Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5018
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 鍾德憲,邱智賢 | |
dc.contributor.author | Yue-Jia Lee | en |
dc.contributor.author | 李月嘉 | zh_TW |
dc.date.accessioned | 2021-05-15T17:51:00Z | - |
dc.date.available | 2017-12-31 | |
dc.date.available | 2021-05-15T17:51:00Z | - |
dc.date.copyright | 2014-09-05 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-18 | |
dc.identifier.citation | Anand-Ivell, R.J., Relan, V., Balvers, M., Coiffec-Dorval, I., Fritsch, M., Bathgate, R.A., and Ivell, R. (2006). Expression of the insulin-like peptide 3 (INSL3) hormone-receptor (LGR8) system in the testis. Biology of Reproduction 74, 945-953.
Atha, D.H., and Ingham, K.C. (1981). Mechanism of precipitation of proteins by polyethylene glycols. Analysis in terms of excluded volume. The Journal of Biological Chemistry 256, 12108-12117. Benton, L., Shan, L.X., and Hardy, M.P. (1995). Differentiation of adult Leydig cells. The Journal of Steroid Biochemistry and Molecular Biology 53, 61-68. Berta, P., Hawkins, J.R., Sinclair, A.H., Taylor, A., Griffiths, B.L., Goodfellow, P.N., and Fellous, M. (1990). Genetic evidence equating SRY and the testis-determining factor. Nature 348, 448-450. Bilban, M., Ghaffari-Tabrizi, N., Hintermann, E., Bauer, S., Molzer, S., Zoratti, C., Malli, R., Sharabi, A., Hiden, U., Graier, W., et al. (2004). Kisspeptin-10, a KiSS-1/metastin-derived decapeptide, is a physiological invasion inhibitor of primary human trophoblasts. Journal of Cell Science 117, 1319-1328. Cartwright, J.E., and Williams, P.J. (2012). Altered placental expression of kisspeptin and its receptor in pre-eclampsia. The Journal of Endocrinology 214, 79-85. Castellano, J.M., Gaytan, M., Roa, J., Vigo, E., Navarro, V.M., Bellido, C., Dieguez, C., Aguilar, E., Sanchez-Criado, J.E., Pellicer, A., et al. (2006). Expression of KiSS-1 in rat ovary: putative local regulator of ovulation? Endocrinology 147, 4852-4862. Cejudo Roman, A., Pinto, F.M., Dorta, I., Almeida, T.A., Hernandez, M., Illanes, M., Tena-Sempere, M., and Candenas, L. (2012). Analysis of the expression of neurokinin B, kisspeptin, and their cognate receptors NK3R and KISS1R in the human female genital tract. Fertility and Sterility 97, 1213-1219. Christensen, A.K., and Mason, N.R. (1965). Comparative ability of seminiferous tubules and interstitial tissue of rat testes to synthesize androgens from progesterone-4-14C in vitro. Endocrinology 76, 646-656. Clarkson, J., Boon, W.C., Simpson, E.R., and Herbison, A.E. (2009). Postnatal development of an estradiol-kisspeptin positive feedback mechanism implicated in puberty onset. Endocrinology 150, 3214-3220. Clarkson, J., d'Anglemont de Tassigny, X., Moreno, A.S., Colledge, W.H., and Herbison, A.E. (2008). Kisspeptin-GPR54 signaling is essential for preovulatory gonadotropin-releasing hormone neuron activation and the luteinizing hormone surge. The Journal of Neuroscience 28, 8691-8697. Clarkson, J., and Herbison, A.E. (2006). Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology 147, 5817-5825. Clements, M.K., McDonald, T.P., Wang, R., Xie, G., O'Dowd, B.F., George, S.R., Austin, C.P., and Liu, Q. (2001). FMRFamide-related neuropeptides are agonists of the orphan G-protein-coupled receptor GPR54. Biochemical and Biophysical Research Communications 284, 1189-1193. Colledge, W.H. (2009). Kisspeptins and GnRH neuronal signalling. Trends in Endocrinology and Metabolism 20, 115-121. d'Anglemont de Tassigny, X., Fagg, L.A., Dixon, J.P., Day, K., Leitch, H.G., Hendrick, A.G., Zahn, D., Franceschini, I., Caraty, A., Carlton, M.B., et al. (2007). Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. Proc. Natl. Acad. Sci. USA 104, 10714-10719. de Roux, N., Genin, E., Carel, J.C., Matsuda, F., Chaussain, J.L., and Milgrom, E. (2003). Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc. Natl. Acad. Sci. USA 100, 10972-10976. Ebling, F.J. (2005). The neuroendocrine timing of puberty. Reproduction 129, 675-683. Ezzat, A.A., Saito, H., Sawada, T., Yaegashi, T., Goto, Y., Nakajima, Y., Jin, J., Yamashita, T., Sawai, K., and Hashizume, T. (2010). The role of sexual steroid hormones in the direct stimulation by Kisspeptin-10 of the secretion of luteinizing hormone, follicle-stimulating hormone and prolactin from bovine anterior pituitary cells. Animal Reproduction Science 121, 267-272. Falconer, D.S. (1984). Weight and age at puberty in female and male mice of strains selected for large and small body size. Genetical Research 44, 47-72. Feng, S., Bogatcheva, N.V., Truong, A., Korchin, B., Bishop, C.E., Klonisch, T., Agoulnik, I.U., and Agoulnik, A.I. (2007). Developmental expression and gene regulation of insulin-like 3 receptor RXFP2 in mouse male reproductive organs. Biology of Reproduction 77, 671-680. Fernandez-Fernandez, R., Martini, A.C., Navarro, V.M., Castellano, J.M., Dieguez, C., Aguilar, E., Pinilla, L., and Tena-Sempere, M. (2006). Novel signals for the integration of energy balance and reproduction. Molecular and Cellular Endocrinology 254-255, 127-132. Filonzi, M., Cardoso, L.C., Pimenta, M.T., Queiroz, D.B., Avellar, M.C., Porto, C.S., and Lazari, M.F. (2007). Relaxin family peptide receptors Rxfp1 and Rxfp2: mapping of the mRNA and protein distribution in the reproductive tract of the male rat. Reproductive Biology and Endocrinology 5, 29. Gaytan, F., Garcia-Galiano, D., Dorfman, M.D., Manfredi-Lozano, M., Castellano, J.M., Dissen, G.A., Ojeda, S.R., and Tena-Sempere, M. (2014). Kisspeptin receptor haplo-insufficiency causes premature ovarian failure in spite of preserved gonadotropin secretion. Endocrinology, Epublish ahead. Gaytan, F., Gaytan, M., Castellano, J.M., Romero, M., Roa, J., Aparicio, B., Garrido, N., Sanchez-Criado, J.E., Millar, R.P., Pellicer, A., et al. (2009). KiSS-1 in the mammalian ovary: distribution of kisspeptin in human and marmoset and alterations in KiSS-1 mRNA levels in a rat model of ovulatory dysfunction. American journal of physiology Endocrinology and Metabolism 296, E520-531. Ghayee, H.K., and Auchus, R.J. (2007). Basic concepts and recent developments in human steroid hormone biosynthesis. Reviews in Endocrine & Metabolic Disorders 8, 289-300. Gill, J.C., Wang, O., Kakar, S., Martinelli, E., Carroll, R.S., and Kaiser, U.B. (2010). Reproductive hormone-dependent and -independent contributions to developmental changes in kisspeptin in GnRH-deficient hypogonadal mice. PloS One 5, e11911. Gottsch, M.L., Cunningham, M.J., Smith, J.T., Popa, S.M., Acohido, B.V., Crowley, W.F., Seminara, S., Clifton, D.K., and Steiner, R.A. (2004). A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology 145, 4073-4077. Guerriero, K.A., Keen, K.L., Millar, R.P., and Terasawa, E. (2012). Developmental changes in GnRH release in response to kisspeptin agonist and antagonist in female rhesus monkeys (Macaca mulatta): implication for the mechanism of puberty. Endocrinology 153, 825-836. Gutierrez-Pascual, E., Martinez-Fuentes, A.J., Pinilla, L., Tena-Sempere, M., Malagon, M.M., and Castano, J.P. (2007). Direct pituitary effects of kisspeptin: activation of gonadotrophs and somatotrophs and stimulation of luteinising hormone and growth hormone secretion. Journal of Neuroendocrinology 19, 521-530. Han, S.K., Gottsch, M.L., Lee, K.J., Popa, S.M., Smith, J.T., Jakawich, S.K., Clifton, D.K., Steiner, R.A., and Herbison, A.E. (2005). Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. The Journal of Neuroscience 25, 11349-11356. Harms, J.F., Welch, D.R., and Miele, M.E. (2003). KISS1 metastasis suppression and emergent pathways. Clinical & Experimental Metastasis 20, 11-18. Herbison, A.E. (2008). Estrogen positive feedback to gonadotropin-releasing hormone (GnRH) neurons in the rodent: the case for the rostral periventricular area of the third ventricle (RP3V). Brain Research Reviews 57, 277-287. Hess, R., and de Franca, L. (2008). Spermatogenesis and Cycle of the Seminiferous Epithelium. In Molecular Mechanisms in Spermatogenesis, C.Y. Cheng, ed. Springer New York, pp. 1-15. Hsu, M.C., Wang, J.Y., Lee, Y.J., Jong, D.S., Tsui, K.H., and Chiu, C.H. (2014). Kisspeptin modulates fertilization capacity of mouse spermatozoa. Reproduction 147, 835-845. Iijima, N., Takumi, K., Sawai, N., and Ozawa, H. (2011). An immunohistochemical study on the expressional dynamics of kisspeptin neurons relevant to GnRH neurons using a newly developed anti-kisspeptin antibody. Journal of Molecular Neuroscience 43, 146-154. Inoue, N., Sasagawa, K., Ikai, K., Sasaki, Y., Tomikawa, J., Oishi, S., Fujii, N., Uenoyama, Y., Ohmori, Y., Yamamoto, N., et al. (2011). Kisspeptin neurons mediate reflex ovulation in the musk shrew (Suncus murinus). Proc. Natl. Acad. Sci. USA 108, 17527-17532. Ivell, R., and Anand-Ivell, R. (2009). Biology of insulin-like factor 3 in human reproduction. Human Reproduction Update 15, 463-476. Jan, S.Z., Hamer, G., Repping, S., de Rooij, D.G., van Pelt, A.M., and Vormer, T.L. (2012). Molecular control of rodent spermatogenesis. Biochimica et Biophysica Acta 1822, 1838-1850. Kauffman, A.S., Gottsch, M.L., Roa, J., Byquist, A.C., Crown, A., Clifton, D.K., Hoffman, G.E., Steiner, R.A., and Tena-Sempere, M. (2007a). Sexual differentiation of Kiss1 gene expression in the brain of the rat. Endocrinology 148, 1774-1783. Kauffman, A.S., Park, J.H., McPhie-Lalmansingh, A.A., Gottsch, M.L., Bodo, C., Hohmann, J.G., Pavlova, M.N., Rohde, A.D., Clifton, D.K., Steiner, R.A., et al. (2007b). The kisspeptin receptor GPR54 is required for sexual differentiation of the brain and behavior. The Journal of Neuroscience 27, 8826-8835. Kawamura, K., Kumagai, J., Sudo, S., Chun, S.Y., Pisarska, M., Morita, H., Toppari, J., Fu, P., Wade, J.D., Bathgate, R.A., et al. (2004). Paracrine regulation of mammalian oocyte maturation and male germ cell survival. Proc. Natl. Acad. Sci. USA 101, 7323-7328. King, J.C., and Anthony, E.L. (1984). LHRH neurons and their projections in humans and other mammals: species comparisons. Peptides 5 Suppl 1, 195-207. Kinoshita, M., Tsukamura, H., Adachi, S., Matsui, H., Uenoyama, Y., Iwata, K., Yamada, S., Inoue, K., Ohtaki, T., Matsumoto, H., et al. (2005). Involvement of central metastin in the regulation of preovulatory luteinizing hormone surge and estrous cyclicity in female rats. Endocrinology 146, 4431-4436. Knobil, E., Neill, J.D., Plant, T.M., Pfaff, D.W., Challis, J.R.G., De Kretser, D.M., Richards, J.A.S., Wassarman, P.M., and Fund, R.E.C.M. (2006). Knobil and Neill's Physiology of Reproduction: Edited by Jimmy D. Neill (Elsevier). Kotani, M., Detheux, M., Vandenbogaerde, A., Communi, D., Vanderwinden, J.M., Le Poul, E., Brezillon, S., Tyldesley, R., Suarez-Huerta, N., Vandeput, F., et al. (2001). The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. The Journal of Biological Chemistry 276, 34631-34636. Lapatto, R., Pallais, J.C., Zhang, D., Chan, Y.M., Mahan, A., Cerrato, F., Le, W.W., Hoffman, G.E., and Seminara, S.B. (2007). Kiss1-/- mice exhibit more variable hypogonadism than Gpr54-/- mice. Endocrinology 148, 4927-4936. Larsson, A., and Sjoquist, J. (1990). Chicken IgY: utilizing the evolutionary difference. Comparative Immunology, Microbiology and Infectious Diseases 13, 199-201. Lee, D.K., Nguyen, T., O'Neill, G.P., Cheng, R., Liu, Y., Howard, A.D., Coulombe, N., Tan, C.P., Tang-Nguyen, A.T., George, S.R., et al. (1999). Discovery of a receptor related to the galanin receptors. FEBS letters 446, 103-107. Lee, J.H., Miele, M.E., Hicks, D.J., Phillips, K.K., Trent, J.M., Weissman, B.E., and Welch, D.R. (1996). KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. Journal of the National Cancer Institute 88, 1731-1737. Leslie, G.A., and Martin, L.N. (1973). Studies on the secretory immunologic system of fowl. 3. Serum and secretory IgA of the chicken. Journal of Immunology 110, 1-9. Liu, X., Lee, K., and Herbison, A.E. (2008). Kisspeptin excites gonadotropin-releasing hormone neurons through a phospholipase C/calcium-dependent pathway regulating multiple ion channels. Endocrinology 149, 4605-4614. Lomniczi, A., Loche, A., Castellano, J.M., Ronnekleiv, O.K., Bosch, M., Kaidar, G., Knoll, J.G., Wright, H., Pfeifer, G.P., and Ojeda, S.R. (2013). Epigenetic control of female puberty. Nature Neuroscience 16, 281-289. Ma, X., Dong, Y., Matzuk, M.M., and Kumar, T.R. (2004). Targeted disruption of luteinizing hormone beta-subunit leads to hypogonadism, defects in gonadal steroidogenesis, and infertility. Proc. Natl. Acad. Sci. USA 101, 17294-17299. Mason, A.J., Pitts, S.L., Nikolics, K., Szonyi, E., Wilcox, J.N., Seeburg, P.H., and Stewart, T.A. (1986). The hypogonadal mouse: reproductive functions restored by gene therapy. Science 234, 1372-1378. Mei, H., Walters, C., Carter, R., and Colledge, W.H. (2011). Gpr54-/- mice show more pronounced defects in spermatogenesis than Kiss1-/- mice and improved spermatogenesis with age when exposed to dietary phytoestrogens. Reproduction 141, 357-366. Muir, A.I., Chamberlain, L., Elshourbagy, N.A., Michalovich, D., Moore, D.J., Calamari, A., Szekeres, P.G., Sarau, H.M., Chambers, J.K., Murdock, P., et al. (2001). AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. The Journal of Biological Chemistry 276, 28969-28975. Narat, M. (2003). Production of Antibodies in Chickens. Food Technology and Biotechnology 41, 259-267. Navarro, V.M., Gottsch, M.L., Chavkin, C., Okamura, H., Clifton, D.K., and Steiner, R.A. (2009). Regulation of gonadotropin-releasing hormone secretion by kisspeptin/dynorphin/neurokinin B neurons in the arcuate nucleus of the mouse. The Journal of Neuroscience 29, 11859-11866. Nef, S., and Parada, L.F. (1999). Cryptorchidism in mice mutant for Insl3. Nature Genetics 22, 295-299. Neves, S.R., Ram, P.T., and Iyengar, R. (2002). G protein pathways. Science 296, 1636-1639. Nieschlag, E., Behre, H.M., and Nieschlag, S. (2010). Andrology. Springer Berlin Heidelberg. O'Shaughnessy, P.J., Morris, I.D., Huhtaniemi, I., Baker, P.J., and Abel, M.H. (2009). Role of androgen and gonadotrophins in the development and function of the Sertoli cells and Leydig cells: data from mutant and genetically modified mice. Molecular and Cellular Endocrinology 306, 2-8. Oakley, A.E., Clifton, D.K., and Steiner, R.A. (2009). Kisspeptin signaling in the brain. Endocrine Reviews 30, 713-743. Ohtaki, T., Shintani, Y., Honda, S., Matsumoto, H., Hori, A., Kanehashi, K., Terao, Y., Kumano, S., Takatsu, Y., Masuda, Y., et al. (2001). Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 411, 613-617. Ojeda, S.R., Andrews, W.W., Advis, J.P., and White, S.S. (1980). Recent advances in the endocrinology of puberty. Endocrine Reviews 1, 228-257. Ojeda, S.R., Dubay, C., Lomniczi, A., Kaidar, G., Matagne, V., Sandau, U.S., and Dissen, G.A. (2010). Gene networks and the neuroendocrine regulation of puberty. Molecular and Cellular Endocrinology 324, 3-11. Ojeda, S.R., Lomniczi, A., and Sandau, U.S. (2008). Glial-gonadotrophin hormone (GnRH) neurone interactions in the median eminence and the control of GnRH secretion. Journal of Neuroendocrinology 20, 732-742. Pallais, J.C., Bo-Abbas, Y., Pitteloud, N., Crowley, W.F., Jr., and Seminara, S.B. (2006). Neuroendocrine, gonadal, placental, and obstetric phenotypes in patients with IHH and mutations in the G-protein coupled receptor, GPR54. Molecular and Cellular Endocrinology 254-255, 70-77. Patterson, R., Youngner, J.S., Weigle, W.O., and Dixon, F.J. (1962). Antibody production and transfer to egg yolk in chickens. Journal of Immunology 89, 272-278. Payne, A.H., Downing, J.R., and Wong, K.L. (1980). Luteinizing hormone receptors and testosterone synthesis in two distinct populations of Leydig cells. Endocrinology 106, 1424-1429. Pineda, R., Garcia-Galiano, D., Roseweir, A., Romero, M., Sanchez-Garrido, M.A., Ruiz-Pino, F., Morgan, K., Pinilla, L., Millar, R.P., and Tena-Sempere, M. (2010). Critical roles of kisspeptins in female puberty and preovulatory gonadotropin surges as revealed by a novel antagonist. Endocrinology 151, 722-730. Pinilla, L., Aguilar, E., Dieguez, C., Millar, R.P., and Tena-Sempere, M. (2012). Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiological Reviews 92, 1235-1316. Pinto, F.M., Cejudo-Roman, A., Ravina, C.G., Fernandez-Sanchez, M., Martin-Lozano, D., Illanes, M., Tena-Sempere, M., and Candenas, M.L. (2012). Characterization of the kisspeptin system in human spermatozoa. International Journal of Andrology 35, 63-73. Roa, J., Castellano, J.M., Navarro, V.M., Handelsman, D.J., Pinilla, L., and Tena-Sempere, M. (2009). Kisspeptins and the control of gonadotropin secretion in male and female rodents. Peptides 30, 57-66. Robertson, K.M., O'Donnell, L., Jones, M.E., Meachem, S.J., Boon, W.C., Fisher, C.R., Graves, K.H., McLachlan, R.I., and Simpson, E.R. (1999). Impairment of spermatogenesis in mice lacking a functional aromatase (cyp 19) gene. Proc. Natl. Acad. Sci. USA 96, 7986-7991. Roseweir, A.K., Kauffman, A.S., Smith, J.T., Guerriero, K.A., Morgan, K., Pielecka-Fortuna, J., Pineda, R., Gottsch, M.L., Tena-Sempere, M., Moenter, S.M., et al. (2009). Discovery of potent kisspeptin antagonists delineate physiological mechanisms of gonadotropin regulation. The Journal of Neuroscience 29, 3920-3929. Seminara, S.B., Messager, S., Chatzidaki, E.E., Thresher, R.R., Acierno, J.S., Jr., Shagoury, J.K., Bo-Abbas, Y., Kuohung, W., Schwinof, K.M., Hendrick, A.G., et al. (2003). The GPR54 gene as a regulator of puberty. The New England Journal of Medicine 349, 1614-1627. Shahab, M., Mastronardi, C., Seminara, S.B., Crowley, W.F., Ojeda, S.R., and Plant, T.M. (2005). Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proc. Natl. Acad. Sci. USA 102, 2129-2134. Shahed, A., and Young, K.A. (2009). Differential ovarian expression of KiSS-1 and GPR-54 during the estrous cycle and photoperiod induced recrudescence in Siberian hamsters (Phodopus sungorus). Molecular Reproduction and Development 76, 444-452. Shimizu, M., Nagashima, H., Sano, K., Hashimoto, K., Ozeki, M., Tsuda, K., and Hatta, H. (1992). Molecular stability of chicken and rabbit immunoglobulin G. Bioscience, Biotechnology, and Biochemistry 56, 270-274. Shoji, I., Hirose, T., Mori, N., Hiraishi, K., Kato, I., Shibasaki, A., Yamamoto, H., Ohba, K., Kaneko, K., Morimoto, R., et al. (2010). Expression of kisspeptins and kisspeptin receptor in the kidney of chronic renal failure rats. Peptides 31, 1920-1925. Silveira, L.G., Noel, S.D., Silveira-Neto, A.P., Abreu, A.P., Brito, V.N., Santos, M.G., Bianco, S.D., Kuohung, W., Xu, S., Gryngarten, M., et al. (2010). Mutations of the KISS1 gene in disorders of puberty. The Journal of Clinical Endocrinology and Metabolism 95, 2276-2280. Smith, L.B., and Walker, W.H. (2014). The regulation of spermatogenesis by androgens. Seminars in Cell & Developmental Biology. Song, W.J., Mondal, P., Wolfe, A., Alonso, L.C., Stamateris, R., Ong, B.W., Lim, O.C., Yang, K.S., Radovick, S., Novaira, H.J., et al. (2014). Glucagon regulates hepatic kisspeptin to impair insulin secretion. Cell Metabolism 19, 667-681. Suzuki, S., Kadokawa, H., and Hashizume, T. (2008). Direct kisspeptin-10 stimulation on luteinizing hormone secretion from bovine and porcine anterior pituitary cells. Animal Reproduction Science 103, 360-365. Svingen, T., and Koopman, P. (2013). Building the mammalian testis: origins, differentiation, and assembly of the component cell populations. Genes & Development 27, 2409-2426. Takumi, K., Iijima, N., and Ozawa, H. (2011). Developmental changes in the expression of kisspeptin mRNA in rat hypothalamus. Journal of Molecular Neuroscience 43, 138-145. Teles, M.G., Bianco, S.D., Brito, V.N., Trarbach, E.B., Kuohung, W., Xu, S., Seminara, S.B., Mendonca, B.B., Kaiser, U.B., and Latronico, A.C. (2008). A GPR54-activating mutation in a patient with central precocious puberty. The New England Journal of Medicine 358, 709-715. Terao, Y., Kumano, S., Takatsu, Y., Hattori, M., Nishimura, A., Ohtaki, T., and Shintani, Y. (2004). Expression of KiSS-1, a metastasis suppressor gene, in trophoblast giant cells of the rat placenta. Biochimica et Biophysica Acta 1678, 102-110. Terasawa, E., and Fernandez, D.L. (2001). Neurobiological mechanisms of the onset of puberty in primates. Endocrine Reviews 22, 111-151. Topaloglu, A.K., Reimann, F., Guclu, M., Yalin, A.S., Kotan, L.D., Porter, K.M., Serin, A., Mungan, N.O., Cook, J.R., Ozbek, M.N., et al. (2009). TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction. Nature Genetics 41, 354-358. Walker, W.H., and Cheng, J. (2005). FSH and testosterone signaling in Sertoli cells. Reproduction 130, 15-28. Wattenberg, L.W. (1958). Microscopic histochemical demonstration of steroid-3 beta-ol dehydrogenase in tissue sections. The Journal of Histochemistry and Cytochemistry 6, 225-232. Wildt, L., Marshall, G., and Knobil, E. (1980). Experimental induction of puberty in the infantile female rhesus monkey. Science 207, 1373-1375. Woolley, J.A., and Landon, J. (1995). Comparison of antibody production to human interleukin-6 (IL-6) by sheep and chickens. Journal of Immunological Methods 178, 253-265. Yan, C., Wang, H., and Boyd, D.D. (2001). KiSS-1 represses 92-kDa type IV collagenase expression by down-regulating NF-kappa B binding to the promoter as a consequence of Ikappa Balpha -induced block of p65/p50 nuclear translocation. The Journal of Biological Chemistry 276, 1164-1172. Yoshioka, K., Ohno, Y., Horiguchi, Y., Ozu, C., Namiki, K., and Tachibana, M. (2008). Effects of a KiSS-1 peptide, a metastasis suppressor gene, on the invasive ability of renal cell carcinoma cells through a modulation of a matrix metalloproteinase 2 expression. Life Sciences 83, 332-338. Zhang, C., Bosch, M.A., Levine, J.E., Ronnekleiv, O.K., and Kelly, M.J. (2007). Gonadotropin-releasing hormone neurons express K(ATP) channels that are regulated by estrogen and responsive to glucose and metabolic inhibition. The Journal of Neuroscience 27, 10153-10164. Zhang, C., Roepke, T.A., Kelly, M.J., and Ronnekleiv, O.K. (2008). Kisspeptin depolarizes gonadotropin-releasing hormone neurons through activation of TRPC-like cationic channels. The Journal of Neuroscience 28, 4423-4434. Zhang, X., Odom, D.T., Koo, S.H., Conkright, M.D., Canettieri, G., Best, J., Chen, H., Jenner, R., Herbolsheimer, E., Jacobsen, E., et al. (2005). Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc. Natl. Acad. Sci. USA 102, 4459-4464. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5018 | - |
dc.description.abstract | 近年研究指出,Kisspeptin與其受器KISS1R在動物生殖生理的調控機制中扮演相當重要的角色。Kisspeptin是由Kiss1基因轉譯而來的蛋白質產物,而KISS1R則是典型的穿膜蛋白。當kisspeptin與促性腺激素釋放素神經元 (GnRH neuron) 上的KISS1R結合時,便會刺激GnRH neuron興奮,進而調控下視丘-腦垂腺-性腺軸 (HPG axis),促使性腺發育成熟並開始表現生殖能力。除了下視丘之外,先前研究也顯示人類和嚙齒類的睪丸組織皆有Kiss1和Kiss1r基因表現其中。然而,對於kisseptin和KISS1R在睪丸中的位置分佈和所執行的功能目前仍不是很清楚。
首先,為了獲得高專一性的抗體來偵測KISS1R在睪丸中的位置分佈,我們選用母雞作為抗體生產的宿主。成功獲得具專一性之抗體後,我們更進一步利用免疫組織染色法證實了,kisspeptin主要表現在萊迪氏細胞中,而KISS1R則主要分布在精細胞細胞膜上。此外,透過即時定量聚合酶鏈鎖反應,我們也發現睪丸中的Kiss1和Kiss1r基因表現量隨著時間進展而有不同的變化。自小鼠出生後,睪丸中的Kiss1r基因表現量便維持恆定,然而,Kiss1基因卻是從小鼠出生後第四周才開始大量表現。有鑑於Kiss1基因表現量有所轉變且其時間點與小鼠性成熟初始時間重疊,因此我們進一步比較Kiss1基因與其他睪丸發育相關基因之表現情形。有趣的是,Insl3 (參與生精作用與睪丸沉降) 以及Cyp19a1 (負責雌二醇生成) 兩個基因表現型態皆與Kiss1基因相似,皆是從小鼠出生後第四周才開始被大量表現。另一基因,Lhcgr,雖同樣有漸趨上升的基因表現形態,卻比前述三個基因早約一周於睪丸中表現。此結果顯示,睪丸中的kisspeptin/KISS1R系統可能受到LH和其受器下游訊號所調控。為了證實這項假設,我們分別將初代萊迪氏細胞處理綿羊排卵素 (ovine luteinizing hormone, oLH) 以及將MA-10細胞株處理LH下游第二訊息傳遞因子,Br-cAMP。結果顯示,不論是oLH或Br-cAMP皆會增加萊迪氏細胞內的Kiss1基因表現量 (p < 0.05)。此外,在Br-cAMP及RP-cAMPS (PKA抑制劑)共處理之下,萊迪氏細胞內的Kiss1基因表現量明顯受到抑制 (p < 0.05)。 綜觀上述,小鼠萊迪式細胞中可觀察到kisspeptin的表現,且Kiss1基因表現量可透過排卵素的刺激及下游訊息傳遞而有所增加;反之,主要位於細精管內部的Kiss1r其基因表現量則不受排卵素調控。此外,由於發現可接受kisspeptin訊號的KISS1R表現位置以及kiss1基因表現時間點與生精作用相關之基因表現時間相似,故我們猜測kisspeptin可能會協同其他負責生精作用的相關因子一起調控生精作用的運作。然而,關於kisspeptin於睪丸中所扮有的實際角色仍須進行更深入的實驗才能證實。 | zh_TW |
dc.description.abstract | Kisspeptin and KISS1R had been considered as essential regulators of animal reproductive functions in recent year. Kisspeptin, peptide encoded by the Kiss1 gene, is synthesized in the discrete neurons of hypothalamus. When kisspeptin binds with its receptor, KISS1R, the following signals induce GnRH secretion to regulate the HPG axis. Interestingly, not only in the hypothalamus, previous data has already revealed the presence of Kiss1 and Kiss1r mRNAs in the testis of human beings and rodents. However, the precise location and possible physiological role of kisspeptin/KISS1R system in testis remain unclear.
To further address the exact site of KISS1R in testis, we successfully produced an anti-KISS1R IgY antibody. Later, by conducting IHC assays, we detected that kisspeptin was expressed in Leydig cells, while KISS1R localized in seminiferous tubules, especially on spermatid membrane. Besides, real-time PCR results showed that mouse testis constantly expressed Kiss1r mRNA from birth but it didn’t express Kiss1 mRNA until postnatal fourth week. With comparing testicular gene expression patterns in the first 12 weeks after birth, we found the mRNA expression pattern of Kiss1 was synchronized with Insl3 and Cyp19a1 which are genes important for testis descent and spermatogenesis, and estrogen synthesis. Moreover, Lhcgr (LH receptor encoding gene) expression was increased one week earlier than Kiss1 expression, which indicated that the Kisspeptin/KISS1R system in testis might be under control of LH and its receptor-mediated signaling such as cAMP pathway. To confirm this hypothesis, we treated primary Leydig cell with LH and MA-10 (Leydig cell line) with Br-cAMP, respectively. Indeed, these treatments obviously increased Kiss1 mRNA expression in both two types of cells (p < 0.05). In addition, co-treatment of Br-cAMP and RP-cAMPS, a PKA inhibitor, significantly suppressed 50% Br-cAMP-induced Kiss1 expression (p < 0.05). From our present study, it is concluded that LH act as an upstream initiator to induce Kiss1 expression in mouse Leydig cells through cAMP/PKA pathway. Since receptors for Kisspeptin are present on spermatids and the similar timing and location of gene expression between Kiss1 and several genes regulating spermatogenesis, it is tempting to assume the synergistic action of Kisspeptin and development-related factors on spermatogenesis. However, the definitive role for Kisspeptin/KISS1R system in testicular development needs more studies to elucidate. | en |
dc.description.provenance | Made available in DSpace on 2021-05-15T17:51:00Z (GMT). No. of bitstreams: 1 ntu-103-R01626005-1.pdf: 1504490 bytes, checksum: 526d44ca337f3e76a93149b72eabe0a0 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iv Contents vi List of Figures viii List of Tables ix 1. Introduction 1 2. Literature Review 3 2.1 Male reproduction 3 2.2 Kisspeptin/KISS1R system 12 3. Materials and Methods 24 3.1 Synthetic peptides 24 3.2 Preparation of antibodies 24 3.3 Purification of egg yolk antibody 24 3.4 Enzyme-linked immunosorbent assay (ELSIA) 26 3.5 Animals and tissues collection 26 3.6 Primary Mouse Leydig cell culture 27 3.7 Cell line culture 28 3.8 Immunohistochemistry 29 3.9 Western Blot 30 3.10 RNA extraction and cDNA synthesis 31 3.11 Quantitative real-time PCR 31 3.12 Statistical analysis 32 4. Results 34 4.1 Titer of chicken-anti KISS1R antibody 34 4.2 Specificity of chicken-anti KISS1R antibody 34 4.3 Specific detection of KISS1R in various tissues of mouse 36 4.4 Immunohistochemical staining of kisspeptin and KISS1R in mouse testis 36 4.5 Gene expression of Kiss1 and Kiss1r during testicular development 37 4.6 Kiss1 gene expression is related to testicular development 38 4.7 Kiss1 gene expression depends on LH signaling 39 5. Discussion 41 5.1 The establishment of anti-KISS1R IgY antibody 41 5.2 Expression of KISS1R in mouse tissues 43 5.3 Expression of kisspeptin and KISS1R in mouse testis 44 5.4 Kiss1 gene expression is related to testicular development 45 5.5 Kiss1 gene expression depends on LH signaling 47 6. Conclusion 51 7. Figures 52 8. Reference 64 Appendix List of Abbreviations 81 | |
dc.language.iso | en | |
dc.title | Kisspeptin/KISS1R系統在小鼠睪丸發育過程中所扮演的角色 | zh_TW |
dc.title | The Role of Kisspeptin/KISS1R System in Mice Testicular Development | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 梁耀仁,徐慶琳,吳兩新 | |
dc.subject.keyword | kisspeptin,KISS1R,排卵素,生精作用,睪丸發育, | zh_TW |
dc.subject.keyword | kisspeptin,KISS1R,luteinizing hormone,spermatogenesis,testicular development, | en |
dc.relation.page | 82 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2014-08-19 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
Appears in Collections: | 動物科學技術學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-103-1.pdf | 1.47 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.