Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50233
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉旻禕(Helene Minyi Liu)
dc.contributor.authorJhih-Pu Linen
dc.contributor.author林志璞zh_TW
dc.date.accessioned2021-06-15T12:33:21Z-
dc.date.available2021-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-02
dc.identifier.citation1. Leszczyniecka, M., et al., Differentiation therapy of human cancer: basic science and clinical applications. Pharmacol Ther, 2001. 90(2-3): p. 105-56.
2. Roux, A.F., et al., Identification of a gene from Xp21 with similarity to the tctex-1 gene of the murine t complex. Hum Mol Genet, 1994. 3(2): p. 257-63.
3. DeYoung, K.L., et al., Cloning a novel member of the human interferon-inducible gene family associated with control of tumorigenicity in a model of human melanoma. Oncogene, 1997. 15(4): p. 453-7.
4. Lin, J.J., H. Jiang, and P.B. Fisher, Melanoma differentiation associated gene-9, mda-9, is a human gamma interferon responsive gene. Gene, 1998. 207(2): p. 105-10.
5. Huang, F., et al., Identification and temporal expression pattern of genes modulated during irreversible growth arrest and terminal differentiation in human melanoma cells. Oncogene, 1999. 18(23): p. 3546-52.
6. Kang, D.C., et al., mda-5: An interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proc Natl Acad Sci U S A, 2002. 99(2): p. 637-42.
7. Cocude, C., et al., A novel cellular RNA helicase, RH116, differentially regulates cell growth, programmed cell death and human immunodeficiency virus type 1 replication. J Gen Virol, 2003. 84(Pt 12): p. 3215-25.
8. Kovacsovics, M., et al., Overexpression of Helicard, a CARD-containing helicase cleaved during apoptosis, accelerates DNA degradation. Curr Biol, 2002. 12(10): p. 838-43.
9. Feng, Q., et al., MDA5 detects the double-stranded RNA replicative form in picornavirus-infected cells. Cell Rep, 2012. 2(5): p. 1187-96.
10. Zust, R., et al., Ribose 2'-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol, 2011. 12(2): p. 137-43.
11. Roth-Cross, J.K., S.J. Bender, and S.R. Weiss, Murine coronavirus mouse hepatitis virus is recognized by MDA5 and induces type I interferon in brain macrophages/microglia. J Virol, 2008. 82(20): p. 9829-38.
12. Gitlin, L., et al., Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc Natl Acad Sci U S A, 2006. 103(22): p. 8459-64.
13. Rodriguez, K.R. and C.M. Horvath, Paramyxovirus V protein interaction with the antiviral sensor LGP2 disrupts MDA5 signaling enhancement but is not relevant to LGP2-mediated RLR signaling inhibition. J Virol, 2014. 88(14): p. 8180-8.
14. Zeng, W., et al., Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell, 2010. 141(2): p. 315-30.
15. Berke, I.C. and Y. Modis, MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA. Embo j, 2012. 31(7): p. 1714-26.
16. Hou, F., et al., MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell, 2011. 146(3): p. 448-61.
17. Yoneyama, M., et al., Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol, 2005. 175(5): p. 2851-8.
18. Saito, T., et al., Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc Natl Acad Sci U S A, 2007. 104(2): p. 582-7.
19. Bruns, A.M., et al., ATP hydrolysis enhances RNA recognition and antiviral signal transduction by the innate immune sensor, laboratory of genetics and physiology 2 (LGP2). J Biol Chem, 2013. 288(2): p. 938-46.
20. Takahasi, K., et al., Solution structures of cytosolic RNA sensor MDA5 and LGP2 C-terminal domains: identification of the RNA recognition loop in RIG-I-like receptors. J Biol Chem, 2009. 284(26): p. 17465-74.
21. Satoh, T., et al., LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc Natl Acad Sci U S A, 2010. 107(4): p. 1512-7.
22. Bruns, A.M., et al., The innate immune sensor LGP2 activates antiviral signaling by regulating MDA5-RNA interaction and filament assembly. Mol Cell, 2014. 55(5): p. 771-81.
23. Komuro, A. and C.M. Horvath, RNA- and virus-independent inhibition of antiviral signaling by RNA helicase LGP2. J Virol, 2006. 80(24): p. 12332-42.
24. Kato, H., et al., Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med, 2008. 205(7): p. 1601-10.
25. Hornung, V., et al., 5'-Triphosphate RNA is the ligand for RIG-I. Science, 2006. 314(5801): p. 994-7.
26. Kato, H., et al., Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature, 2006. 441(7089): p. 101-5.
27. Fredericksen, B.L., et al., Establishment and maintenance of the innate antiviral response to West Nile Virus involves both RIG-I and MDA5 signaling through IPS-1. J Virol, 2008. 82(2): p. 609-16.
28. Loo, Y.M., et al., Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol, 2008. 82(1): p. 335-45.
29. Yoneyama, M., et al., The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol, 2004. 5(7): p. 730-7.
30. Murali, A., et al., Structure and function of LGP2, a DEX(D/H) helicase that regulates the innate immunity response. J Biol Chem, 2008. 283(23): p. 15825-33.
31. Rehwinkel, J., et al., RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell, 2010. 140(3): p. 397-408.
32. Kawai, T., et al., IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol, 2005. 6(10): p. 981-8.
33. Liu, X.Y., et al., Tom70 mediates activation of interferon regulatory factor 3 on mitochondria. Cell Res, 2010. 20(9): p. 994-1011.
34. Zhong, B., et al., The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity, 2008. 29(4): p. 538-50.
35. Paz, S., et al., Induction of IRF-3 and IRF-7 phosphorylation following activation of the RIG-I pathway. Cell Mol Biol (Noisy-le-grand), 2006. 52(1): p. 17-28.
36. Seth, R.B., et al., Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell, 2005. 122(5): p. 669-82.
37. Burke, C.W., et al., Characteristics of alpha/beta interferon induction after infection of murine fibroblasts with wild-type and mutant alphaviruses. Virology, 2009. 395(1): p. 121-32.
38. Remoli, M.E., et al., IFN-beta modulates the response to TLR stimulation in human DC: involvement of IFN regulatory factor-1 (IRF-1) in IL-27 gene expression. Eur J Immunol, 2007. 37(12): p. 3499-508.
39. Rousseau, V., et al., Antiviral activity of autocrine interferon-beta requires the presence of a functional interferon type I receptor. J Interferon Cytokine Res, 1995. 15(9): p. 785-9.
40. Velazquez, L., et al., A protein tyrosine kinase in the interferon alpha/beta signaling pathway. Cell, 1992. 70(2): p. 313-22.
41. Darnell, J.E., Jr., I.M. Kerr, and G.R. Stark, Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science, 1994. 264(5164): p. 1415-21.
42. Fu, X.Y., et al., ISGF3, the transcriptional activator induced by interferon alpha, consists of multiple interacting polypeptide chains. Proc Natl Acad Sci U S A, 1990. 87(21): p. 8555-9.
43. Der, S.D., et al., Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc Natl Acad Sci U S A, 1998. 95(26): p. 15623-8.
44. Feeley, E.M., et al., IFITM3 inhibits influenza A virus infection by preventing cytosolic entry. PLoS Pathog, 2011. 7(10): p. e1002337.
45. Donovan, J., M. Dufner, and A. Korennykh, Structural basis for cytosolic double-stranded RNA surveillance by human oligoadenylate synthetase 1. Proc Natl Acad Sci U S A, 2013. 110(5): p. 1652-7.
46. Lin, R.J., et al., Distinct antiviral roles for human 2',5'-oligoadenylate synthetase family members against dengue virus infection. J Immunol, 2009. 183(12): p. 8035-43.
47. Schoggins, J.W. and C.M. Rice, Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol, 2011. 1(6): p. 519-25.
48. Talon, J., et al., Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein. J Virol, 2000. 74(17): p. 7989-96.
49. Wang, X., et al., Influenza A virus NS1 protein prevents activation of NF-kappaB and induction of alpha/beta interferon. J Virol, 2000. 74(24): p. 11566-73.
50. Mibayashi, M., et al., Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. J Virol, 2007. 81(2): p. 514-24.
51. Li, X.D., et al., Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc Natl Acad Sci U S A, 2005. 102(49): p. 17717-22.
52. Yu, C.Y., et al., Dengue virus targets the adaptor protein MITA to subvert host innate immunity. PLoS Pathog, 2012. 8(6): p. e1002780.
53. Childs, K., et al., mda-5, but not RIG-I, is a common target for paramyxovirus V proteins. Virology, 2007. 359(1): p. 190-200.
54. Kadowaki, N., et al., Natural interferon alpha/beta-producing cells link innate and adaptive immunity. J Exp Med, 2000. 192(2): p. 219-26.
55. Cui, S., et al., The C-terminal regulatory domain is the RNA 5'-triphosphate sensor of RIG-I. Mol Cell, 2008. 29(2): p. 169-79.
56. Gack, M.U., et al., TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature, 2007. 446(7138): p. 916-920.
57. Liu, H.M., et al., The mitochondrial targeting chaperone 14-3-3epsilon regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity. Cell Host Microbe, 2012. 11(5): p. 528-37.
58. Horner, S.M., et al., Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proc Natl Acad Sci U S A, 2011. 108(35): p. 14590-5.
59. Pichlmair, A., et al., Activation of MDA5 requires higher-order RNA structures generated during virus infection. J Virol, 2009. 83(20): p. 10761-9.
60. Li, X., et al., Structural basis of double-stranded RNA recognition by the RIG-I like receptor MDA5. Arch Biochem Biophys, 2009. 488(1): p. 23-33.
61. Wu, B., et al., Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell, 2013. 152(1-2): p. 276-89.
62. Moore BW, P.V., Specific Acidic Proteins of The Nervous System, in Physiological and biochemical aspects of nervous integration, C. FD, Editor. 1968, Prentice Hall: Englewood Cliffs. p. 343-359.
63. Aitken, A., et al., 14-3-3 alpha and delta are the phosphorylated forms of raf-activating 14-3-3 beta and zeta. In vivo stoichiometric phosphorylation in brain at a Ser-Pro-Glu-Lys MOTIF. J Biol Chem, 1995. 270(11): p. 5706-9.
64. Gardino, A.K., S.J. Smerdon, and M.B. Yaffe, Structural determinants of 14-3-3 binding specificities and regulation of subcellular localization of 14-3-3-ligand complexes: a comparison of the X-ray crystal structures of all human 14-3-3 isoforms. Semin Cancer Biol, 2006. 16(3): p. 173-82.
65. Masters, S.C., et al., 14-3-3 inhibits Bad-induced cell death through interaction with serine-136. Mol Pharmacol, 2001. 60(6): p. 1325-31.
66. Chen, M.S., C.E. Ryan, and H. Piwnica-Worms, Chk1 kinase negatively regulates mitotic function of Cdc25A phosphatase through 14-3-3 binding. Mol Cell Biol, 2003. 23(21): p. 7488-97.
67. Beguin, P., et al., 14-3-3 and calmodulin control subcellular distribution of Kir/Gem and its regulation of cell shape and calcium channel activity. J Cell Sci, 2005. 118(Pt 9): p. 1923-34.
68. Light, Y., H. Paterson, and R. Marais, 14-3-3 antagonizes Ras-mediated Raf-1 recruitment to the plasma membrane to maintain signaling fidelity. Mol Cell Biol, 2002. 22(14): p. 4984-96.
69. Aitken, A., Functional specificity in 14-3-3 isoform interactions through dimer formation and phosphorylation. Chromosome location of mammalian isoforms and variants. Plant Mol Biol, 2002. 50(6): p. 993-1010.
70. Chaudhri, M., M. Scarabel, and A. Aitken, Mammalian and yeast 14-3-3 isoforms form distinct patterns of dimers in vivo. Biochem Biophys Res Commun, 2003. 300(3): p. 679-85.
71. Muñoz-Fontela, C., et al., Latent Protein LANA2 from Kaposi's Sarcoma-Associated Herpesvirus Interacts with 14-3-3 Proteins and Inhibits FOXO3a Transcription Factor. J Virol, 2007. 81(3): p. 1511-6.
72. Agarwal-Mawal, A., et al., 14-3-3 connects glycogen synthase kinase-3 beta to tau within a brain microtubule-associated tau phosphorylation complex. J Biol Chem, 2003. 278(15): p. 12722-8.
73. Yaffe, M.B., How do 14-3-3 proteins work?-- Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett, 2002. 513(1): p. 53-7.
74. Silhan, J., et al., 14-3-3 protein masks the DNA binding interface of forkhead transcription factor FOXO4. J Biol Chem, 2009. 284(29): p. 19349-60.
75. Dobson, M., et al., Bimodal regulation of FoxO3 by AKT and 14-3-3. Biochim Biophys Acta, 2011. 1813(8): p. 1453-64.
76. Rittinger, K., et al., Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Mol Cell, 1999. 4(2): p. 153-66.
77. Henriksson, M.L., et al., A nonphosphorylated 14-3-3 binding motif on exoenzyme S that is functional in vivo. Eur J Biochem, 2002. 269(20): p. 4921-9.
78. Petosa, C., et al., 14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove. J Biol Chem, 1998. 273(26): p. 16305-10.
79. Conklin, D.S., K. Galaktionov, and D. Beach, 14-3-3 proteins associate with cdc25 phosphatases. Proc Natl Acad Sci U S A, 1995. 92(17): p. 7892-6.
80. Seimiya, H., et al., Involvement of 14-3-3 proteins in nuclear localization of telomerase. Embo j, 2000. 19(11): p. 2652-61.
81. Chan, Y.K. and M.U. Gack, A phosphomimetic-based mechanism of dengue virus to antagonize innate immunity. Nat Immunol, 2016. 17(5): p. 523-30.
82. Kuo, R.L., et al., Interactome Analysis of the NS1 Protein Encoded by Influenza A H1N1 Virus Reveals a Positive Regulatory Role of Host Protein PRP19 in Viral Replication. J Proteome Res, 2016. 15(5): p. 1639-48.
83. Kitai, Y., et al., Negative regulation of melanoma differentiation-associated gene 5 (MDA5)-dependent antiviral innate immune responses by Arf-like protein 5B. J Biol Chem, 2015. 290(2): p. 1269-80.
84. Schoggins, J.W., et al., A diverse range of gene products are effectors of the type I interferon antiviral response. Nature, 2011. 472(7344): p. 481-5.
85. Johnson, C., et al., Bioinformatic and experimental survey of 14-3-3-binding sites. Biochem J, 2010. 427(1): p. 69-78.
86. Muslin, A.J., et al., Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell, 1996. 84(6): p. 889-97.
87. Wies, E., et al., Dephosphorylation of the RNA sensors RIG-I and MDA5 by the phosphatase PP1 is essential for innate immune signaling. Immunity, 2013. 38(3): p. 437-49.
88. Onoguchi, K., M. Yoneyama, and T. Fujita, Retinoic acid-inducible gene-I-like receptors. J Interferon Cytokine Res, 2011. 31(1): p. 27-31.
89. Sumpter, R., Jr., et al., Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. J Virol, 2005. 79(5): p. 2689-99.
90. Davis, W.G., et al., The 3′ Untranslated Regions of Influenza Genomic Sequences Are 5′PPP-Independent Ligands for RIG-I. PLoS ONE, 2012. 7(3): p. e32661.
91. Plumet, S., et al., Cytosolic 5′-Triphosphate Ended Viral Leader Transcript of Measles Virus as Activator of the RIG I-Mediated Interferon Response. PLoS ONE, 2007. 2(3): p. e279.
92. Baum, A., R. Sachidanandam, and A. Garcia-Sastre, Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing. Proc Natl Acad Sci U S A, 2010. 107(37): p. 16303-8.
93. Saito, T., et al., Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature, 2008. 454(7203): p. 523-7.
94. Dougherty, M.K. and D.K. Morrison, Unlocking the code of 14-3-3. J Cell Sci, 2004. 117(Pt 10): p. 1875-84.
95. Wanna, W., et al., Identification and expression analysis of two splice variants of the 14-3-3 epsilon from Litopenaeus Vannamei during WSSV infections. Mol Biol Rep, 2012. 39(5): p. 5487-93.
96. Lee, B.J., et al., Functional study of hot pepper 26S proteasome subunit RPN7 induced by Tobacco mosaic virus from nuclear proteome analysis. Biochem Biophys Res Commun, 2006. 351(2): p. 405-11.
97. Pei, Z., M.S. Harrison, and A.P. Schmitt, Parainfluenza virus 5 m protein interaction with host protein 14-3-3 negatively affects virus particle formation. J Virol, 2011. 85(5): p. 2050-9.
98. Satoh, J., et al., The 14-3-3 protein forms a molecular complex with heat shock protein Hsp60 and cellular prion protein. J Neuropathol Exp Neurol, 2005. 64(10): p. 858-68.
99. Ohman, T., et al., Cytosolic RNA recognition pathway activates 14-3-3 protein mediated signaling and caspase-dependent disruption of cytokeratin network in human keratinocytes. J Proteome Res, 2010. 9(3): p. 1549-64.
100. Waterman, M.J., et al., ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins. Nat Genet, 1998. 19(2): p. 175-8.
101. Andrejeva, J., et al., The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter. Proc Natl Acad Sci U S A, 2004. 101(49): p. 17264-9
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50233-
dc.description.abstract宿主在受到RNA病毒感染時,宿主細胞內之RIG-I相似受器家族如RIG-I或者MDA5具有辨識細胞質內病毒遺傳物質RNA,並進一步活化下游訊息傳遞路徑,以產生第一型干擾素抵抗病毒感染與複製的功能。RIG-I相似受器家族通常被認為具有不同的雙股RNA辨認親和性,RIG-I被認為會優先辨認長度小於200個鹼基對的雙股RNA,而MDA5則通常被認為會辨認長度大於2000個鹼基對的雙股RNA。根據先前的研究指出,當病毒感染細胞時,RIG-I必須藉由蛋白質14-3-3ε的幫助使RIG-I能夠由細胞質移動到粒線體結合內質網膜(Mitochondria-Associated Membrane; MAM)的位置,以進一步和下游訊息傳遞蛋白質MAVS作用。RIG-I及MDA5會和下游蛋白質MAVS作用進而活化下游第一型干擾素訊息傳遞路徑。目前對於RIG-I活化路徑的研究較為完整及深入,但是對於MDA5活化路徑的探討卻是相對較少。在此研究當中,我們發現14-3-3η對於MDA5活化下游第一型干擾素傳遞路徑具有非常重要的功能。藉由免疫共同沉澱法發現有不同的14-3-3蛋白質亞型可以與MDA5的N端結構域CARDs結合,然而對於MDA5之C端結構域(C-terminal domain)卻沒有結合能力。此外,於細胞中異位表現(ectopic expression)14-3-3η可增強MDA5傳遞路徑所誘發的第一型干擾素啟動子活性(promoter activity),且此一增強作用是與異位表現的14-3-3η蛋白質表現量呈正相關。而在Huh7肝癌細胞中抑制(knock-down)內源性的14-3-3η蛋白質表現量,對於異位表現全長MDA5或MDA5 N端所引發的第一型干擾素啟動子活性上升的現象會產生抑制作用。為了近一步探討14-3-3η蛋白質對於MDA5傳遞路徑的影響,我們將MDA5 N端序列中預測的14-3-3蛋白質結合基序(binding motif)進行突變,並且發現如果將MDA5第88個胺基酸由絲胺酸(serine)改為天門冬胺酸(aspartic acid),除了會使MDA5無法正常活化外,也會使14-3-3蛋白質無法和MDA5結合。最後藉由細胞離析方法(cell fractionation)得知內源性MDA5會因為異位表現的N-MDA5而活化細胞第一型干擾素訊息傳遞路徑,並從細胞質移動到粒線體相關區域,而之前發現可以與MDA5結合的14-3-3 蛋白質也同樣可以分布於粒線體相關區域。總結來說,在此研究當中我們發現了14-3-3η蛋白質在MDA5傳遞路徑當中扮演重要的角色。zh_TW
dc.description.abstractDuring RNA virus infection, RIG-I like receptors (RLRs), such as Retinoic acid-inducible gene I (RIG-I) and Melanoma differentiation-associated protein 5 (MDA5), recognize cytoplasmic viral RNA and activate downstream adaptor proteins to produce type I interferon (IFN). It is known that RIG-I preferentially binds to short dsRNA (<200 bp) whereas MDA5 binds to dsRNA longer than 2000 base pairs. It has been reported that upon viral infection, RIG-I interacts with the chaperon protein 14-3-3ε, which facilitates translocation of RIG-I to mitochondrial associated membrane (MAM) for interaction with mitochondrial antiviral-signaling protein (MAVS), which is the common adaptor protein for both RIG-I-dependent and MDA5-dependent signaling to induce type I IFN. However, the molecular mechanisms of MDA5 activation remain less understood. Here we show that 14-3-3η is crucial for MDA5-dependent type I IFN induction. We found that several 14-3-3 isoforms may be co-immunoprecipitated with MDA5 through the CARDs (N-MDA5) but not the C-terminus of MDA5 (C-MDA5). Furthermore, ectopic expression of 14-3-3η, but not other isoforms, could enhance MDA5-dependent activation of IFNβ promoter in a dose-dependent manner. Knock-down of 14-3-3η in Huh7 cells also led to the attenuation of the IFNβ promoter activities which were facilitated by ectopic expression of MDA5 or N-MDA5.
To further investigate the essential role of 14-3-3 proteins in MDA5-dependent signaling pathway, we co-immunoprecipitated 14-3-3 proteins with different N-MDA5 mutants and found that a defective mutant form of N-MDA5, N-MDA5-S88D could not interact with 14-3-3 proteins. Besides, in our study we also found that endogenous MDA5 could be translocated from cytosol to mitochondrial membrane fraction in response to the activation of type I IFN signaling pathway due to ectopically expressing N-MDA5. In conclusion, we define 14-3-3η as a novel molecule which is involved in the MDA5-dependent IFNβ signaling pathway.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:33:21Z (GMT). No. of bitstreams: 1
ntu-105-R03424002-1.pdf: 2724499 bytes, checksum: 3d8fe7287ace90ec2a1871d1bbd12b74 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents中文摘要 I
Abstract III
Table of Contents V
List of Figures VIII
List of Table X
Chapter 1: Introduction 1
1.1 Discovery of Melanoma Differentiation-Associated Protein 5 1
1.2 Structure of RIG-I Like Receptors 2
1.3 Innate Immune System: Interferon Induction and Signaling Pathways 4
1.4 The Mechanisms for RIG-I and MDA5 Activation 7
1.5 The 14-3-3 Chaperon Proteins Control Intracellular Protein Localizations 9
1.6 Specific Aims 12
Chapter 2: Materials and Methods 13
2.1 Materials 13
2.1.1 Cell Lines 13
2.1.2 Competent Cells 13
2.1.3 Viruses 13
2.1.4 Plasmids 13
2.1.5 Reagents 15
2.1.6 Enzymes 16
2.1.7 Antibodies 17
2.1.8 Commercial Kits 18
2.2 Methods 18
2.2.1 Cell Culture 18
2.2.2 Making Transformation Competent Cells 19
2.2.3 Construction of Expression Plasmids 20
2.2.4 Bacterial Transformation 21
2.2.5 DNA Plasmids Transfection 22
2.2.6 RNA Ligands Transfection 23
2.2.7 Western Blot 24
2.2.8 Protein-Protein Co Immunoprecipitation 26
2.2.9 Sendai Virus Cultivation 28
2.2.10 Sendai Virus Infection 29
2.2.11 Luciferase Assay 30
2.2.12 In vitro RNA Ligands Preparation 30
2.2.13 Cell Fractionation Assay 31
2.2.14 Selection of 14-3-3η Knock-Down Huh7 Cells Stable Clones 32
2.2.15 Phosphatase Assay 33
Chapter 3: Results 34
3.1 Differential Activation of MDA5 by Long Double Stranded RNA Stimulations 34
3.2 The Intra-Molecular Characteristics of MDA5 and RIG-I in IFNβ Signaling Pathway 35
3.3 Identification of MDA5-interacting 14-3-3 Isoforms 37
3.4 The Distribution of MDA5 and 14-3-3 Proteins in Cells 40
3.5 The Role of 14-3-3 Isoforms in MDA5-Dependent IFNβ Induction Pathway 41
3.6 The Properties of Predicted 14-3-3 Proteins Binding Motif with MDA5 CARD Region 44
Chapter 4: Discussion 46
Chapter 5: References 53
dc.language.isoen
dc.subject黑色素瘤分化相關蛋白質-5zh_TW
dc.subject第一型干擾素傳遞路徑zh_TW
dc.subject14-3-3蛋白質家族zh_TW
dc.subject第一型干擾素傳遞路徑zh_TW
dc.subject14-3-3蛋白質家族zh_TW
dc.subject黑色素瘤分化相關蛋白質-5zh_TW
dc.subjectMDA5en
dc.subjectMDA5en
dc.subjectType I IFN signalingen
dc.subject14-3-3 proteinsen
dc.subjectType I IFN signalingen
dc.subject14-3-3 proteinsen
dc.title探討14-3-3蛋白質家族對黑色素瘤分化相關蛋白質-5 (MDA5)活化之調控zh_TW
dc.titleControls of MDA5 Activation by The 14-3-3 Protein Familyen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee高全良(Chuan-Liang Kao),張淑媛(Sui-Yuan Chang),郭瑞琳(Rei-Lin Kuo)
dc.subject.keyword黑色素瘤分化相關蛋白質-5,第一型干擾素傳遞路徑,14-3-3蛋白質家族,zh_TW
dc.subject.keywordMDA5,Type I IFN signaling,14-3-3 proteins,en
dc.relation.page80
dc.identifier.doi10.6342/NTU201601258
dc.rights.note有償授權
dc.date.accepted2016-08-02
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
2.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved