請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50211完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張斐章(Fi-John Chang) | |
| dc.contributor.author | Tzu-Chun Yu | en |
| dc.contributor.author | 余慈鈞 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:32:41Z | - |
| dc.date.available | 2017-08-24 | |
| dc.date.copyright | 2016-08-24 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-02 | |
| dc.identifier.citation | 參考文獻
1. Batalla, R.J., Gomez, C.M., & Kondolf, G.M., 2004,“Reservoir-induced hydrological changes in the Ebro River basin (NE Spain)”, Journal of Hydrology, 290(1), 117-136. 2. Chang, F. J., Tsai, W. P., Chen, H. K., Yam, R. S. W., & Herricks, E. E., 2013,“A self-organizing radial basis network for estimating riverine fish diversity”, Journal of Hydrology, 476, 280-289. 3. Horn, H.S., 1966, “Measurement of 'Overlap' in Comparative Ecological Studies”, The American Naturalist, 100(914): 419. 4. Horner-Devine, M.C., Leibold, M.A., Smith, V.H. and Bohannan, B.J.M., 2003, “Bacterial diversity patterns along a gradient of primary productivity”, Ecology Letters, 6, 613–622. 5. Jaccard, P., 1908, “Nouvelles Recherches Sur La Distribution Florale”,Bulletin de la Société vaudoise des Sciences Naturelles, 44, 223-270. 6. Jang, J. S. R., 1993, “ANFIS: adaptive-network-based fuzzy inference system.Systems, Man and Cybernetics”, IEEE Transactions on, 23(3), 665-685. 7. Kivilnoto, K., 1996, “Topology preservation in self-organizing maps. In: Proceedings of ICNN’96, IEE International Conference on Neural Networks”, IEEF, Service Center, Piscataway, pp. 294-299. 8. Kohonen, T., 1982, “Self-organized formation of topologically correct feature maps”, Biological cybernetics, 43(1), 59-69. 9. Kohonen, T., 2001, “Self-organizing maps, ser”,Information Sciences. Berlin: Springer, 30. 10. Lee, C. S., Lee, Y. C., & Chiang, H. M. , 2016, “Abrupt state change of river water quality (turbidity): Effect of extreme rainfalls and typhoons” ,Science of The Total Environment, 557, 91-101. 11. Morisita, M. ,1959, “Measuring of interspecic association and similarity between communities”,Mem. Fac. Sci. Kyushu Univ. Series E, 3, 65-80. 12. Mosley, L. M. ,2015 , “Drought impacts on the water quality of freshwater systems; review and integration”,Earth-Science Reviews, 140, 203-214. 13. Olden, J.D. and Poff, N.L., 2003, “Redundancy and the choice of hydrologic indices for characterizing streamflow regimes”River Research and Applications, 19(2): 101-121. 14. Richter, B.D., Baumgartner, J.V., Powell, J. and Braun, D.P., 1996, “A method for assessing hydrologic alteration within ecosystems”, Conservation Biology, 10: 1163–1174. 15. Semprucci, F., Balsamo, M., & Sandulli, R. , 2016, “Assessment of the ecological quality (EcoQ) of the Venice lagoon using the structure and biodiversity of the meiofaunal assemblages”,Ecological Indicators, 67, 451-457. 16. Stefánsson, A., Končar, N., & Jones, A. J. , 1997, “A note on the gamma test”,Neural Computing & Applications, 5(3), 131-133. 17. Suen, J.P., 2005, “Ecologically based methods for multi-objective water resources management in taiwan”, Ph.D. dissertation, University of Illinois, Urbana. 18. Sugeno, M. and Kang, G.T., 1988, “Structure identification of fuzzy model”, Fuzzy sets and systems, 28(1), 15-33. 19. Takagi, T. and Sugeno, M., 1985, “Fuzzy identification of systems and its applications to modeling and control”, Systems, Man and Cybernetics, IEEE Transactions on, (1), 116-132. 20. Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E, 1980, “The river continuum concept”,Canadian journal of fisheries and aquatic sciences, 37(1), 130-137. 21. Ward, J.V. and Stanford, J.A., 1983, “The intermediate-disturbance hypothesis: an explanation for biotic diversity patterns in lotic ecosystems”, in Fontaine,T.D.III,and Bartell S.M.(Eds),Dynamics of Lotic Ecosystems.Ann Arbor Science,Ann Arbor,MI.pp 347-356. 22. Wilppu, R., 1997, “The Visualisation Capability of Self-Organizing Maps to Detect Deviation in Distribution Control”, TUCS Technical Report No. 153. Turku Centre for Computer Science, Finland. 23. Wronski, T., Dusabe, M. C., Apio, A., Hausdorf, B., & Albrecht, C. , 2015, “Biological assessment of water quality and biodiversity in Rwandan rivers draining into Lake Kivu”,Aquatic Ecology, 49(3), 309-320. 24. 王漢泉,2002,「台灣河川水質魚類指標之研究」,環境檢驗所環境調查研究年報,第9卷:207-236。 25. 朱達仁,2005,「魚類污染耐受指標之建構對納入 IBI 模式評估溪流整治之差異研究」,中華建築學刊,1(2):43-49。 26. 朱達仁,2006,「溪流複合式指標評估模式之建構」,特有生物研究,8(1),35-56。 27. 吳淑涵,2012,「應用極端流量及水溫評估氣候變遷對櫻花鈎吻鮭棲地之衝擊」,臺灣大學生物環境系統工程學研究所學位論文,1-106。 28. 呂映昇,2009,「物理環境因子與魚類棲地喜好度之關係-多變量分析之應用」,成功大學水利及海洋工程學系學位論文。 29. 邱立鈞,2015,「估計臺灣櫻花鉤吻鮭族群數量受防砂壩之影響」,清華大學生物資訊與結構生物研究所學位論文。 30. 胡家豪,2015,「探討流量、水質與魚類群聚之關係」 臺灣大學生物環境系統工程學研究所學位論文, 1-102. 31. 張斐章、張麗秋,2010,「類神經網路導論原理與應用」,滄海書局。 32. 馮豐隆、曾晴賢、甘宸宜,2005,「臺灣溪流地景分類與指標生物之建置-以南崁溪,客雅溪,中港溪為例」,林業研究季刊,27(3):25-36。 33. 經濟部水利署水利規劃試驗所,2010,「河川流態管理於生物多樣性之研究」。 34. 經濟部水利署水利規劃試驗所,2015,「探討河川流量、水質及泥沙量對魚類族群之影響」。 35. 顧玉蓉,2007,「溪流結構物對生態影響之定量評估」,成功大學水利及海洋工程學系學位論文。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50211 | - |
| dc.description.abstract | 臺灣位於亞熱帶季風區,再加上該地區地形及環境之影響,臺灣地區的降雨量分佈豐枯懸殊,水資源管理相當困難。近年來台灣地區隨著工商業發展,經濟及民生活動增加,用水需求大量提升。 為了因應農業、工業、民生等用水需求,於各大流域廣建水庫。然而大型水工結構物卻改變了原本河川之自然環境,阻隔了生態系統間之連結;加上人類活動所產生之民生與工業污水多未經處理即排入河川中,嚴重污染河川之水質,亦對河川生態環境系統造成極大之衝擊。
新店溪流域於2005年至2012年間,有長期且連續之流量、水質及魚類生態之調查;且於水庫的建造及相關的極端事件(颱洪、乾旱事件),亦有詳細之記載。本研究將探討新店溪之流量、水質及水工結構物對魚類生態系統之影響,以了解流量、水質、生態三者間之交互作用,並分析極端事件對於河川生態系統之衝擊,以利日後水資源管理之有效規劃與永續經營。 本研究首先依據台灣生態水文指標系統(Taiwan Ecohydrologic Indicator System, TEIS),將流量資料轉換成月尺度之流態,再以統計方法探討極端事件對於河川魚種組成之影響。接著運用Gamma檢定篩選影響河川魚種相似度之關鍵水質及流態因子,並以類神經網路之自組特徵映射組織網路(Self-Organizing Map, SOM)探討關鍵因子與魚種相似度之間的交互關係,最後以倒傳遞類神經網路(Back Propagation Neural Network, BPNN)及調適性網路模糊推論系統(Adapted Network-Based Fuzzy Inference System, ANFIS)建置魚種相似度推估模式。 根據新店溪流域的研究結果顯示:採樣資料受到極端事件的影響並不明顯,但也有可能是因調查時距過長,無法看出極端事件有無影響。兩測站間採樣結果的差值顯示懸浮固體、電導度、及流量當月十日最大值及最小值為影響河川魚種相似度之重要因子。SOM的聚類結果顯示水質相近之測站有較高的魚種相似度,而流態相近之測站的魚種相似度高,然而在魚種相似度低的情況,流態則無明顯差異。ANFIS的推估模式,可以將輸入的資料特性以隸屬函數呈現,透過與SOM的連結,可建立環境因子與魚種相似度的規則庫。BPNN的推估模式可較ANFIS更準確地計算兩地的魚種相似度。本研究建立了魚種相似度之推估模式,考量河川流態、水質及水工結構物對魚種組成之影響,期能提供未來水資源管理及河川生態保育規劃之參考依據。 | zh_TW |
| dc.description.abstract | Being located in the subtropical monsoon zone along with the topographically steep gradients, Taiwan suffers from extremely unevenly distributed rainfall in both space and time. This condition makes the use and management of water resources particularly difficult. The fast economic growth and urbanization has led to dramatically increased water demands in recent years. Large-scale reservoirs were therefore constructed to satisfy water needs of agricultural, industrial and public sectors, and effective reservoir operations were managed to maximize the use of limited water resources. However, the natural physical environments have been altered by reservoirs and hydraulic facilities. Additionally, the lack of wastewater monitoring programs has deteriorated water quality in rivers. Being concerned with ecological impacts made by the changes of physical and chemical conditions in rivers, this study aims to explore the complicated relationships of river flow, water quality and fish community, examine the impacts of extreme events on riverine fishes, and investigate the influence of hydraulic facilities on eco-hydrological environments for making an environmental- and ecological-friendly water resources management.
In this study, the Shindien River was chosen as the investigative area because long-term (2005-2012) records of river flow, water quality and fish distribution in the river were available. The construction and operational histories of reservoirs and the records of extreme events (typhoons and droughts) were also available. Daily river flows were converted into a flow regime based on Taiwan Ecohydrologic Indicator System (TEIS). Then statistical analyses were conducted to explore the impacts of extreme events on fish species composition. Following that, Gamma Test (GT) was used to determine key factors affecting fish species similarity with respect to water quality parameters and flow regime variables, and the Self-Organizing Map (SOM) was applied to exploring the non-linear relationships among key factors and fish species similarity. Finally, two predicting models were constructed to estimate the fish species similarity by using the Back Propagation Neural Network (BPNN) and the Adapted Network-Based Fuzzy Inference System (ANFIS). The results of statistical analyses indicated that extreme events did not show statistically detectible changes in the surveyed fish species composition, which might be because the time interval of two consecutive surveys was too long. Such phenomena therefore could not clarify the impacts of extreme events on fish species composition. The results of the GT indicated that differences in suspended sediments, electrical conductivity, 10-day maximum flow and 10-day minimum flow of the surveyed month between two sampling sites were obvious and therefore these four variables were identified as key factors affecting fish species similarity. The clustering results of the SOM indicated that two sampling sites with similar water quality showed high fish species similarity, so as two sampling sites with similar flow regimes. Nevertheless, the flow regimes of two sampling sites with low fish species similarity did not make significant difference. The ANFIS model provided advantages of using membership functions to display the characteristics of input data, and when linking with the SOM, it was flexible in developing knowledge-based rules to rationally suggest the effects of environmental factors on fish species similarity. The BPNN model showed better prediction accuracy than the ANFIS. In sum, this study systematically explored the complex influences of flow regime, water quality and reservoirs on fish species composition and well constructed fish similarity prediction models, which can provide useful information for effective and sustainable river ecosystem management. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:32:41Z (GMT). No. of bitstreams: 1 ntu-105-R03622043-1.pdf: 8532173 bytes, checksum: 6635ac11fad1afc8a279bf174d3c471d (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 摘要 I
ABSTRACT III 目錄 VI 表目錄 IX 圖目錄 XI 第一章 前言 1 1.1 研究緣起與目的 1 1.2 章節架構 2 第二章 文獻回顧 3 2.1 河川生態相關研究 3 2.2 探討水工構造物與河川水文生態之關係 4 2.3 極端事件對於河溪環境生態之影響 6 第三章 理論方法概述 9 3.1 臺灣生態水文指標系統 9 3.2 魚類群聚相似分析(JACCARD與MORISITA-HORN) 11 3.3 GAMMA TEST 13 3.4 自組特徵映射組織網路 14 3.5 倒傳遞類神經網路 18 3.6 調適性網路模糊推論系統 20 第四章 研究區域介紹 24 4.1 研究區域 24 4.2 資料蒐集 25 4.2.1 流量資料 26 4.2.2 水質資料 29 4.2.3 魚類採樣資料 30 4.3 研究流程 32 4.4 評估指標 34 第五章 結果與討論 36 5.1 探討極端事件對於魚類群聚間之影響 36 5.2 模式建置與分析結果 51 5.2.1 計算環境因子差值與魚種組成相似度 51 5.2.2 篩選關鍵因子 53 5.2.3 以SOM探討關鍵因子與魚種相似度之交互關係 58 5.2.4 BPNN推估模式 62 5.2.5 ANFIS推估模式 67 5.3 模式綜合探討 71 5.3.1 SOM聚類結果與ANFIS隸屬函數之關聯 72 5.3.2 推估模式之比較 77 第六章 結論與建議 80 6.1 結論 80 6.2 建議 82 第七章 參考文獻 83 附錄一 測站魚類採樣資料 88 附錄二 魚種生態調查努力量調查方法 90 附錄三 輸入項及輸出項之基本統計表 91 附錄四 訓練與驗證之隸屬度對照圖 92 | |
| dc.language.iso | zh-TW | |
| dc.subject | 生態水文 | zh_TW |
| dc.subject | 魚種組成 | zh_TW |
| dc.subject | 魚種相似度 | zh_TW |
| dc.subject | Gamma檢定 | zh_TW |
| dc.subject | 類神經網路 | zh_TW |
| dc.subject | 生態水文 | zh_TW |
| dc.subject | 魚種組成 | zh_TW |
| dc.subject | 魚種相似度 | zh_TW |
| dc.subject | Gamma檢定 | zh_TW |
| dc.subject | 類神經網路 | zh_TW |
| dc.subject | Fish species composition | en |
| dc.subject | Eco-hydrology | en |
| dc.subject | Fish species composition | en |
| dc.subject | Fish Species Similarity | en |
| dc.subject | Gamma Test (GT) | en |
| dc.subject | Artificial Neural Network (ANN) | en |
| dc.subject | Eco-hydrology | en |
| dc.subject | Artificial Neural Network (ANN) | en |
| dc.subject | Gamma Test (GT) | en |
| dc.subject | Fish Species Similarity | en |
| dc.title | 以類神經網路建立環境因子與魚類群聚之間的關係 | zh_TW |
| dc.title | Relating Environmental Factors to the Similarity of Fish Communities Using the Artificial Neural Networks Approach | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 孫建平(Jian-Ping Suen),任秀慧(Rita Sau-Wai Yam),蔡文柄(Wen-Ping Tsai),鄭舒婷(Su-Ting Cheng) | |
| dc.subject.keyword | 生態水文,魚種組成,魚種相似度,Gamma檢定,類神經網路, | zh_TW |
| dc.subject.keyword | Eco-hydrology,Fish species composition,Fish Species Similarity,Gamma Test (GT),Artificial Neural Network (ANN), | en |
| dc.relation.page | 92 | |
| dc.identifier.doi | 10.6342/NTU201601832 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-03 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 8.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
