請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50227完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉旻褘(Helene Minyi Liu) | |
| dc.contributor.author | Fu Hsin | en |
| dc.contributor.author | 幸芙 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:33:10Z | - |
| dc.date.available | 2021-08-26 | |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-02 | |
| dc.identifier.citation | 1. Szabo, R. and T.H. Bugge, Type II transmembrane serine proteases in development and disease. Int J Biochem Cell Biol, 2008. 40(6-7): p. 1297-316.
2. Szabo, R., et al., Type II transmembrane serine proteases. Thromb Haemost, 2003. 90(2): p. 185-93. 3. Knappe, S., et al., Functional analysis of the transmembrane domain and activation cleavage of human corin: design and characterization of a soluble corin. J Biol Chem, 2003. 278(52): p. 52363-70. 4. Barre, O., et al., Cleavage specificity analysis of six type II transmembrane serine proteases (TTSPs) using PICS with proteome-derived peptide libraries. PLoS One, 2014. 9(9): p. e105984. 5. Wu, Q., Type II transmembrane serine proteases, in Current Topics in Developmental Biology. 2003, Academic Press. p. 167-206. 6. Dhanasekaran, S.M., et al., Delineation of prognostic biomarkers in prostate cancer. Nature, 2001. 412(6849): p. 822-6. 7. Nam, R.K., et al., Expression of TMPRSS2:ERG gene fusion in prostate cancer cells is an important prognostic factor for cancer progression. Cancer Biol Ther, 2007. 6(1): p. 40-5. 8. Guipponi, M., S.E. Antonarakis, and H.S. Scott, TMPRSS3, a type II transmembrane serine protease mutated in non-syndromic autosomal recessive deafness. Front Biosci, 2008. 13: p. 1557-67. 9. Guipponi, M., et al., An integrated genetic and functional analysis of the role of type II transmembrane serine proteases (TMPRSSs) in hearing loss. Hum Mutat, 2008. 29(1): p. 130-41. 10. Guipponi, M., et al., Mice deficient for the type II transmembrane serine protease, TMPRSS1/hepsin, exhibit profound hearing loss. Am J Pathol, 2007. 171(2): p. 608-16. 11. Hatesuer, B., et al., Tmprss2 is essential for influenza H1N1 virus pathogenesis in mice. PLoS Pathog, 2013. 9(12): p. e1003774. 12. Glowacka, I., et al., Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol, 2011. 85(9): p. 4122-34. 13. Abe, M., et al., TMPRSS2 is an activating protease for respiratory parainfluenza viruses. J Virol, 2013. 87(21): p. 11930-5. 14. Leytus, S.P., et al., A novel trypsin-like serine protease (hepsin) with a putative transmembrane domain expressed by human liver and hepatoma cells. Biochemistry, 1988. 27(3): p. 1067-74. 15. Li, Y., et al., Identification and characterization of hepsin/-TM, a non-transmembrane hepsin isoform. Biochim Biophys Acta, 2005. 1681(2-3): p. 157-65. 16. Miao, J., et al., Hepsin colocalizes with desmosomes and induces progression of ovarian cancer in a mouse model. Int J Cancer, 2008. 123(9): p. 2041-7. 17. Xing, P., et al., Clinical and biological significance of hepsin overexpression in breast cancer. J Investig Med, 2011. 59(5): p. 803-10. 18. Klezovitch, O., et al., Hepsin promotes prostate cancer progression and metastasis. Cancer Cell, 2004. 6(2): p. 185-95. 19. Somoza, J.R., et al., The structure of the extracellular region of human hepsin reveals a serine protease domain and a novel scavenger receptor cysteine-rich (SRCR) domain. Structure, 2003. 11(9): p. 1123-31. 20. Vu, T.K., et al., Identification and cloning of the membrane-associated serine protease, hepsin, from mouse preimplantation embryos. J Biol Chem, 1997. 272(50): p. 31315-20. 21. Chen, C.H., et al., Decreased expressions of hepsin in human hepatocellular carcinomas. Liver Int, 2006. 26(7): p. 774-80. 22. Herter, S., et al., Hepatocyte growth factor is a preferred in vitro substrate for human hepsin, a membrane-anchored serine protease implicated in prostate and ovarian cancers. Biochem J, 2005. 390(Pt 1): p. 125-36. 23. Kazama, Y., et al., Hepsin, a putative membrane-associated serine protease, activates human factor VII and initiates a pathway of blood coagulation on the cell surface leading to thrombin formation. J Biol Chem, 1995. 270(1): p. 66-72. 24. Torres-Rosado, A., et al., Hepsin, a putative cell-surface serine protease, is required for mammalian cell growth. Proc Natl Acad Sci U S A, 1993. 90(15): p. 7181-5. 25. Moran, P., et al., Pro-urokinase-type plasminogen activator is a substrate for hepsin. J Biol Chem, 2006. 281(41): p. 30439-46. 26. Wu, Q., Gene targeting in hemostasis. Hepsin. Front Biosci, 2001. 6: p. D192-200. 27. Yu, I.S., et al., Mice deficient in hepsin, a serine protease, exhibit normal embryogenesis and unchanged hepatocyte regeneration ability. Thromb Haemost, 2000. 84(5): p. 865-70. 28. Kirchhofer, D., et al., Hepsin activates pro-hepatocyte growth factor and is inhibited by hepatocyte growth factor activator inhibitor-1B (HAI-1B) and HAI-2. FEBS Lett, 2005. 579(9): p. 1945-50. 29. Franco, F.M., et al., Structure-based discovery of small molecule hepsin and HGFA protease inhibitors: Evaluation of potency and selectivity derived from distinct binding pockets. Bioorg Med Chem, 2015. 23(10): p. 2328-43. 30. Paludan, S.R. and A.G. Bowie, Immune sensing of DNA. Immunity, 2013. 38(5): p. 870-80. 31. West, A.P., G.S. Shadel, and S. Ghosh, Mitochondria in innate immune responses. Nat Rev Immunol, 2011. 11(6): p. 389-402. 32. Ishikawa, H. and G.N. Barber, STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature, 2008. 455(7213): p. 674-8. 33. Zhong, B., et al., The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity, 2008. 29(4): p. 538-50. 34. Kawai, T., et al., IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol, 2005. 6(10): p. 981-8. 35. Bhatia, R., et al., Surfactant administration prior to one lung ventilation: physiological and inflammatory correlates in a piglet model. Pediatr Pulmonol, 2011. 46(11): p. 1069-78. 36. Liu, H.M., et al., The mitochondrial targeting chaperone 14-3-3epsilon regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity. Cell Host Microbe, 2012. 11(5): p. 528-37. 37. Schneider, W.M., M.D. Chevillotte, and C.M. Rice, Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol, 2014. 32: p. 513-45. 38. Thompson, A.J. and S.A. Locarnini, Toll-like receptors, RIG-I-like RNA helicases and the antiviral innate immune response. Immunol Cell Biol, 2007. 85(6): p. 435-45. 39. Li, K., et al., Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc Natl Acad Sci U S A, 2005. 102(8): p. 2992-7. 40. Li, X.D., et al., Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc Natl Acad Sci U S A, 2005. 102(49): p. 17717-22. 41. Aguirre, S., et al., DENV inhibits type I IFN production in infected cells by cleaving human STING. PLoS Pathog, 2012. 8(10): p. e1002934. 42. Yu, C.Y., et al., Dengue virus targets the adaptor protein MITA to subvert host innate immunity. PLoS Pathog, 2012. 8(6): p. e1002780. 43. Kruithof, E.K., M.S. Baker, and C.L. Bunn, Biological and clinical aspects of plasminogen activator inhibitor type 2. Blood, 1995. 86(11): p. 4007-24. 44. Park, J.M., et al., Signaling Pathways and Genes that Inhibit Pathogen-Induced Macrophage Apoptosis— CREB and NF-κB as Key Regulators. Immunity, 2005. 23(3): p. 319-329. 45. Greten, F.R., et al., NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta. Cell, 2007. 130(5): p. 918-31. 46. Chuang, S.Y., et al., TLR-induced PAI-2 expression suppresses IL-1beta processing via increasing autophagy and NLRP3 degradation. Proc Natl Acad Sci U S A, 2013. 110(40): p. 16079-84. 47. Prakash, A. and D.E. Levy, Regulation of IRF7 through cell type-specific protein stability. Biochem Biophys Res Commun, 2006. 342(1): p. 50-6. 48. Sun, W., et al., ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc Natl Acad Sci U S A, 2009. 106(21): p. 8653-8. 49. Yoneyama, M., et al., The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol, 2004. 5(7): p. 730-7. 50. Seth, R.B., et al., Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell, 2005. 122(5): p. 669-82. 51. Lin, R., Y. Mamane, and J. Hiscott, Structural and functional analysis of interferon regulatory factor 3: localization of the transactivation and autoinhibitory domains. Mol Cell Biol, 1999. 19(4): p. 2465-74. 52. Zhao, T., et al., The NEMO adaptor bridges the nuclear factor-kappaB and interferon regulatory factor signaling pathways. Nat Immunol, 2007. 8(6): p. 592-600. 53. Ma, Z. and B. Damania, The cGAS-STING Defense Pathway and Its Counteraction by Viruses. Cell Host Microbe, 2016. 19(2): p. 150-8. 54. Konno, H., K. Konno, and G.N. Barber, Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell, 2013. 155(3): p. 688-98. 55. Huang, Z., et al., Molecular cloning and functional characterization of Tibetan Porcine STING. Int J Mol Sci, 2012. 13(1): p. 506-15. 56. Huang, Y.H., et al., The structural basis for the sensing and binding of cyclic di-GMP by STING. Nat Struct Mol Biol, 2012. 19(7): p. 728-30. 57. Tang, X., et al., Targeted inhibition of cell-surface serine protease Hepsin blocks prostate cancer bone metastasis. Oncotarget, 2014. 5(5): p. 1352-62. 58. Jin, L., et al., MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals. Mol Cell Biol, 2008. 28(16): p. 5014-26. 59. Ishikawa, H., Z. Ma, and G.N. Barber, STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature, 2009. 461(7265): p. 788-92. 60. Yin, Q., et al., Cyclic di-GMP sensing via the innate immune signaling protein STING. Mol Cell, 2012. 46(6): p. 735-45. 61. Burdette, D.L., et al., STING is a direct innate immune sensor of cyclic di-GMP. Nature, 2011. 478(7370): p. 515-8. 62. Sun, L., et al., Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science, 2013. 339(6121): p. 786-91. 63. Wu, J., et al., Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science, 2013. 339(6121): p. 826-30. 64. Nitta, S., et al., Hepatitis C virus NS4B protein targets STING and abrogates RIG-I-mediated type I interferon-dependent innate immunity. Hepatology, 2013. 57(1): p. 46-58. 65. Thomsen, M.K., et al., Lack of immunological DNA sensing in hepatocytes facilitates hepatitis B virus infection. Hepatology, 2016. 66. Chen, K.-Y., Study of association of Hepsin with hepatitis B virus levels in mouse models, in Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine. July, 2014, Natinal Taiwan University. 67. Doherty, D.G., Immunity, tolerance and autoimmunity in the liver: A comprehensive review. J Autoimmun, 2015. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50227 | - |
| dc.description.abstract | 第一型干擾素的誘發和生成對於抗病毒初級免疫反應的形成是非常重要的。當細胞遭受病毒感染時,RIG-1會辨認病毒的核糖核酸(RNA)並活化下游的銜接蛋白質MAVS;cGAS則會辨認細胞質中病原體的去氧核醣核酸(DNA)並活化下游的銜接蛋白質STING。MAVS和STING會接著活化下游的訊息傳導路徑,促使轉錄因子IRF3、IRF7和NF-κB的活化,並進入細胞核誘導第一型干擾素生成。許多病毒的蛋白酶具有切割第一型干擾素生成訊型傳遞路徑中銜接蛋白質的能力,並藉此躲避宿主的免疫反應;例如C型肝炎病毒的蛋白酶NS3/4A可以切割MAVS,使得MAVS離開粒線體並減少第一型干擾素的生成;除此之外,一些人類蛋白酶抑制劑,像是PAI-2和其他絲安酸蛋白酶抑制劑,被發現可以負調控NF-κB訊息傳遞路徑。然而,是否人類絲安酸蛋白酶也參與調控病毒所誘發的第一型干擾素生成,以此維持干擾素的表現,目前尚不清楚。在本篇研究中,我們發現在多種不同的細胞株內,第二型穿膜絲胺酸蛋白酶中之Hepsin可以抑制細胞因感染病毒而誘發的第一型干擾素產生。其中在肝細胞株中可以測得Hepsin的表現,但並非所有細胞株均會表現Hepsin。此外,在Hepsin基因剔除的小鼠胚胎纖維母細胞中可以測得IFNβ有較高的表現。而在Hepsin和MAVS或N-RIG的共轉染細胞中,Hepsin依然可以減少 IFNβ promoter activity;但在Hepsin和TBK-1或IRF3-5D的共轉染細胞中,IFNβ promoter activity則不受到影響。由此可以推斷出,Hepsin的作用位置應在MAVS的下游以及TBK-1的上游。我們也發現只有野生型的Hepsin具有抑制第一型干擾素生成的能力,而蛋白酶活性缺乏的突變型Hepsin則不具有此功能。另外,根據蛋白質在細胞中座落的位置以及Hepsin的推測切割位,我們認為Hepsin是藉由減少STING的蛋白表現量來抑制第一型干擾素的訊息傳遞路徑。最後,我們透過共沈澱免疫法和螢光染色法來確認Hepsin和STING之間確實具有交互作用,並且兩種蛋白質座落在細胞中的位置非常靠近。總而言之,本篇研究的結果發現了Hepsin新功能,認為Hepsin可以在肝細胞中調控第一型干擾素的生成。 | zh_TW |
| dc.description.abstract | The induction of type I interferon (IFN) is critical for antiviral innate immune response. During virus infection, Retinoic acid-inducible gene I (RIG-I) recognizes the viral RNA and activates Mitochondrial antiviral-signaling protein (MAVS). Cyclic GMP-AMP (cGAMP) synthase (cGAS) detects cytosolic pathogenic DNA and activates stimulator of interferon genes (STING). MAVS and STING further trigger downstream signaling to activate interferon regulatory factor 3 (IRF3) or nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) to induce type I IFN. Many viral proteases cleave adapter proteins in the IFN induction pathway, such as HCV NS3/4A cleaving MAVS, as a strategy to evade anti-viral innate immunity. Besides, some serine protease inhibitors, such as PAI-2 and other serine protease inhibitors, could negatively regulate NF-κB pathway. However, it is not clear whether host protease may also regulate virus-induced type I IFN induction pathway to control the steadily low expression of IFN in cells. Here we report that Hepsin (HPN), which belongs to type II transmembrane serine protease family, could inhibit the production of type I IFN during RNA virus infections in several cell-lines. Hepsin expression could be detected in hepatocytes but not ubiquitously in all cell types. Knocking-out Hepsin in mouse embryonic fibroblasts resulted in higher expression of IFNβ. Besides, when co-transfected with MAVS or N-RIG, which is constitutively activating IFNβ expression, Hepsin could decrease IFNβ promoter activity. However, under the expression of TBK1 or IRF3-5D, Hepsin could not reduce IFNβ promoter activity, suggesting that Hepsin might target certain adaptor proteins downstream of MAVS and upstream of TBK1. We showed an inverse correlation with wild-type Hepsin expression but not with the protease-deficient mutant Hepsin in the IFNβ promoter activities. Furthermore, based on the location of protein and putative cleavage site of HPN, it is likely that HPN suppressed IFNβ induction pathway by decreasing STING. Finally, the co-immunoprecipitation and immunofluorescence staining showed that HPN interacted with STING. Consequently, these results reveal a novel role of Hepsin in regulating the type I IFN induction pathway in hepatocytes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:33:10Z (GMT). No. of bitstreams: 1 ntu-105-R03424007-1.pdf: 38479058 bytes, checksum: 3a9538867a8296129f53701dfbd535c9 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract III List of Figures VIII List of Tables XI List of Appendices XII Chapter 1: Introduction 1 1.1 TMPRSS Family 1 1.2 Molecular Biology of Hepsin (TMPRSS1) 3 1.3 Cytosolic Sensing and Anti-viral Innate Immunity 5 1.4 The control of Innate Immunity by proteases 7 1.5 The Tissue Specific Regulation of Innate Immunity 9 1.6 Specific aim of this study 10 Chapter 2: Materials and Methods 11 2.1 Materials 11 2.1.1 Cell line 11 2.1.2 Competent cells 11 2.1.3 Viruses 11 2.1.4 Plasmids 12 2.1.5 Reagent 12 2.1.6 Enzyme 14 2.1.7 Antibody 15 2.1.8 Commercial Kit 15 2.2 Methods 16 2.2.1 Cell culture 16 2.2.2 Construction of expression plasmids 17 2.2.3 Transfection 18 2.2.4 Immunoblotting 18 2.2.5 Virus cultivation 20 2.2.6 Virus infection, Lysosome inhibitor NH4Cl and proteasome inhibitor MG132 treatment 21 2.2.7 Luciferase assay 22 2.2.8 RNA extraction 23 2.2.9 Real-time PCR 24 2.2.10 Co-Immunoprecipitation 25 2.2.11 Immunofluorescence Stainning 26 Chapter 3: Results 28 3.1 Depletion of HPN increase the expression of type I IFN in MEFs 28 3.2 Manipulation of HPN expression levels in human cell lines. 29 3.3 The type I interferon induction pathway was negatively regulated in HPN overexpressing human cell lines. 30 3.4 HPN targets IFNβ induction pathway downstream of MAVS and upstream of TBK1. 32 3.5 STING may be the substrate of HPN. 33 3.6 STING facilitates IFNβ induction pathway after SeV infection. 34 3.7 HPN may target STING to down regulate IFNβ induction pathway. 35 3.8 HPN interacts with STING. 37 3.9 STING mutant, STING-R178Q, rescue the production of type I IFN in HPN overexpressing cells 38 Chapter 4: Discussion 40 Chapter 5: Reference 44 | |
| dc.language.iso | en | |
| dc.subject | STING | zh_TW |
| dc.subject | STING | zh_TW |
| dc.subject | 第一型干擾素訊息傳遞路徑 | zh_TW |
| dc.subject | 第一型干擾素訊息傳遞路徑 | zh_TW |
| dc.subject | Hepsin | zh_TW |
| dc.subject | Hepsin | zh_TW |
| dc.subject | STING | en |
| dc.subject | Hepsin | en |
| dc.subject | Type I IFN signaling pathway | en |
| dc.subject | STING | en |
| dc.subject | Type I IFN signaling pathway | en |
| dc.subject | Hepsin | en |
| dc.title | 探討第二型穿膜絲胺酸蛋白酶中之Hepsin對第一型干擾素表現之調控 | zh_TW |
| dc.title | The Effect of Hepsin in Type I Interferon Induction Pathways | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林淑華(Shu-Wha Lin),張淑媛(Sui-Yuan Chang),徐立中(Li-Chung Hsu) | |
| dc.subject.keyword | Hepsin,STING,第一型干擾素訊息傳遞路徑, | zh_TW |
| dc.subject.keyword | Hepsin,STING,Type I IFN signaling pathway, | en |
| dc.relation.page | 81 | |
| dc.identifier.doi | 10.6342/NTU201601802 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-02 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 37.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
