Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50219
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙坤茂,楊欣洲
dc.contributor.authorYu-Jen Liangen
dc.contributor.author梁佑任zh_TW
dc.date.accessioned2021-06-15T12:32:56Z-
dc.date.available2017-08-24
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-08-02
dc.identifier.citation[1] E. Altmaier et al., “Metabolomics approach reveals effects of antihypertensives and lipid-lowering drugs on the human metabolism,” European Journal of Epidemiology, vol. 29, no. 5, pp. 325-36, May, 2014.
[2] E. Altuntas, and U. S. Schubert, “'Polymeromics': Mass spectrometry based strategies in polymer science toward complete sequencing approaches: a review,” Analytica Chimica Acta, vol. 808, pp. 56-69, Jan 15, 2014.
[3] Y. Benjamini, and Y. Hochberg, “Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing,” Journal of the Royal Statistical Society Series B-Methodological, vol. 57, no. 1, pp. 289-300, 1995.
[4] E. B. Binder et al., “Neurotensin and dopamine interactions,” Pharmacological Reviews, vol. 53, no. 4, pp. 453-486, Dec, 2001.
[5] S. Bouatra et al., “The Human Urine Metabolome,” Plos One, vol. 8, no. 9, Sep 4, 2013.
[6] P. J. Brighton, P. G. Szekeres, and G. B. Willars, “Neuromedin U and its receptors: Structure, function, and physiological roles,” Pharmacological Reviews, vol. 56, no. 2, pp. 231-248, Jun, 2004.
[7] R. Carraway, and S. E. Leeman, “The isolation of a new hypotensive peptide, neurotensin, from bovine hypothalami,” Journal of Biological Chemistry, vol. 248, no. 19, pp. 6854-61, Oct 10, 1973.
[8] M. C. Chambers et al., “A cross-platform toolkit for mass spectrometry and proteomics,” Nature Biotechnology, vol. 30, no. 10, pp. 918-20, Oct, 2012.
[9] E. C. Y. Chan, K. K. Pasikanti, and J. K. Nicholson, “Global urinary metabolic profiling procedures using gas chromatography-mass spectrometry,” Nature Protocols, vol. 6, no. 10, pp. 1483-1499, Oct, 2011.
[10] C. J. Clarke, and J. N. Haselden, “Metabolic Profiling as a Tool for Understanding Mechanisms of Toxicity,” Toxicologic Pathology, vol. 36, no. 1, pp. 140-147, Jan, 2008.
[11] A. M. De Livera et al., “Normalizing and integrating metabolomics data,” Analytical Chemistry, vol. 84, no. 24, pp. 10768-76, Dec 18, 2012.
[12] T. J. DiCiccio, and B. Efron, “Bootstrap confidence intervals,” Statistical Science, vol. 11, no. 3, pp. 189-212, Aug, 1996.
[13] M. S. Donia, and M. A. Fischbach, “HUMAN MICROBIOTA. Small molecules from the human microbiota,” Science, vol. 349, no. 6246, pp. 1254766, Jul 24, 2015.
[14] W. B. Dunn et al., “Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry,” Nature Protocols, vol. 6, no. 7, pp. 1060-1083, Jun, 2011.
[15] B. P. Durbin et al., “A variance-stabilizing transformation for gene-expression microarray data,” Bioinformatics, vol. 18 Suppl 1, pp. S105-10, 2002.
[16] A. R. Fernie et al., “Recommendations for reporting metabolite data,” Plant Cell, vol. 23, no. 7, pp. 2477-82, Jul, 2011.
[17] J. Fox, and G. Monette, “Generalized Collinearity Diagnostics,” Journal of the American Statistical Association, vol. 87, no. 417, pp. 178-183, Mar, 1992.
[18] P. Geladi, “Pls Model-Building - Theory and Application, Frankfurt Am Main, Frg, 23-25 September 1987,” Chemometrics and Intelligent Laboratory Systems, vol. 5, no. 1, pp. 2-3, Nov, 1988.
[19] M. J. Gibney et al., “Metabolomics in human nutrition: opportunities and challenges,” American Journal of Clinical Nutrition, vol. 82, no. 3, pp. 497-503, Sep, 2005.
[20] H. Gowda et al., “Interactive XCMS Online: Simplifying Advanced Metabolomic Data Processing and Subsequent Statistical Analyses,” Analytical Chemistry, vol. 86, no. 14, pp. 6931-6939, Jul 15, 2014.
[21] J. Gregori et al., “Batch effects correction improves the sensitivity of significance tests in spectral counting-based comparative discovery proteomics,” Journal of Proteomics, vol. 75, no. 13, pp. 3938-51, Jul 16, 2012.
[22] A. C. Guo et al., “ECMDB: The E-coli Metabolome Database,” Nucleic Acids Research, vol. 41, no. D1, pp. D625-D630, Jan, 2013.
[23] S. J. Hird et al., “Liquid chromatography-mass spectrometry for the determination of chemical contaminants in food,” Trac-Trends in Analytical Chemistry, vol. 59, pp. 59-72, Jul-Aug, 2014.
[24] E. Holmes, I. D. Wilson, and J. K. Nicholson, “Metabolic phenotyping in health and disease,” Cell, vol. 134, no. 5, pp. 714-717, Sep 5, 2008.
[25] H. Horai et al., “MassBank: a public repository for sharing mass spectral data for life sciences,” Journal of Mass Spectrometry, vol. 45, no. 7, pp. 703-714, Jul, 2010.
[26] T. Jewison et al., “YMDB: the Yeast Metabolome Database,” Nucleic Acids Research, vol. 40, no. D1, pp. D815-D820, Jan, 2012.
[27] M. A. Kamleh et al., “Optimizing the use of quality control samples for signal drift correction in large-scale urine metabolic profiling studies,” Analytical Chemistry, vol. 84, no. 6, pp. 2670-7, Mar 20, 2012.
[28] Y. V. Karpievitch et al., “Metabolomics data normalization with EigenMS,” PLoS One, vol. 9, no. 12, pp. e116221, 2014.
[29] M. Katajamaa, J. Miettinen, and M. Oresic, “MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data,” Bioinformatics, vol. 22, no. 5, pp. 634-6, Mar 1, 2006.
[30] N. Kessler et al., “MeltDB 2.0-advances of the metabolomics software system,” Bioinformatics, vol. 29, no. 19, pp. 2452-2459, Oct 1, 2013.
[31] D. Kessner et al., “ProteoWizard: open source software for rapid proteomics tools development,” Bioinformatics, vol. 24, no. 21, pp. 2534-6, Nov 1, 2008.
[32] C. Kuhl et al., “CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets,” Analytical Chemistry, vol. 84, no. 1, pp. 283-9, Jan 3, 2012.
[33] B. L. LaMarche et al., “MultiAlign: a multiple LC-MS analysis tool for targeted omics analysis,” BMC Bioinformatics, vol. 14, pp. 49, 2013.
[34] J. T. Leek et al., “Tackling the widespread and critical impact of batch effects in high-throughput data,” Nature Reviews: Genetics, vol. 11, no. 10, pp. 733-9, Oct, 2010.
[35] Y. J. Liang et al., “SMART: Statistical Metabolomics Analysis-An R Tool,” Analytical Chemistry, vol. 88, no. 12, pp. 6334-41, Jun 21, 2016.
[36] G. Libiseller et al., “IPO: a tool for automated optimization of XCMS parameters,” BMC Bioinformatics, vol. 16, pp. 118, Apr 16, 2015.
[37] X. Liu, and L. Jia, “The conduct of drug metabolism studies considered good practice (I): analytical systems and in vivo studies,” Current Drug Metabolism, vol. 8, no. 8, pp. 815-21, Dec, 2007.
[38] Y. L. Lo et al., “Partial Least Square Discriminant Analysis Discovered a Dietary Pattern Inversely Associated with Nasopharyngeal Carcinoma Risk,” PLoS One, vol. 11, no. 6, pp. e0155892, 2016.
[39] A. Lommen, “MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing,” Analytical Chemistry, vol. 81, no. 8, pp. 3079-86, Apr 15, 2009.
[40] U. Lutz, R. W. Lutz, and W. K. Lutz, “Metabolic profiling of glucuronides in human urine by LC-MS/MS and partial least-squares discriminant analysis for classification and prediction of gender,” Analytical Chemistry, vol. 78, no. 13, pp. 4564-71, Jul 1, 2006.
[41] R. Mandal et al., “Multi-platform characterization of the human cerebrospinal fluid metabolome: a comprehensive and quantitative update,” Genome Medicine, vol. 4, Apr 30, 2012.
[42] L. A. Mueller, P. F. Zhang, and S. Y. Rhee, “AraCyc: A biochemical pathway database for Arabidopsis,” Plant Physiology, vol. 132, no. 2, pp. 453-460, Jun, 2003.
[43] H. Neuweger et al., “MeltDB: a software platform for the analysis and integration of metabolomics experiment data,” Bioinformatics, vol. 24, no. 23, pp. 2726-2732, Dec 1, 2008.
[44] J. K. Nicholson, and J. C. Lindon, “Systems biology: Metabonomics,” Nature, vol. 455, no. 7216, pp. 1054-6, Oct 23, 2008.
[45] I. Noda, “Scaling techniques to enhance two-dimensional correlation spectra,” Journal of Molecular Structure, vol. 883, pp. 216-227, Jul 30, 2008.
[46] R. M. O’brien, “A Caution Regarding Rules of Thumb for Variance Inflation Factors,” Quality & Quantity, vol. 41, no. 5, pp. 673-690, 2007.
[47] S. G. Oliver et al., “Systematic functional analysis of the yeast genome,” Trends in Biotechnology, vol. 16, no. 9, pp. 373-378, Sep, 1998.
[48] M. P. Osborn et al., “Metabolome-wide association study of neovascular age-related macular degeneration,” PLoS One, vol. 8, no. 8, pp. e72737, 2013.
[49] G. J. Patti, O. Yanes, and G. Siuzdak, “Metabolomics: the apogee of the omics trilogy,” Nature Reviews Molecular Cell Biology, vol. 13, no. 4, pp. 263-269, Apr, 2012.
[50] P. G. Pedrioli et al., “A common open representation of mass spectrometry data and its application to proteomics research,” Nature Biotechnology, vol. 22, no. 11, pp. 1459-66, Nov, 2004.
[51] T. Pluskal et al., “MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data,” BMC Bioinformatics, vol. 11, pp. 395, 2010.
[52] N. Psychogios et al., “The Human Serum Metabolome,” Plos One, vol. 6, no. 2, Feb 16, 2011.
[53] J. Quackenbush, “Microarray data normalization and transformation,” Nature Genetics, vol. 32 Suppl, pp. 496-501, Dec, 2002.
[54] A. A. Rahman, I. Z. Shahid, and P. M. Pilowsky, “Neuromedin U causes biphasic cardiovascular effects and impairs baroreflex function in rostral ventrolateral medulla of spontaneously hypertensive rat,” Peptides, vol. 44, pp. 15-24, Jun, 2013.
[55] J. R. Roede et al., “Serum metabolomics of slow vs. rapid motor progression Parkinson's disease: a pilot study,” PLoS One, vol. 8, no. 10, pp. e77629, 2013.
[56] P. Sekula et al., “A Metabolome-Wide Association Study of Kidney Function and Disease in the General Population,” Journal of the American Society of Nephrology, Oct 8, 2015.
[57] D. Senyilmaz et al., “Regulation of mitochondrial morphology and function by stearoylation of TFR1,” Nature, vol. 525, no. 7567, pp. 124-+, Sep 3, 2015.
[58] C. A. Smith et al., “METLIN - A metabolite mass spectral database,” Therapeutic Drug Monitoring, vol. 27, no. 6, pp. 747-751, Dec, 2005.
[59] C. A. Smith et al., “XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification,” Analytical Chemistry, vol. 78, no. 3, pp. 779-87, Feb 1, 2006.
[60] C. Soneson, S. Gerster, and M. Delorenzi, “Batch effect confounding leads to strong bias in performance estimates obtained by cross-validation,” PLoS One, vol. 9, no. 6, pp. e100335, 2014.
[61] E. Szymanska et al., “Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies,” Metabolomics, vol. 8, no. 1, pp. S3-S16, Jun, 2012.
[62] R. Tautenhahn, C. Bottcher, and S. Neumann, “Highly sensitive feature detection for high resolution LC/MS,” BMC Bioinformatics, vol. 9, pp. 504, 2008.
[63] R. Tautenhahn et al., “XCMS Online: A Web-Based Platform to Process Untargeted Metabolomic Data,” Analytical Chemistry, vol. 84, no. 11, pp. 5035-5039, Jun 5, 2012.
[64] E. A. Thevenot et al., “Analysis of the Human Adult Urinary Metabolome Variations with Age, Body Mass Index, and Gender by Implementing a Comprehensive Workflow for Univariate and OPLS Statistical Analyses,” Journal of Proteome Research, vol. 14, no. 8, pp. 3322-3335, Aug, 2015.
[65] I. Tzoulaki et al., “Design and analysis of metabolomics studies in epidemiologic research: a primer on -omic technologies,” American Journal of Epidemiology, vol. 180, no. 2, pp. 129-39, Jul 15, 2014.
[66] K. Uppal et al., “xMSanalyzer: automated pipeline for improved feature detection and downstream analysis of large-scale, non-targeted metabolomics data,” BMC Bioinformatics, vol. 14, pp. 15, Jan 16, 2013.
[67] R. A. van den Berg et al., “Centering, scaling, and transformations: improving the biological information content of metabolomics data,” BMC Genomics, vol. 7, pp. 142, 2006.
[68] E. J. Want et al., “Global metabolic profiling procedures for urine using UPLC-MS,” Nature Protocols, vol. 5, no. 6, pp. 1005-18, Jun, 2010.
[69] D. S. Wishart, “Current Progress in computational metabolomics,” Briefings in Bioinformatics, vol. 8, no. 5, pp. 279-293, Sep, 2007.
[70] D. S. Wishart et al., “HMDB 3.0--The Human Metabolome Database in 2013,” Nucleic Acids Research, vol. 41, no. Database issue, pp. D801-7, Jan, 2013.
[71] D. S. Wishart et al., “HMDB: a knowledgebase for the human metabolome,” Nucleic Acids Research, vol. 37, no. Database issue, pp. D603-10, Jan, 2009.
[72] D. S. Wishart et al., “HMDB: the Human Metabolome Database,” Nucleic Acids Research, vol. 35, no. Database issue, pp. D521-6, Jan, 2007.
[73] S. Wold et al., 3D QSAR in Drug Design; Theory, Methods and Applications, p.^pp. 523 - 550, Leiden: ESCOM Science Publishers, 1993.
[74] S. Wold et al., “The Collinearity Problem in Linear-Regression - the Partial Least-Squares (Pls) Approach to Generalized Inverses,” Siam Journal on Scientific and Statistical Computing, vol. 5, no. 3, pp. 735-743, 1984.
[75] S. Wold, M. Sjostrom, and L. Eriksson, “PLS-regression: a basic tool of chemometrics,” Chemometrics and Intelligent Laboratory Systems, vol. 58, no. 2, pp. 109-130, Oct 28, 2001.
[76] J. G. Xia et al., “MetaboAnalyst 2.0-a comprehensive server for metabolomic data analysis,” Nucleic Acids Research, vol. 40, no. W1, pp. W127-W133, Jul, 2012.
[77] J. G. Xia et al., “MetaboAnalyst: a web server for metabolomic data analysis and interpretation,” Nucleic Acids Research, vol. 37, pp. W652-W660, Jul 1, 2009.
[78] J. G. Xia et al., “MetaboAnalyst 3.0-making metabolomics more meaningful,” Nucleic Acids Research, vol. 43, no. W1, pp. W251-W257, Jul 1, 2015.
[79] H. C. Yang et al., “Genome-wide association study of young-onset hypertension in the Han Chinese population of Taiwan,” PLoS One, vol. 4, no. 5, pp. e5459, 2009.
[80] R. Zamora-Ros et al., “Measuring exposure to the polyphenol metabolome in observational epidemiologic studies: current tools and applications and their limits,” American Journal of Clinical Nutrition, vol. 100, no. 1, pp. 11-26, Jul, 2014.
[81] G. F. Zhang et al., “Metabolomics, Pathway Regulation, and Pathway Discovery,” Journal of Biological Chemistry, vol. 286, no. 27, pp. 23631-23635, Jul 8, 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50219-
dc.description.abstract透過分析成千上百的代謝產物,代謝體數據分析提供很好的途徑來瞭解代謝機制,然而,代謝體數據的品質問題與複雜的批次效果至關重要,必須仰賴適當的統計分析來妥善解決。本研究開發了一套代謝體研究的整合分析工具,包含從最上游的數據前處理乃至下游的關聯性分析的整套完整分析流程。我們所開發的軟體Statistical Metabolomics Analysis – An R Tool(SMART)可以分析不同格式的代謝體數據,視覺化地呈現各種類型的數據,執行波峰調整和註釋,進行樣本與波峰的品質管制,偵測批次效果,進行關聯性分析,並完成波峰識別。使用SMART進行抗高血壓藥物的藥物代謝體研究分析,結果顯示代謝物神經介肽N(neuromedin N)對於血管緊張素轉換酶抑製劑有顯著的相關(在校正了未知潛在群體效果的ANCOVA分析中,得到p值 = 1.56 × 10−4;在校正了隱藏結構效果的ANCOVA分析中,得到p值 = 1.02 × 10−4)。此內生性神經肽(neuropeptide)與神經降壓素(neurotensin)和神經介肽U(neuromedin U)呈現高度相關,而這些蛋白質均參與調節血壓和平滑肌收縮的機制。SMART軟體程式、使用者指南和範例資料均可由http://www.stat.sinica.edu.tw/hsinchou/metabolomics/SMART.htm下載。zh_TW
dc.description.abstractMetabolomics data provide unprecedented opportunities to decipher metabolic mechanisms by analyzing hundreds to thousands of metabolites. Data quality concerns and complex batch effects in metabolomics must be appropriately addressed through statistical analysis. This study developed an integrated analysis tool for metabolomics studies to streamline the complete analysis flow from initial data preprocessing to downstream association analysis. We developed Statistical Metabolomics Analysis – An R Tool (SMART), which can analyze input files with different formats, visually represent various types of data features, implement peak alignment and annotation, conduct quality control for replicate samples and peaks, explore batch effects, perform association analysis, and accomplish peak identification. A pharmacometabolomics study of antihypertensive medication was conducted and data were analyzed using SMART. Neuromedin N was identified as a metabolite significantly associated with angiotensin-converting-enzyme inhibitors in our metabolome-wide association analysis (p = 1.56 × 10−4 in an analysis of covariance (ANCOVA) with an adjustment for unknown latent groups and p = 1.02 × 10−4 in an ANCOVA with an adjustment for hidden substructures). This endogenous neuropeptide is highly related to neurotensin and neuromedin U, which are involved in blood pressure regulation and smooth muscle contraction. The SMART software, a user guide, and example data can be downloaded from http://www.stat.sinica.edu.tw/hsinchou/metabolomics/SMART.htm.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:32:56Z (GMT). No. of bitstreams: 1
ntu-105-D96945014-1.pdf: 2373395 bytes, checksum: 41cccf3e3f592c031b460b9deefe3716 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 i
Acknowledgment ii
Abstract in English iii
Abstract in Chinese iv
Table of contents v
List of tables vii
List of figures viii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Background 1
Chapter 2 SMART description 7
2.1 Data import 9
2.2 Data visualization 9
2.3 Peak alignment (peak detection and RT alignment) and annotation 15
2.4 Data preprocessing 17
2.5 Quality control 18
2.5.1 Peak filtering 18
2.5.2 Sample filtering 18
2.6 Batch effect detection 23
2.7 Association analysis 25
2.8 Peak identification 28
Chapter 3 Antihypertensive pharmacometabolomics study 30
3.1 Description 30
3.2 Results 30
3.2.1 Data visualization 32
3.2.2 Peak alignment and annotation 35
3.2.3 Data preprocessing 35
3.2.4 Quality control 36
3.2.5 Batch effect detection 41
3.2.6 Association analysis 46
3.2.7 Peak identification 53
Chapter 4 Conclusion and discussion 55
References 60
dc.language.isoen
dc.subject關聯性分析zh_TW
dc.subject批次效果zh_TW
dc.subject品質管制zh_TW
dc.subject波峰調整zh_TW
dc.subject質譜儀zh_TW
dc.subject代謝體學zh_TW
dc.subjectSMARTzh_TW
dc.subject波峰識別zh_TW
dc.subject關聯性分析zh_TW
dc.subject批次效果zh_TW
dc.subject品質管制zh_TW
dc.subject波峰調整zh_TW
dc.subject質譜儀zh_TW
dc.subject代謝體學zh_TW
dc.subjectSMARTzh_TW
dc.subject波峰識別zh_TW
dc.subjectquality controlen
dc.subjectSMARTen
dc.subjectmetabolomicsen
dc.subjectmass spectrometryen
dc.subjectpeak alignmenten
dc.subjectbatch effecten
dc.subjectassociation analysisen
dc.subjectpeak identificationen
dc.subjectSMARTen
dc.subjectmetabolomicsen
dc.subjectmass spectrometryen
dc.subjectpeak alignmenten
dc.subjectquality controlen
dc.subjectbatch effecten
dc.subjectassociation analysisen
dc.subjectpeak identificationen
dc.title統計代謝體學研究zh_TW
dc.titleStatistical Metabolomics Studyen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.oralexamcommittee賴飛羆,傅楸善,歐陽彥正,張瑞峰
dc.subject.keywordSMART,代謝體學,質譜儀,波峰調整,品質管制,批次效果,關聯性分析,波峰識別,zh_TW
dc.subject.keywordSMART,metabolomics,mass spectrometry,peak alignment,quality control,batch effect,association analysis,peak identification,en
dc.relation.page67
dc.identifier.doi10.6342/NTU201601553
dc.rights.note有償授權
dc.date.accepted2016-08-03
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
2.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved