請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50192完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃漢邦(Han-Pang Huang),黃恆立(Heng-Li Huang) | |
| dc.contributor.author | Shau-Tung Ku | en |
| dc.contributor.author | 顧紹彤 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:32:07Z | - |
| dc.date.available | 2021-08-24 | |
| dc.date.copyright | 2016-08-24 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-03 | |
| dc.identifier.citation | [1] R. Adell, 'Tissue integrated prostheses in clinical dentistry,' International Dental Journal, vol. 35, no. 4, pp. 259–265, Dec. 1985.
[2] R. Adell, U. Lekholm, B. Rockler, and P. Brånemark, 'A 15-year study of osseointegrated implants in the treatment of the edentulous jaw,' International Journal of Oral Surgery, vol. 10, no. 6, pp. 387–416, Dec. 1981. [3] E. Agliardi, S. Panigatti, M. Clericò, C. Villa, and P. Malò, 'Immediate rehabilitation of the edentulous jaws with full fixed prostheses supported by four implants: Interim results of a single cohort prospective study,' Clinical Oral Implants Research, vol. 21, no. 5, pp. 459–465, Jan. 2010. [4] C. Aparicio, P. Perales, and B. Rangert, 'Tilted implants as an alternative to maxillary sinus grafting: A clinical, radiologic, and periotest study,' Clinical Implant Dentistry and Related Research, vol. 3, no. 1, pp. 39–49, Jul. 2001. [5] G. Atmaram and H. Mohammed, 'Estimation of physiologic stresses with a natural tooth considering fibrous PDL structure,' Journal of Dental Research, vol. 60, no. 5, pp. 873–877, May 1981. [6] L. Baggi, I. Cappelloni, F. Maceri, and G. Vairo, 'Stress-based performance evaluation of osseointegrated dental implants by finite-element simulation,' Simulation Modelling Practice and Theory, vol. 16, no. 8, pp. 971–987, Sep. 2008. [7] L. Baggi, S. Pastore, D. Girolamo, and G. Vairo, 'Implant-bone load transfer mechanisms in complete-arch prostheses supported by four implants: A three-dimensional finite element approach,' Journal of Prosthetic Dentistry, vol. 109, no. 1, pp. 9–21, Jan. 2013. [8] M. Beek, J. Koolstra, van Ruijven, and van Eijden, 'Three-dimensional finite element analysis of the human temporomandibular joint disc,' Journal of Biomechanics, vol. 33, no. 3, pp. 307–316, Feb. 2000. [9] C. Bellini et al., 'A finite element analysis of tilted versus nontilted implant configurations in the edentulous maxilla,' International Journal of Prosthodontics, vol. 22, no. 2, pp. 155–157, May 2009. [10] M. Bevilacqua, T. Tealdo, F. Pera, M. Menini, A. Mossolov, and C. Drago, 'Three-dimensional finite element analysis of load transmission using different implant inclinations and cantilever lengths,' International Journal of Prosthodontics, vol. 21, no. 6, pp. 539–542, Jan. 2009. [11] M. Bevilacqua, T. Tealdo, M. Menini, F. Pera, A. Mossolov, and C. Drago, 'The influence of cantilever length and implant inclination on stress distribution in maxillary implant-supported fixed dentures,' Journal of Prosthetic Dentistry, vol. 105, no. 1, pp. 5–13, Jan. 2011. [12] A. Bonnet, M. Postaire, and P. Lipinski, 'Biomechanical study of mandible bone supporting a four-implant retained bridge: Finite element analysis of the influence of bone anisotropy and foodstuff position,' Medical Engineering and Physics, vol. 31, no. 7, pp. 806–815, Apr. 2009. [13] L. Borchers and P. Reichart, 'Three-dimensional stress distribution around a dental implant at different stages of interface development,' Journal of Dental Research, vol. 62, no. 2, pp. 155–159, Feb. 1983. [14] P. Brånemark, B. Svensson, and van Steenberghe, 'Ten-year survival rates of fixed prostheses on four or six implants ad modum Brånemark in full edentulism,' Clinical Oral Implants Research, vol. 6, no. 4, pp. 227–231, Dec. 1995. [15] J. Brunski, D. Puleo, and A. Nanci, 'Biomaterials and biomechanics of oral and maxillofacial implants: Current status and future developments,' International Journal of Oral and Maxillofacial Implants, vol. 15, no. 1, pp. 15–46, Mar. 2000. [16] A. Cağlar, C. Aydin, J. Ozen, C. Yilmaz, and T. Korkmaz, 'Effects of mesiodistal inclination of implants on stress distribution in implant-supported fixed prostheses,' International Journal of Oral and Maxillofacial Implants, vol. 21, no. 1, pp. 36–44, Mar. 2006. [17] R. Calandriello and M. Tomatis, 'Simplified treatment of the atrophic posterior maxilla via immediate/early function and tilted implants: A prospective 1-year clinical study,' Clinical Implant Dentistry and Related Research, vol. 7, no. 1, pp. 1-12, Sep. 2005. [18] M. Capelli, F. Zuffetti, D. Fabbro, and T. Testori, 'Immediate rehabilitation of the completely edentulous jaw with fixed prostheses supported by either upright or tilted implants: A multicenter clinical study,' International Journal of Oral and Maxillofacial Implants, vol. 22, no. 4, pp. 639–644, Oct. 2007. [19] F. Carinci et al., 'Alveolar ridge Augmentation: A comparative longitudinal study between Calvaria and iliac crest bone Grafts,' Journal of Oral Implantology, vol. 31, no. 1, pp. 39–45, Feb. 2005. [20] L. Casas, P. Ferreira, C. Cimini, E. Toledo, L. Barra, and M. Cruz, 'Comparative 3D finite element stress analysis of straight and angled wedge-shaped implant designs,' International Journal of Oral and Maxillofacial Implants, vol. 23, no. 2, pp. 215–225, Jun. 2008. [21] H. Chun, D. Park, C. Han, S. Heo, Heo, and J. Koak, 'Stress distributions in maxillary bone surrounding overdenture implants with different overdenture attachments,' Journal of Oral Rehabilitation, vol. 32, no. 3, pp. 193–205, Feb. 2005. [22] H. Chun, H. Shin, C. Han, and S. Lee, 'Influence of implant abutment type on stress distribution in bone under various loading conditions using finite element analysis,' International Journal of Oral and Maxillofacial Implants, vol. 21, no. 2, pp. 195–202, Apr. 2006. [23] M. Cruz, T. Wassall, E. Toledo, L. Barra, and A. Lemonge, 'Three-dimensional finite element stress analysis of a cuneiform-geometry implant,' International Journal of Oral and Maxillofacial Implants, vol. 18, no. 5, pp. 675–684, Oct. 2003. [24] M. Daas, G. Dubois, A. Bonnet, P. Lipinski, and C. Rignon-Bret, 'A complete finite element model of a mandibular implant-retained overdenture with two implants: Comparison between rigid and resilient attachment configurations,' Medical Engineering and Physics, vol. 30, no. 2, pp. 218–225, Mar. 2007. [25] V. Demenko, I. Linetskiy, K. Nesvit, and A. Shevchenko, 'Ultimate masticatory force as a criterion in implant selection,' Journal of Dental Research, vol. 90, no. 10, pp. 1211–1215, Aug. 2011. [26] D. DeTolla, S. Andreana, A. Patra, R. Buhite, and B. Comella, 'Role of the finite element model in dental implants,' Journal of Oral Implantology, vol. 26, no. 2, pp. 77–81, Feb. 2002. [27] Ö. Doğan, N. Polat, S. Polat, E. Şeker, and E. Gül, 'Evaluation of ‘all-on-four’ concept and alternative designs with 3D finite element analysis method,' Clinical Implant Dentistry and Related Research, vol. 16, no. 4, pp. 501–510, Dec. 2012. [28] G. Dubois, M. Daas, A. Bonnet, and P. Lipinski, 'Biomechanical study of a prosthetic solution based on an angled abutment: Case of upper lateral incisor,' Medical Engineering and Physics, vol. 29, no. 9, pp. 989–998, Dec. 2006. [29] J. Geng, K. Tan, and G. Liu, 'Application of finite element analysis in implant dentistry: A review of the literature,' Journal of Prosthetic Dentistry, vol. 85, no. 6, pp. 585–598, Jun. 2001. [30] S. Hansson and A. Ekestubbe, 'Area moments of inertia as a measure of the mandible stiffness of the implant patient,' Clinical Oral Implants Research, vol. 15, no. 4, pp. 450–458, Jul. 2004. [31] E. Holmgren, R. Seckinger, L. Kilgren, and F. Mante, 'Evaluating parameters of osseointegrated dental implants using finite element analysis--a two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction,' Journal of Oral Implantology, vol. 24, no. 2, pp. 80–88, Dec. 1998. [32] H. Iplikçioğlu and K. Akça, 'Comparative evaluation of the effect of diameter, length and number of implants supporting three-unit fixed partial prostheses on stress distribution in the bone,' Journal of Dentistry, vol. 30, no. 1, pp. 41–46, Dec. 2001. [33] S. Jivraj and W. Chee, 'Treatment planning of implants in posterior quadrants,' British Dental Journal, vol. 201, no. 1, pp. 13–23, Jul. 2006. [34] A. Khatami and C. Smith, '‘All-on-Four’ immediate function concept and clinical report of treatment of an edentulous mandible with a fixed complete denture and milled titanium framework,' Journal of Prosthodontics, vol. 17, no. 1, pp. 47–51, Oct. 2007. [35] T. Kitagawa, Y. Tanimoto, K. Nemoto, and M. Aida, 'Influence of cortical bone quality on stress distribution in bone around dental implant,' Dental Materials Journal, vol. 24, no. 2, pp. 219–224, Jul. 2005. [36] J. H. Koolstra, 'Number crunching with the human Masticatory system,' Journal of Dental Research, vol. 82, no. 9, pp. 672–676, Sep. 2003. [37] L. Krekmanov, M. Kahn, B. Rangert, and H. Lindström, 'Tilting of posterior mandibular and maxillary implants for improved prosthesis support,' International Journal of Oral and Maxillofacial Implants, vol. 15, no. 3, pp. 405–414, Jun. 2000. [38] A. J. C. Ladd and J. H. Kinney, 'Numerical errors and uncertainties in finite-element modeling of trabecular bone,' Journal of Biomechanics, vol. 31, no. 10, pp. 941–945, Oct. 1998. [39] S. Liao, R. Tong, and J. Dong, 'Anisotropic finite element modeling for patient-specific mandible,' Computer Methods and Programs in Biomedicine, vol. 88, no. 3, pp. 197–209, Nov. 2007. [40] S. Liao, R. Tong, and J. Dong, 'Influence of anisotropy on peri-implant stress and strain in complete mandible model from CT,' Computerized Medical Imaging and Graphics, vol. 32, no. 1, pp. 53–60, Jan. 2008. [41] L. Lum and J. Osier, 'Load transfer from endosteal implants to supporting bone: An analysis using statics. Part one: Horizontal loading,' Journal of Oral Implantology, vol. 18, no. 4, pp. 343–348, Jan. 1992. [42] Y. Maeda, J. Miura, I. Taki, and M. Sogo, 'Biomechanical analysis on platform switching: Is there any biomechanical rationale?,' Clinical Oral Implants Research, vol. 18, no. 5, pp. 581–584, Jul. 2007. [43] P. Maló, B. Rangert, and M. Nobre, '‘All-on-Four’ immediate-function concept with Brånemark system implants for completely edentulous mandibles: A retrospective clinical study,' Clinical Implant Dentistry and Related Research, vol. 5, no. 1, pp. 2–9, Apr. 2003. [44] P. Maló, B. Rangert, and M. Nobre, 'All-on-4 immediate-function concept with Brånemark system implants for completely edentulous maxillae: A 1-year retrospective clinical study,' Clinical Implant Dentistry and Related Research, vol. 7, no. 1, pp. 88-94, Sep. 2005. [45] P. Maló, de Araujo, and A. Lopes, 'The use of computer-guided flapless implant surgery and four implants placed in immediate function to support a fixed denture: Preliminary results after a mean follow-up period of thirteen months,' Journal of Prosthetic Dentistry, vol. 97, no. 6, pp. 26-34, Apr. 2008. [46] P. Maló, de Araújo, and B. Rangert, 'Short implants placed one-stage in maxillae and mandibles: A retrospective clinical study with 1 to 9 years of follow-up,' Clinical Implant Dentistry and Related Research, vol. 9, no. 1, pp. 15–21, Mar. 2007. [47] P. Maló, N. Mde, U. Petersson, and S. Wigren, 'A pilot study of complete edentulous rehabilitation with immediate function using a new implant design: Case series,' Clinical Implant Dentistry and Related Research, vol. 8, no. 4, pp. 223–232, Nov. 2006. [48] T. Mattsson, P. Köndell, G. Gynther, U. Fredholm, and A. Bolin, 'Implant treatment without bone grafting in severely resorbed edentulous maxillae,' Journal of Oral and Maxillofacial Surgery, vol. 57, no. 3, pp. 281–287, Mar. 1999. [49] H. Meijer, J. Kuiper, F. Starmans, and F. Bosman, 'Stress distribution around dental implants: Influence of superstructure, length of implants, and height of mandible,' Journal of Prosthetic Dentistry, vol. 68, no. 1, pp. 96–102, Jul. 1992. [50] A. Natali, P. Pavan, and A. Ruggero, 'Analysis of bone-implant interaction phenomena by using a numerical approach,' Clinical Oral Implants Research, vol. 17, no. 1, pp. 67–74, Jan. 2006. [51] NobelActive – an implant like no other, The unique implant design for high primary stability and esthetic excellence. Retrieved 5 May, 2016, from https://www.nobelbiocare.com/se/en/home/products-and-solutions/implant-systems/nobelactive.html [52] NobelSpeedy – the efficient implant, The original and widely documented implant for the All-on-4® treatment concept. Retrieved 5 May, 2016, from https://www.nobelbiocare.com/nz/en/home/products-and-solutions/implant-systems/nobelspeedy.html [53] T. Nomura, E. Gold, M. Powers, S. Shingaki, and J. Katz, 'Micromechanics/structure relationships in the human mandible,' Dental Materials, vol. 19, no. 3, pp. 167–173, Mar. 2003. [54] A. O’Mahony, J. Williams, and P. Spencer, 'Anisotropic elasticity of cortical and cancellous bone in the posterior mandible increases peri-implant stress and strain under oblique loading,' Clinical Oral Implants Research, vol. 12, no. 6, pp. 648–657, Dec. 2001. [55] H. R. Ortman, 'Factors of bone resorption of the residual ridge,' Journal of Prosthetic Dentistry, vol. 12, no. 3, pp. 429–440, May 1962. [56] A. Ortorp and T. Jemt, 'Clinical experiences of CNC-milled titanium frameworks supported by implants in the edentulous jaw: 1-year prospective study,' Clinical Implant Dentistry and Related Research, vol. 2, no. 1, pp. 2–9, May 2001. [57] C. Petrie and J. Williams, 'Comparative evaluation of implant designs: Influence of diameter, length, and taper on strains in the alveolar crest. A three-dimensional finite-element analysis,' Clinical Oral Implants Research, vol. 16, no. 4, pp. 486–494, Aug. 2005. [58] J. Rho, R. Ashman, and C. Turner, 'Young’s modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements,' Journal of Biomechanics, vol. 26, no. 2, pp. 111–119, Feb. 1993. [59] J. W. Rohen, E. Lütjen-Drecoll, and C. Yokochi, Color Atlas of Anatomy: A photographic study of the human body, 7th Edition, Baltimore: Lippincott Williams and Wilkins, pp. 21, 2010. [60] J. W. Rohen, E. Lütjen-Drecoll, and C. Yokochi, Color Atlas of Anatomy: A photographic study of the human body, 7th Edition, Baltimore: Lippincott Williams and Wilkins, pp. 52, 2010. [61] J. W. Rohen, E. Lütjen-Drecoll, and C. Yokochi, Color Atlas of Anatomy: A photographic study of the human body, 7th Edition, Baltimore: Lippincott Williams and Wilkins, pp. 57, 2010. [62] J. W. Rohen, E. Lütjen-Drecoll, and C. Yokochi, Color Atlas of Anatomy: A photographic study of the human body, 7th Edition, Baltimore: Lippincott Williams and Wilkins, pp. 68, 2010. [63] A. Rosén and G. Gynther, 'Implant treatment without bone grafting in edentulous severely resorbed maxillas: A long-term follow-up study,' Journal of Oral and Maxillofacial Surgery, vol. 65, no. 5, pp. 1010–1016, Apr. 2007. [64] T. Satoh, Y. Maeda, and Y. Komiyama, 'Biomechanical rationale for intentionally inclined implants in the posterior mandible using 3D finite element analysis,' International Journal of Oral and Maxillofacial Implants, vol. 20, no. 4, pp. 533–539, Sep. 2005. [65] A. Sertgöz and S. Güvener, 'Finite element analysis of the effect of cantilever and implant length on stress distribution in an implant-supported fixed prosthesis,' Journal of Prosthetic Dentistry, vol. 76, no. 2, pp. 165–169, Aug. 1996. [66] J. Shackleton, L. Carr, J. Slabbert, and P. Becker, 'Survival of fixed implant-supported prostheses related to cantilever lengths,' Journal of Prosthetic Dentistry, vol. 71, no. 1, pp. 23–26, Jan. 1994. [67] G. Silva, J. Mendonça, L. Lopes, and J. Landre, 'Stress patterns on implants in prostheses supported by four or six implants: A three-dimensional finite element analysis,' International Journal of Oral and Maxillofacial Implants, vol. 25, no. 2, pp. 239–246, Apr. 2010. [68] V. Staden, H. Guan, and Y. Loo, 'Application of the finite element method in dental implant research,' Computer Methods in Biomechanics and Biomedical Engineering, vol. 9, no. 4, pp. 257–270, Nov. 2006. [69] 8570 Mandible with moderate atrophy. Retrieved 5 May, 2016, from https://www.synbone.ch/wEnglish/catalogue/suche.php?action=search&script=%2FwEnglish%2Fcatalogue%2FwScripts%2Fsuche.php&navanchor=1010000&term=8570&imageField.x=0&imageField.y=0&imageField=Suchen [70] 8571 Mandible with slight atrophy. Retrieved 5 May, 2016, from https://www.synbone.ch/wEnglish/catalogue/suche.php?action=search&script=%2FwEnglish%2Fcatalogue%2FwScripts%2Fsuche.php&navanchor=1010000&term=8571&imageField.x=0&imageField.y=0&imageField=Suchen [71] 8572 Mandible with severe atrophy. Retrieved 5 May, 2016, from https://www.synbone.ch/wEnglish/catalogue/suche.php?action=search&script=%2FwEnglish%2Fcatalogue%2FwScripts%2Fsuche.php&navanchor=1010000&term=8572&imageField.x=0&imageField.y=0&imageField=Suchen [72] S. Tada, R. Stegaroiu, E. Kitamura, O. Miyakawa, and H. Kusakari, 'Influence of implant design and bone quality on stress/strain distribution in bone around implants: A 3-dimensional finite element analysis,' International Journal of Oral and Maxillofacial Implants, vol. 18, no. 3, pp. 357–368, Jun. 2003. [73] Y. Takayama, T. Yamada, O. Araki, T. Seki, and T. Kawasaki, 'The dynamic behaviour of a lower complete denture during unilateral loads: Analysis using the finite element method,' Journal of Oral Rehabilitation, vol. 28, no. 11, pp. 1064–1074, Nov. 2001. [74] E. Tashkandi, B. Lang, and M. Edge, 'Analysis of strain at selected bone sites of a cantilevered implant-supported prosthesis,' Journal of Prosthetic Dentistry, vol. 76, no. 2, pp. 158–164, Aug. 1996. [75] T. Testori, D. Fabbro, M. Capelli, F. Zuffetti, L. Francetti, and R. Weinstein, 'Immediate occlusal loading and tilted implants for the rehabilitation of the atrophic edentulous maxilla: 1-year interim results of a multicenter prospective study,' Clinical Oral Implants Research, vol. 19, no. 3, pp. 227–232, Jan. 2008. [76] P. Trainor, K. McLachlan, and W. McCall, 'Modelling of forces in the human masticatory system with optimization of the angulations of the joint loads,' Journal of Biomechanics, vol. 28, no. 7, pp. 829–843, Jul. 1995. [77] R. Truhlar, I. Orenstein, H. Morris, and S. Ochi, 'Distribution of bone quality in patients receiving endosseous dental implants,' Journal of Oral and Maxillofacial Surgery, vol. 55, no. 12, pp. 38–45, Dec. 1997. [78] F. Watanabe, Y. Hata, S. Komatsu, T. Ramos, and H. Fukuda, 'Finite element analysis of the influence of implant inclination, loading position, and load direction on stress distribution,' Odontology, vol. 91, no. 1, pp. 31–36, Sep. 2003. [79] S. White, A. Caputo, and T. Anderkvist, 'Effect of cantilever length on stress transfer by implant-supported prostheses,' Journal of Prosthetic Dentistry, vol. 71, no. 5, pp. 493–499, May 1994. [80] A. Zampelis, B. Rangert, and L. Heijl, 'Tilting of splinted implants for improved prosthodontic support: A two-dimensional finite element analysis,' Journal of Prosthetic Dentistry, vol. 97, no. 6, Apr. 2008. [81] Van Zyl, N. Grundling, C. Jooste, and E. Terblanche, 'Three-dimensional finite element model of a human mandible incorporating six osseointegrated implants for stress analysis of mandibular cantilever prostheses,' International Journal of Oral and Maxillofacial Implants, vol. 10, no. 1, pp. 51–57, Jan. 1995. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50192 | - |
| dc.description.abstract | 這項研究的目的在於針對在不同萎縮程度下顎骨下,使用?All-on-four”植牙手術方式,在不同鬆質骨骼強度、植體種類、後方質體植入角度及不同植體長度,承受咀嚼力時周遭骨質的受力。
?All-on-four”是一種植牙手術方式,藉由植入四根植體於兩頦孔之間,用以支撐及固定全口無牙患者之假牙。然而,因應不同手術環境需考量多種植牙時可能面臨的變數。本研究藉由CT掃描,建立兩種三維下顎全口無牙的下顎骨模型,一種代表輕微下顎骨萎縮,另一種則是中度下顎骨萎縮。每一種萎縮骨骼分別都有兩種不同強度的鬆質骨。如此設計,是為了能夠模擬不同生理及病理狀況的病人骨骼。此外,就植體選擇方面,本研究選擇NobelActive及NobelSpeedy兩種植體,並使用長、中、短三種植體長度。在植體放置分面,前側植體垂直植入下顎骨,而後側植體則有傾斜30度以及垂直兩種植入方式。咀嚼力受力則分別使用55 N、65 N及150 N,分別代表側門牙、犬齒及第二大臼齒咀嚼時所施加的力量。當變數設定完成,便能模擬出靜力下周遭骨質的受力。 根據有限元素分析在四根植體支撐下所得到的受力的大小以及分布,我們將得到在環境下受力表現最佳的植體,並給予臨床醫師使用植體種類、長度及傾斜角度的建議,能夠減緩病患在治療療程中有骨質劣化和吸收等問題。 | zh_TW |
| dc.description.abstract | The aim of this thesis is to evaluate the von Mises stress in the peri-implant bone of an “All-on-four” implant supported prosthesis through finite element analysis using different types of bone, implant types, posterior implant angle and implant lengths under three kinds of mastication force.
“All-on-four” is a kind of implant protocol that inserts four implants between the mental foramina in placing a fixed prosthesis on an edentulous mandible. However, different treatment alternatives with various implant designs and surrounding conditions were performed in an edentulous mandible. Two 3D models of a human edentulous mandible were generated by CT scanner, one representing slight atrophy and the other representing moderate atrophy. Each mandibular bone has two bone types showing different biomechanical features, based on various patients physiological and pathological conditions. Two types of implant: NobelActive and NobelSpeedy with three different lengths (long/medium/short) were used. The two anterior implants were inserted in a parallel manner and the two distal implants were placed axially or tilted 30 degrees in each model. Three loading conditions (55 N / lateral incisor, 65 N / canine and 150 N / left second molar) were considered, and von Mises stress values in the peri-implant bone were determined. Based on information and the stress distribution from finite element analysis of prosthesis supported by four implants, we are able to offer clinical dentists and patients suggestions regarding which kind of implant protocol may be more favorable under differing patients’ conditions, so as to avoid potential bone resorption, which may then facilitate bone deterioration during the treatment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:32:07Z (GMT). No. of bitstreams: 1 ntu-105-R00522816-1.pdf: 5671974 bytes, checksum: 0a5ec2cf4ca75b9ad97ed7e22d2827dc (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Contents
誌謝 ii 中文摘要 iv Abstract vi List of Tables xii List of Figures xviii Nomenclature xxxii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Related Works and Literature Survey: All-on-Four Protocol and Atrophy Mandibular Bone 2 1.3 Thesis Organization 3 1.4 Contributions 4 Chapter 2 Material and Method 5 2.1 Problem and Approach Method 5 2.1.1 Problem Formulation 5 2.1.2 Approach Method: von Mises Stress on Peri-implant Bone 6 2.1.3 Experiment Organization 7 2.1.4 Parameter Setting 9 2.2 Numerical Model 12 2.2.1 Mandibular Bone Atrophy Model 12 2.2.2 Implant Models: NobelActive & NobelSpeedy 18 2.2.3 Abutment and Framework Model Design 21 2.3 Implants Placement Determination 23 2.3.1 Avoiding Mental Foramen and Inferior Alveolar Nerve 25 2.3.2 Cantilever Beam Length Versus Distal Implant 28 2.4 Applied Force on Framework 30 2.5 The Determination of the Position of Framework and Occlusal Surface 32 2.6 Management of Boundary Conditions and Fixed Supports 34 2.7 Material Properties and Selection 36 2.7.1 Slight and Moderate Atrophy Versus Trabecular Bone 36 2.7.2 Implants and Other Artificial Structure 38 2.7.3 Mesh Quality 39 Chapter 3 Simulations and Results 43 3.1 Introduction 43 3.2 Focused Parameters: Different Tilted Angle and Trabecular Bone Type 66 3.2.1 NobelActive Through Deteriorate Stages: Stage I to Stage II 67 3.2.2 NobelActive Through Deteriorate Stages: Stage III to Stage IV 73 3.2.3 NobelSpeedy Through Deteriorate Stages: Stage I to Stage II 79 3.2.4 NobelSpeedy Through Deteriorate Stages: Stage III to Stage IV 85 3.3 Focused Parameters: Different Length 91 3.3.1 Slight Bone Atrophy in Type 2 Trabecular Bone 92 3.3.2 Slight Bone Atrophy in Type 3 Trabecular Bone 93 3.3.3 Moderate Bone Atrophy in Type 3 Trabecular Bone 95 3.3.4 Moderate Bone Atrophy in Type 4 Trabecular Bone 96 3.4 Focused Parameters: Different Implant Type 98 3.4.1 NobelActive and NobelSpeedy in Stage I 99 3.4.2 NobelActive and NobelSpeedy in Stage II 105 3.4.3 NobelActive and NobelSpeedy in Stage III 111 3.4.4 NobelActive and NobelSpeedy in Stage IV 118 3.5 Rate of Cortical Versus Trabecular Bone 125 3.5.1 C/T Ratio with Tilted Implant 125 3.5.2 C/T Ratio with Vertical Implant 127 Chapter 4 Discussion 131 4.1 Introduction 131 4.2 The Effect of Tilted and Nontilted Angle 133 4.2.1 The Effect of Tilted and Nontilted Angle in Stage I 134 4.2.2 The Effect of Tilted and Nontilted Angle in Stage II 134 4.2.3 The Effect of Tilted and Nontilted Angle in Stage III 135 4.2.4 The Effect of Tilted and Nontilted Angle in Stage IV 136 4.2.5 The Effect of Tilted and Nontilted Angle in All of the Stages and Summary 137 4.3 The Effect of Bone Type 139 4.3.1 The Effect of Bone Type: Stage I and Stage II 140 4.3.2 The Effect of Bone Type: Stage II and Stage III 142 4.3.3 The Effect of Bone Type: Stage III and Stage IV 144 4.3.4 The Effect of Bone Type and Summary 145 4.4 The Effect of Implant Length 146 4.4.1 The Effect of Implant Length in Stage I 146 4.4.2 The Effect of Implant Length in Stage II 147 4.4.3 The Effect of Implant Length in Stage III 148 4.4.4 The Effect of Implant Length in Stage IV 149 4.4.5 The Effect of Implant Length in All of the Stages and Summary 151 4.5 The Effect of Implant Type 153 4.5.1 The Effect of Implant Type in Stage I 154 4.5.2 The Effect of Implant Type in Stage II 155 4.5.3 The Effect of Implant Type in Stage III 156 4.5.4 The Effect of Implant Type in Stage IV 157 4.5.5 The Effect of Implant Type and Summary 157 4.6 Observation of C/T Ratio 158 4.7 Optimal Implant and Parameters through Stage I to Stage IV 160 Chapter 5 Conclusions and Future Works 167 5.1 Conclusions 167 5.2 Limitations 168 5.3 Future Works 169 References 171 | |
| dc.language.iso | en | |
| dc.subject | 牙科植體 | zh_TW |
| dc.subject | 牙科植體 | zh_TW |
| dc.subject | 萎縮下顎骨 | zh_TW |
| dc.subject | All-on-four | zh_TW |
| dc.subject | All-on-four | zh_TW |
| dc.subject | 萎縮下顎骨 | zh_TW |
| dc.subject | 有限元素分析 | zh_TW |
| dc.subject | 有限元素分析 | zh_TW |
| dc.subject | atrophic mandible | en |
| dc.subject | All-on-four | en |
| dc.subject | atrophic mandible | en |
| dc.subject | finite element analysis | en |
| dc.subject | dental implant | en |
| dc.subject | All-on-four | en |
| dc.subject | finite element analysis | en |
| dc.subject | dental implant | en |
| dc.title | 下顎全口無牙患者施行 All-on-4 人工植牙周邊骨質應力分析 | zh_TW |
| dc.title | Bone Stress Analysis in 'All-on-Four' Implantation for Completely Edentulous Mandibles | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 歐耿良(Keng-Liang Ou),呂東武(Tung-Wu Lu) | |
| dc.subject.keyword | All-on-four,萎縮下顎骨,有限元素分析,牙科植體, | zh_TW |
| dc.subject.keyword | All-on-four,atrophic mandible,finite element analysis,dental implant, | en |
| dc.relation.page | 181 | |
| dc.identifier.doi | 10.6342/NTU201601444 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-03 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 5.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
