Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50202
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳基旺
dc.contributor.authorGuan-Yun Chenen
dc.contributor.author陳冠勻zh_TW
dc.date.accessioned2021-06-15T12:32:25Z-
dc.date.available2021-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-03
dc.identifier.citation1. 2016 Alzheimer's disease facts and figures. Alzheimer's & Dementia 12, 459-509.
2. Information received from Alzheimer’s Disease International: World Alzheimer Report 2015 The Global Impact of Dementia (https://www.alz.co.uk/research).
3. Kumar, A.; Singh, A.; Ekavali. A review on Alzheimer's disease pathophysiology and its management: an update. Pharmacological Rep 2015, 67, 195-203.
4. Information received from Alzheimer’s Association (http://www.alz.org/).
5. Kurz, A.; Perneczky, R. Novel insights for the treatment of Alzheimer's disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 373-379
6. Silvestri, R. Boom in the development of non-peptidic β-secretase (BACE 1) inhibitors for the treatment of Alzheimer's disease. Med Res Rev 2009, 29, 295-338
7. Anand, R.; Gill, K. D.; Mahdi, A. A. Therapeutics of Alzheimer's disease: Past, present and future. Neuropharmacology 2014, 76, Part A, 27-50.
8. Barão, S.; Moechars, D.; Lichtenthaler, S. F.; De Strooper, B. BACE 1 Physiological Functions May Limit Its Use as Therapeutic Target for Alzheimer's Disease. Trends Neurosci. 39, 158-169.
9. Guo, T.; Hobbs, D. W. Development of BACE 1 Inhibitors for Alzheimer's Disease. Curr. Med. Chem. 2006, 13, 1811-1829.
10. Ghosh, A. K.; Shin, D.; Koelsch, G.; Lin, X.; Ermolieff, J.; Tang, J. Design of Potent Inhibitors for Human Brain Memapsin 2 (β-Secretase). J. Am. Chem. Soc. 2000, 122, 3522-3523
11. Baxter, E. W.; Conway, K. A.; Kennis, L.; Bischoff, F.; Mercken, M. H.; De Winter, H. L.; Reynolds, C. H.; Tounge, B. A.; Luo, C.; Scott, M. K.; Huang, Y.; Braeken, M.; Pieters, S. M. A.; Berthelot, D. J. C.; Masure, S.; Bruinzeel, W. D.; Jordan, A. D.; Parker, M. H.; Boyd, R. E.; Qu, J.; Alexander, R. S.; Brenneman, D. E.; Reitz, A. B. 2-Amino-3,4-dihydroquinazolines as Inhibitors of BACE-1 (β-Site APP Cleaving Enzyme):  Use of Structure Based Design to Convert a Micromolar Hit into a Nanomolar Lead. J. Med. Chem. 2007, 50, 4261-4264
12. Periasamy, M. New synthetic methods using the TiCl4-NR3 reagent system. ARKIVOC 2002, 2002, 151-156
13. Nilsson, B. M.; Vargas, H. M.; Ringdahl, B.; Hacksell, U. Phenyl-substituted analogs of oxotremorine as muscarinic antagonists. J. Med. Chem. 1992, 35, 285-294.
14. Yin, S.; Zhou, L.; Lin, J.; Xue, L.; Zhang, C. Design, synthesis and biological activities of novel oxazolo[4,5-g]quinazolin-2(1H)-one derivatives as EGFR inhibitors. Eur J Med Chem 2015, 101, 462-475.
15. Wood, D. L Glucagon receptor antagonists, preparation and therapeutic uses. [Int. Patent Appl. WO2005/118542 A1]. 2005. Ref Type: Patent.
16. Song, F.; Lu, S.; Gunnet, J.; Xu, J. Z.; Wines, P.; Proost, J.; Liang, Y.; Baumann, C.; Lenhard, J.; Murray, W. V.; Demarest, K. T.; Kuo, G.-H. Synthesis and Biological Evaluation of 3-Aryl-3-(4-phenoxy)-propionic Acid as a Novel Series of G Protein-Coupled Receptor 40 Agonists. J. Med. Chem. 2007, 50, 2807-2817.
17. Guénin, E.; Monteil, M.; Bouchemal, N.; Prangé, T.; Lecouvey, M. Syntheses of Phosphonic Esters of Alendronate, Pamidronate and Neridronate. European J Org Chem 2007, 2007, 3380-3391.
18. Bonnaud, B.; Cousse, H.; Mouzin, G.; Briley, M.; Stenger, A.; Fauran, F.; Couzinier, J. P. 1-Aryl-2-(aminomethyl)cyclopropanecarboxylic acid derivatives. A new series of potential antidepressants. J. Med. Chem. 1987, 30, 318-325.
19. Amat, M.; Coll, M. D.; Bosch, J.; Espinosa, E.; Molins, E. Total syntheses of the Strychnos indole alkaloids(−)-tubifoline, (−)-tubifolidine, and (−)-19,20-dihydroakuammicine. Tetrahedron: Asymmetry 1997, 8, 935-948.
20. Ramadas, K.; Srinivasan, N. Iron-Ammonium Chloride - A Convenient and Inexpensive Reductant. Synth Commun 1992, 22, 3189-3195.
21. Burke, B. J.; Overman, L. E. Enantioselective Synthesis of Six-Membered Palladacycles Having Metal-Bound Stereogenic Carbons:  Isolation and Reactivity of Palladacycles Containing Readily Accessible β-Hydrogens. J. Am. Chem. Soc. 2004, 126, 16820-16833.
22. Thuy, V. M.; Maitte, P. Sur L'Utilisation De L'Ion Chromate Comme Agent Oxydant Dans La Synthese De Composes Carbonyles A Partir De Derives Halogenes Actives. Bulletin des Sociétés Chimiques Belges 1989, 98, 221-222.
23. Ordonez, M.; de la Cruz-Cordero, R.; Quinones, C.; Gonzalez-Morales, A. Highly diastereoselective synthesis of anti-[gamma]-N-benzylamino-[small beta]-hydroxyphosphonates. Chem. Commun. (Camb.) 2004, 672-673.
24. Bowman, M.-C.; Ballard, T. E.; Ackerson, C. J.; Feldheim, D. L.; Margolis, D. M.; Melander, C. Inhibition of HIV Fusion with Multivalent Gold Nanoparticles. J. Am. Chem. Soc. 2008, 130, 6896-6897.
25. Hu, L, Nitroaryl phosphoramide compositions and methods for targeting and inhibiting undesirable cell growth or proliferation.[Int. Patent Appl. US2004/214798 A1]. 2004. Ref Type: Patent.
26. Milagre, C. D. F.; Milagre, H. M. S.; Moran, P. J. S.; Rodrigues, J. A. R. Chemoenzymatic Synthesis of α-Hydroxy-β-methyl-γ-hydroxy Esters: Role of the Keto−Enol Equilibrium To Control the Stereoselective Hydrogenation in a Key Step. J. Org. Chem. 2010, 75, 1410-1418.
27. Borgati TF, Alves RB, Teixeira RR, Freitas RP, Perdigão TG, Silva SF, et al. Synthesis and Phytotoxic Activity of 1,2,3-Triazole Derivatives. J Braz Chem Soc 2013, 24, 953-961.
28. Marotta, E.; Foresti, E.; Marcelli, T.; Peri, F.; Righi, P.; Scardovi, N.; Rosini, G. CeCl3·7H2O−NaI Catalyzed Hydrooxacyclization of Unsaturated 3-Hydroxy Esters. Org. Lett. 2002, 4, 4451-4453.
29. Tallant, M. D.; Duan, M.; Freeman, G. A.; Ferris, R. G.; Edelstein, M. P.; Kazmierski, W. M.; Wheelan, P. J. Synthesis and evaluation of 2-phenyl-1,4-butanediamine-based CCR5 antagonists for the treatment of HIV-1. Bioorg. Med. Chem. Lett. 2011, 21, 1394-1398.
30. Van Zandt, M. C.; Jones, M. L.; Gunn, D. E.; Geraci, L. S.; Jones, J. H.; Sawicki, D. R.; Sredy, J.; Jacot, J. L.; DiCioccio, A. T.; Petrova, T.; Mitschler, A.; Podjarny, A. D. Discovery of 3-[(4,5,7-Trifluorobenzothiazol-2-yl)methyl]indole-N-acetic Acid (Lidorestat) and Congeners as Highly Potent and Selective Inhibitors of Aldose Reductase for Treatment of Chronic Diabetic Complications. J. Med. Chem. 2005, 48, 3141-3152
31. Abaee, M. S.; Sharifi, R.; Mojtahedi, M. M. Room-Temperature Cannizzaro Reaction under Mild Conditions Facilitated by Magnesium Bromide Ethyl Etherate and Triethylamine. Org. Lett.2005, 7, 5893-5895.
32. Stachel, S. J.; Coburn, C. A.; Steele, T. G.; Jones, K. G.; Loutzenhiser, E. F.; Gregro, A. R.; Rajapakse, H. A.; Lai, M.-T.; Crouthamel, M.-C.; Xu, M.; Tugusheva, K.; Lineberger, J. E.; Pietrak, B. L.; Espeseth, A. S.; Shi, X.-P.; Chen-Dodson, E.; Holloway, M. K.; Munshi, S.; Simon, A. J.; Kuo, L.; Vacca, J. P. Structure-Based Design of Potent and Selective Cell-Permeable Inhibitors of Human β-Secretase (BACE-1). J. Med. Chem. 2004, 47, 6447-6450
33. Stuart, D. R.; Bertrand-Laperle, M.; Burgess, K. M. N.; Fagnou, K. Indole Synthesis via Rhodium Catalyzed Oxidative Coupling of Acetanilides and Internal Alkynes. J. Am. Chem. Soc. 2008, 130, 16474-16475.
34. Pajouhesh, H.; Lenz, G. R. Medicinal Chemical Properties of Successful Central Nervous System Drugs. NeuroRx 2005, 2, 541-553.
35. Ghosh, A. K.; Pandey, S.; Gangarajula, S.; Kulkarni, S.; Xu, X.; Rao, K. V.; Huang, X.; Tang, J. Bioorg. Med. Chem. Lett. 2012, 22, 5460-5465.
36. Kumpaty, H. J.; Bhattacharyya, S.; Rehr, E. W.; Gonzalez, A. M. Synthesis 2003, 14, 2206-2210.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50202-
dc.description.abstract本論文主旨在於設計與合成喹唑啉(quinazoline)衍生物作為潛能的β位澱粉樣潛體蛋白切割酵素(β-site amyloid precursor protein cleaving enzyme 1; BACE 1)的抑制劑,內容主要合成以喹唑啉為核心結構的十個化合物8, 60c-f, 61b-d, 80a-b,以及以喹唑啉酮(quinazolinone)為核心結構的四個化合物70-73。在方法開發上面總共分成四種途徑進行實驗設計,分別為兩種胺基的還原反應(reductive amination)及兩種親核性取代反應(nucleophilic substitution),其中嘗試出途徑D (Approach D)為最佳合成方法。
根據楊森製藥公司所得到的化合物6a作為先導化合物,進行scaffold hopping計算及假設後,篩選出最具有潛力的化合物進行合成設計,根據折疊結果說明化合物8和化合物6a有一模一樣的折疊模式,且化合物8顯示良好抑制活性(IC50 = 0.75 µM),間接說明化合物8在BACE 1空間中與化合物6a也有相同分布情形。從化合物8, 60c及61b-c的結果中發現4號位是飽和碳鏈取代時,活性會隨著碳鏈增長而下降;化合物60f在碳鏈末端增加羥基企圖增加親水性,而活性依然下降,因此說明碳鏈的長度越短、取代基親脂性越高會讓抑制BACE 1的活性越好。根據化合物9及60d-e的結果顯示取代基是甲基環己烷時,延長了環己烷的位置,因此能夠有效地折疊進入袋中,進而使得結構上的胺基與Asp228及Asp32間的距離變短,更能產生較佳活性。根據化合物61b-d結果我們推測pyrazolyl基團的存在,會推擠BACE 1結構中的S1口袋,因此4號位的取代基需要越小的基團才能夠讓胺基形成氫鍵的距離變短,提供較佳的抑制活性。依據上述推論,我們間接證明出S1口袋及S1’口袋與目標化合物的相對位置。甚至藉由化合物70-73的結果證明喹唑啉結構中的一級胺為提供BACE 1抑制活性主要官能基。
綜合上述的活性結果及物化性質預測結果,我們選出化合物60d (IC50 = 0.63 µM)及化合物61e (IC50 = 0.38 µM)作為未來最有機會發展的BACE 1抑制劑。
zh_TW
dc.description.abstractThe aim of this thesis is to design and synthesize quinazoline and quinazolinone derivatives as potential inhibitors of β-site amyloid precursor protein cleaving enzyme 1 (BACE 1). The (S)-4-(2-amino-6-phenoxyquinazolin-3(4H)-yl)-N,4-dicyclo -hexyl-N-methylbutanamide (6a), invented by Johnson and Johnson as a new chemotype with BACE 1 inhibitory activity was selected as the lead molecule. Scaffold hopping strategy was applied to design two novel series of compounds bearing: (1) quinazoline core (8, 60c-f, 61b-d and 80a-b), and (2) quinazolinone core (70-73) as potential BACE 1 inhibitors.
For synthesis of target molecules, in a key reaction step of coupling side chain with quinazoline or quinazolinone core four synthetic approaches (A-D) were considered. Two of these are based on reductive amination and other two are based on nucleophilic substitution reaction. Apporach D in which the side chain amino group undergoes necleophilic substitution reaction with quinazoline or quinazolinone core bearing suitable leaving group was found to be the most suitable approach for the synthesis of target molecules.
The initial computational studies supporting the design hypothesis, indicated that compound 8 will mimic the bioactive topology of lead compound 6a by forming hairpin turn of the side chain and anchor itself with the BACE 1 active site by the virtue of an extensive hydrogen bonding by array of the two catalytic aspartic acids with the exocyclic amino group. This has been evident from its inhibition of BACE 1 enzyme activity (IC50 = 0.75 µM).
Structure-activity-relationship studies revealed that introduction of methyl (8), cyclohexylmethyl (60c) and benzyl (60d) at C4 of quinazoline core, can retain the BACE 1 inhibitory activity. Based on simulation studies, evident by results of biochemical assay it can be postulated that these substituents can maintain the hairpin topology of sidechain similar to 6a and occupy the S1′ pocket of the BACE 1 enzyme. Interestingly, comparison of 9 (R1 = cyclohexyl, IC50 = 1.44 µM) and 60d (R1 = cyclohexylmethyl, IC50 = 0.63 µM cyclohexylmethyl) suggested that extra methyl group will extend the cyclohexane towards the S1′ pocket. Comparison of BACE 1 inhibition profile of compounds with quinazoline core (8-10, 60c-f and 61b-d) and quinazolinone (70-73) indicated that the exocyclic amino group is crucial for the hydrogen bonding with catalytic aspartate of enzyme active site. It can be hypothesized that N-pyrazolyl substituent on side chain will occupy the critical S1 binding pocket, however it is not compatible with larger substitution at C4 of quinazoline core (compare 61b, IC50 = 0.38 µM; 61c, IC50 = 2.41 µM; and 61d, IC50 = 2.00 µM). Finally, it was found that attempt to reduce lipophilicty of molecule by introduction of hydroxyl group at C4 of quinazoline core exemplified by 60f was not tolerated for BACE 1 inhibitory activity.
Based on the results of biochemical assay and the computational calculation of druglike score, compound 60d (IC50 = 0.63 µM) and 61b (IC50 = 0.38 µM) were selected as potential leads for the further development as BACE 1 inhibitors.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:32:25Z (GMT). No. of bitstreams: 1
ntu-105-R03423006-1.pdf: 6795263 bytes, checksum: 4bf4525b8da3efa71390db9a49829fdc (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents壹、緒論 1
1.1 失智症流行病學 1
1.2 阿茲海默症介紹 2
1.3 阿茲海默症病理上假說及機制 3
1.4 針對β澱粉樣蛋白(Aβ)路徑的藥物發展策略 4
1.5 β位澱粉樣前體蛋白切割酵素(β-site amyloid precursor protein cleaving enzyme 1; BACE 1) 6
1.6 總結 7
貳、實驗目的與設計 8
3.1 目標化合物之合成策略 11
3.2 目標化合物方法開發 12
3.2.1 Approach A: Reductive amination 12
3.2.2 Approach B: Reductive amination 13
3.2.3 Approach C: nucleophilic substitution 16
3.2.4 Approach D: Nucleophilic substitution 17
3.2.5 Approach D的最佳化 18
3.3 目標化合物之合成 20
3.3.1 參考化合物6a之合成 20
3.3.2 化合物52b-f之合成 22
3.3.3 化合物16及57之合成 22
3.3.4 目標化合物60c-d及61b-d之合成 23
3.3.5 目標化合物60f之合成 24
3.3.6 目標化合物70-73之合成 26
3.3.7 目標化合物81a-b的合成 27
3.3 生物活性測試 30
3.4 目標化合物物化性質預測 32
肆、結論 37
伍、實驗部分 38
5.1 實驗儀器與檢驗方法 38
5.2 試藥、溶劑 38
5.3 合成步驟 38
5.4 生物活性評估 71
5.4.1 生物活性測試方法 71
六、參考文獻 72
dc.language.isozh-TW
dc.subject2-胺基3zh_TW
dc.subject4-二氫?唑zh_TW
dc.subject2-胺基3zh_TW
dc.subjectβ位澱粉樣前體蛋白切割酵素zh_TW
dc.subject4-二氫?唑zh_TW
dc.subjectβ位澱粉樣前體蛋白切割酵素zh_TW
dc.subjectBACE 1en
dc.subjectinhibitorsen
dc.subjectβ-site amyloid precursor protein cleaving enzyme 1en
dc.subjectβ-site amyloid precursor protein cleaving enzyme 1en
dc.subjectBACE 1en
dc.subjectinhibitorsen
dc.title"設計和合成2-胺基3,4-二氫喹唑啉衍生物作為潛在β位澱粉樣前體蛋白切割酵素抑制劑"zh_TW
dc.titleDesign and Synthesis of 2-Amino-3,4-dihydroquinazoline Derivative as Potential β-site amyloid precursor protein cleaving enzyme 1 (BACE 1)Inhibitorsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王光昭,忻凌偉,梁碧惠
dc.subject.keywordβ位澱粉樣前體蛋白切割酵素,2-胺基3,4-二氫?唑,zh_TW
dc.subject.keywordβ-site amyloid precursor protein cleaving enzyme 1,BACE 1,inhibitors,en
dc.relation.page113
dc.identifier.doi10.6342/NTU201601849
dc.rights.note有償授權
dc.date.accepted2016-08-03
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
6.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved