patients with permanent dentition for its effects on the 1) rate of tooth movement, 2) pain control, and 3) tooth stability after debonding. Numbers of patients recruited in tooth movement study were seven. Inclusion criteria was maxilla bilateral first bicuspid extraction, and patients needed to come back once a week for laser irradiation. The settings of low level laser were pulse wave ; average output power in mode 1 was 100 mW; energy density per irradiated point was 0.5 W/cm2 (4 J/cm2); total energy each tooth received was 8 J. The average output power in mode 2 was 125 mW; energy density per irradiated point was 0.64 W/cm2 (5.12 J/cm2); total energy each tooth received was 10 J. The final results revealed that there was no significant difference in tooth movement rate between laser group and placebo group.
In pain control study, of 34 participants included in the data analysis, 19 were male, mean age was 25.42 yr ± 4.58 mon; as for female, the total number was 15, mean age was 25.33 yr ± 5.20 mon. We used split mouth method to divide single arch into exposure side and placebo side. Low level laser was applied on exposure side at the timing of main wire changed, and patient needed to fill the VAS questionnaire after the irradiation. The settings of low level laser were pulse wave ; average output power in mode 1 was 100 mW; energy density per irradiated point was 0.5 W/cm2 (4 J/cm2); total energy each tooth received was 6.4 J. The average output power in mode 2 was 125 mW; energy density per irradiated point was 0.64 W/cm2 (5.12 J/cm2); total energy each tooth received was 8 J. The final results reveled that the VAS scores in male were larger than in female at the time points 6 hr, 12 hr, 24 hr after changing main wire. The VAS scores was higher in soft wire group than in hard wire group at the moment of changing wire, 1st day, 3rd day, 5th day and 14th day; however there was no significant difference in exposure group and placebo group. As for retention study, the laser settings were the same as pain control study. Patients recruited in this part of study should have almost symmetry crowding dentition in mandible before orthodontic treatment. In current results, there was no significant difference between exposure group and placebo group in retention after debonding. The definite protocols of lower level laser to achieve different orthodontic effects await more efforts in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:33:27Z (GMT). No. of bitstreams: 1 ntu-105-R02422009-1.pdf: 10955113 bytes, checksum: 9017fd8aae816137550a79a973a5e475 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES viii LIST OF TABLES ix Chapter 1 Introduction 1 1.1 矯正力與牙齒移動的關係 2 1.2 矯正力與疼痛感的關係 4 1.3 矯正力與復發的關係 5 1.4 雷射的原理 6 1.5 雷射的種類 7 1.6 雷射的參數 7 1.7 雷射能量計算 8 1.8 低能量雷射 8 1.9 低能量雷射對骨代謝相關細胞之作用 9 1.10 低能量雷射於牙齒移動之動物實驗文獻回顧 10 1.11 低能量雷射於牙齒移動之人體實驗文獻回顧 12 1.12 低能量雷射於矯正疼痛控制之人體實驗文獻回顧 14 1.13 結語 16 Chapter 2 Material and Method 17 2.1 加速矯正牙齒移動 17 2.1.1 病患納入條件: 17 2.1.2 病患排除條件: 17 2.1.3 雷射照射參數設定: 17 2.1.4 實驗方法: 17 2.2 疼痛控制 18 2.2.1 病患納入條件: 18 2.2.2 病患排除條件: 18 2.2.3 雷射照射參數設定: 19 2.2.4 實驗方法: 19 2.3 固位穩定度比較 20 2.3.1 病患納入條件: 20 2.3.2 病患排除條件: 20 2.3.3 雷射照射參數設定: 20 2.3.4 實驗方法: 20 2.4 Intraclass Correlation Coefficient 21 Chapter 3 Results 22 3.1 加速矯正牙齒移動 22 3.2 疼痛控制 22 3.3 固位穩定度比較 24 Chapter 4 Discussion 25 4.1 加速牙齒移動 25 4.2 疼痛控制實驗 28 4.3 固位穩定度比較 29 Chapter 5 結論 31 感想 32 REFERENCES 33 FIGURES 43 TABLES 48 附錄1. 加速牙齒移動實驗各別結果 61 附錄2. 固位穩定度比較各別實驗結果 65 附錄3. 低能量雷射對矯正牙齒速率影響文獻回顧整理 68 附錄4. 低能量雷射對矯正疼痛控制影響文獻回顧整理 70 | |
| dc.language.iso | zh-TW | |
| dc.subject | 低能量雷射 | zh_TW |
| dc.subject | 復發 | zh_TW |
| dc.subject | 疼痛控制 | zh_TW |
| dc.subject | 矯正牙齒移動速率 | zh_TW |
| dc.subject | 低能量雷射 | zh_TW |
| dc.subject | 復發 | zh_TW |
| dc.subject | 疼痛控制 | zh_TW |
| dc.subject | 矯正牙齒移動速率 | zh_TW |
| dc.subject | low level laser | en |
| dc.subject | stability | en |
| dc.subject | pain control | en |
| dc.subject | stability | en |
| dc.subject | pain control | en |
| dc.subject | tooth movement | en |
| dc.subject | low level laser | en |
| dc.subject | tooth movement | en |
| dc.title | 使用低能量雷射治療的矯正臨床研究 | zh_TW |
| dc.title | Clinical Trial of Low Level Laser Therapy on Orthodontics | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳羿貞,杜裕康 | |
| dc.subject.keyword | 低能量雷射,矯正牙齒移動速率,疼痛控制,復發, | zh_TW |
| dc.subject.keyword | low level laser,tooth movement,pain control,stability, | en |
| dc.relation.page | 71 | |
| dc.identifier.doi | 10.6342/NTU201601795 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-02 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 10.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
