請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50183
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 席行正 | |
dc.contributor.author | Li-Chi Lai | en |
dc.contributor.author | 賴力綺 | zh_TW |
dc.date.accessioned | 2021-06-15T12:31:52Z | - |
dc.date.available | 2026-08-02 | |
dc.date.copyright | 2016-08-24 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-03 | |
dc.identifier.citation | 張尊國,余東峰,蔡正勝,何君豔,林威州,曾潔明,林聖淇。2006。臺北市農地土壤重金屬砷含量調查及查證計畫。國立臺灣大學生態工程研究中心。
Anderson, M. A., Ferguson, J. F., Gavis, J. (1976). Arsenate adsorption on amorphous aluminum hydroxide. Colloid and Interface Science, 54(3), 391-399. Appleton, J. D., Cave, M. R., Wragg, J. (2012). Anthropogenic and geogenic impacts on arsenic bioaccessibility in UK topsoils. Science of the Total Environment, 435, 21-29. ATSDR. (1999). Toxicological profile for mercury. Atlanta: Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services. Basta, N. T., Rodriguez, R. R., Casteel, S. W. (2001). Bioavailability and risk of arsenic exposure by the soil ingestion pathway. Environmental Chemistry of Arsenic, 117-138. Beak, D. G., Basta, N. T., Scheckel, K. G., Traina, S. J. (2006). Bioaccessibility of arsenic (V) bound to ferrihydrite using a simulated gastrointestinal system. Environmental Science and Technology, 40(4), 1364-1370. Bird, G., Brewer, P. A., Macklin, M. G., Serban, M., Balteanu, D., Driga, B. (2005). Heavy metal contamination in the Arieş river catchment, western Romania: Implications for development of the Roşia Montană gold deposit. Geochemical Exploration, 86(1), 26-48. Bloom, N. S., Preus, E., Katon, J., Hiltner, M. (2003). Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Analytica Chimica Acta, 479(2), 233-248. Borch, T., Kretzschmar, R., Kappler, A., Cappellen, P. V., Ginder-Vogel, M., Voegelin, A., Campbell, K. (2009). Biogeochemical redox processes and their impact on contaminant dynamics. Environmental Science and Technology, 44(1), 15-23. Bradham, K. D., Scheckel, K. G., Nelson, C. M., Seales, P. E., Lee, G. E., Hughes, M. F., Miller, B. W., Yeow, A., Gilmore, T., Serda, S. M., Harper, S., Thomas, D. J. (2011). Relative bioavailability and bioaccessibility and speciation of arsenic in contaminated soils. Environmental Health Perspect, 119(11), 1629-1634. Bruce, S., Noller, B., Matanitobua, V., Ng, J. (2007). In vitro physiologically based extraction test (PBET) and bioaccessibility of arsenic and lead from various mine waste materials. Toxicology and Environmental Health, 70(19), 1700-1711. Calabrese, E. J., Stanek, E. J., Barnes, R., Burmaster, D. E., Callahan, B. G., Heath, J. S., Paustenbach, D., Abraham, J., Gephart, L. A. (1996). Methodology to estimate the amount and particle size of soil ingested by children: Implications for exposure assessment at waste sites. Regulatory Toxicology and Pharmacology, 24(3), 264-268. Caussy, D. (2003). Case studies of the impact of understanding bioavailability: arsenic. Ecotoxicology and Environmental Safety, 56(1), 164-173. Caussy, D., Gochfeld, M., Gurzau, E., Neagu, C., Ruedel, H. (2003). Lessons from case studies of metals: investigating exposure, bioavailability, and risk. Ecotoxicology and Environmental Safety, 56(1), 45-51. Das, S., Jean, J. S., Kar, S. (2013). Bioaccessibility and health risk assessment of arsenic in arsenic-enriched soils, Central India. Ecotoxicology and Environmental Safety, 92, 252-257. Davis, A., Bloom, N. S., Hee, Q., Shane, S. (1997). The environmental geochemistry and bioaccessibility of mercury in soils and sediments: a review. Risk Analysis, 17(5), 557-569. Digiulio, R. T., Ryan, E. A. (1987). Mercury in soils, sediments, and clams from a North Carolina peatland. Water, Air, and Soil Pollution, 33(1-2), 205-219. Dixon, J. B., Schulze, D. G. (2002). Soil mineralogy with environmental applications. Soil Science Society of America. Eary, L., Jenne, E. A. (1992). Version 4. 00 of the MINTEQ geochemical code. Faust, S. D., Winka, A. J., Belton, T. (1987). An assessment of chemical and biological significance of arsenical species in the Maurice River Drainage Basin (NJ). Environmental Science and Health, 22(3), 209-237. Fergusson, J. E. (1990). Heavy elements: chemistry, environmental impact and health effects. Pergamon. Fendorf, S., Eick, M. J., Grossl, P., Sparks, D. L. (1997). Arsenate and chromate retention mechanisms on goethite. Environmental Science and Technology, 31(2), 315-320. Filgueiras, A. V., Lavilla, I., Bendicho, C. (2002). Chemical sequential extraction for metal partitioning in environmental solid samples. Environmental Monitoring, 4 (6), 823–857. Freeman, G.B., Johnson, J.D., Killinger, J.M., Liao, S.C., Davis, A.O., Ruby, M.V., Chaney, R.L., Lovre, S.C., Bergstrom, P.D. (1993). Bioavailability of arsenic in soil impacted by smelter activities following oral administration in rabbits. Fundamental and Applied Toxicology, 21(1), 83-88. Gardner, W. H., Klute, A. (1986). Methods of soil analysis: Water content. Physical and Mineralogical Methods, 493-544. Gee, G. W., Bauder, J. W., Klute, A. (1986). Methods of soil analysis: Particle-size analysis. Physical and Mineralogical Methods, 383-411. Gibicar, D., Horvat, M., Logar, M., Fajon, V., Falnoga, I., Ferrara, R., Lanzillotta, E., Ceccarini, C., Mazzolai, B., Denby, B., Pacyna, J. (2009). Human exposure to mercury in the vicinity of chlor-alkali plant. Environmental Research, 109(4), 355-367. Gleyzes, C., Tellier, S., Astruc, M. (2002). Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trends in Analytical Chemistry, 21(6), 451-467. Gray, J. E., Hines, M. E., Higueras, P. L., Adatto, I., Lasorsa, B. K. (2004). Mercury speciation and microbial transformations in mine wastes, stream sediments, and surface waters at the Almadén mining district, Spain. Environmental Science and Technology, 38(16), 4285-4292. Guney, M., Zagury, G. J., Dogan, N., Onay, T. T. (2010). Exposure assessment and risk characterization from trace elements following soil ingestion by children exposed to playgrounds, parks and picnic areas. Hazardous Materials, 182(1-3), 656-664. Hempel, M., Wilken, R. D., Geilhufe, C., Richter-Politz, I. (1995). Transformation of elemental mercury to organic mercury species at sites of former caustic soda plants in East-Germany. In Contaminated Soil’95 (pp. 505-506). Springer Netherlands. Hu, X., Zhang, Y., Luo, J., Wang, T., Lian, H., Ding, Z. (2011). Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China. Environmental Pollution, 159(5), 1215-1221. Issaro, N., Abi-Ghanem, C., Bermond, A. (2009). Fractionation studies of mercury in soils and sediments: a review of the chemical reagents used for mercury extraction. Analytica Chimica Acta, 631(1), 1-12. Jarup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68(1), 167-182. Juhasz, A. L., Smith, E., Weber, J., Rees, M., Rofe, A., Kuchel, T., Sansom, L., Naidu, R. (2007a). Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils. Chemosphere, 69(6), 961-966. Juhasz, A. L., Smith, E., Weber, J., Rees, M., Rofe, A., Kuchel, T., Sansom, L., Naidu, R. (2007b). In vitro assessment of arsenic bioaccessibility in contaminated (anthropogenic and geogenic) soils. Chemosphere, 69(1), 69-78. Kelley, M. E., Brauning, S., Schoof, R., Ruby, M. (2002). Assessing Oral Bioavailability of Metals in Soil. Battelle Press. Kim, E. J., Yoo, J. C., Baek, K. (2014). Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation. Environmental Pollution, 186, 29-35. Li, J., Wei, Y., Zhao, L., Zhang, J., Shangguan, Y., Li, F., Hou, H. (2014). Bioaccessibility of antimony and arsenic in highly polluted soils of the mine area and health risk assessment associated with oral ingestion exposure. Ecotoxicology and Environmental Safety, 110, 308-315. Li, S. W., Li, J., Li, H. B., Naidu, R., Ma, L. Q. (2015). Arsenic bioaccessibility in contaminated soils: Coupling in vitro assays with sequential and HNO3 extraction. Hazardous Materials, 295, 145-152. Lombi, E., Sletten, R., Wenzel, W. (2000). Sequentially extracted arsenic from different size fractions of contaminated soils. Water, Air, and Soil Pollution, 124(3-4), 319-332. Luo, X. S., Ding, J., Xu, B., Wang, Y. J., Li, H. B., Yu, S. (2012). Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils. Science of the Total Environment, 424, 88-96 Mclean, E. (1982). Methods of soil analysis: Chemical and microbiological properties. Soil Science Society of America. Mercer, K. L., Tobiason, J. E. (2008). Removal of arsenic from high ionic strength solutions: effects of ionic strength, pH, and preformed versus in situ formed HFO. Environmental Science and Technology, 42(10), 3797-3802. Meunier, L., Koch, I., Reimer, K. J. (2011). Effects of organic matter and ageing on the bioaccessibility of arsenic. Environmental Pollution, 159(10), 2530-2536. Meunier, L., Walker, S. R., Wragg, J., Parsons, M. B., Koch, I., Jamieson, H. E., Reimer, K. J. (2010). Effects of soil composition and mineralogy on the bioaccessibility of arsenic from tailings and soil in gold mine districts of Nova Scotia. Environmental Science and Technology, 44(7), 2667-2674. Molly, K., Woestyne, M. V., Verstraete, W. (1993). Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Applied Microbiology and Biotechnology, 39(2), 254-258. Morera, M., Echeverrıa, J., Mazkiaran, C., Garrido, J. (2001). Isotherms and sequential extraction procedures for evaluating sorption and distribution of heavy metals in soils. Environmental Pollution, 113(2), 135-144. Neculita, C.-M., Zagury, G. J., Deschênes, L. (2005). Mercury speciation in highly contaminated soils from chlor-alkali plants using chemical extractions. Environmental Quality, 34(1), 255-262. Nelson, D., Sommers, L. E. (1982). Methods of soil analysis: Total carbon, organic carbon, and organic matter. American Society of Agronomy, Soil Science Society of America. NRC/NAS. (1983). Risk Assessment in the Federal Government: Managing the Process. Washington, DC: National Academies Press. Oomen, A. G., Hack, A., Minekus, M., Zeijdner, E., Cornelis, C., Schoeters, G., Verstraete, W., Van de Wiele, T., Wragg, J., Rompelberg, C. J. (2002). Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environmental Science and Technology, 36(15), 3326-3334. Paustenbach, D. J. (2000). The practice of exposure assessment: a state of the art review. Toxicology and Environmental Health, 3(3), 179-291. Pierce, M. L., Moore, C. B. (1982). Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Research, 16(7), 1247-1253. Rao, C. R. M., Sahuquillo, A., Sanchez, J. L. (2008). A review of the different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials. Water, Air, and Soil Pollution, 189(1-4), 291-333. Reis, A. T., Rodrigues, S. M., Davidson, C. M., Pereira, E., Duarte, A. C. (2010). Extractability and mobility of mercury from agricultural soils surrounding industrial and mining contaminated areas. Chemosphere, 81(11), 1369-1377. Rodolfo, F. M., Rucandio, I. (2013). Assessment of a sequential extraction method to evaluate mercury mobility and geochemistry in solid environmental samples. Ecotoxicology and Environmental Safety, 97, 196-203. Rodriguez, R. R., Basta, N. T. (1999). An In Vitro Gastrointestinal Method To Estimate Bioavailable Arsenic in Contaminated Soils and Solid Media. Environmental Science and Technology, 33, 642-649. Ruby, M. V., Davis, A., Link, T. E., Schoof, R., Chaney, R. L., Freeman, G. B., Bergstrom, P. (1993). Development of an in vitro screening test to evaluate the in vivo bioaccessibility of ingested mine-waste lead. Environmental Science and Technology, 27(13), 2870-2877. Ruby, M. V., Davis, A., Schoof, R., Eberle, S., Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science and Technology, 30(2), 422-430. Ruby, M. V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., Mosby, D. E., Casteel, S. W., Bberti, W., Carpenter, M., Edwards, D., Cragin, D., Chappell, W. (1999). Advances in Evaluating the Oral Bioavailability of Inorganics in Soil for Use in Human Health Risk Assessment. Environmental Science and Technology, 33(21). Rule, J. H., Iwashchenko, M. S. (1998). Mercury concentrations in soils adjacent to a former chlor-alkali plant. Environmental Quality, 27(1), 31-37. Safruk, A. M., Berger, R. G., Jackson, B. J., Pinsent, C., Hair, A. T., Sigal, E. A. (2015). The bioaccessibility of soil-based mercury as determined by physiological based extraction tests and human biomonitoring in children. Science of the Total Environment, 518-519, 545-553. Samuel, V. H., Rudy, S., Carlo, V., Valerie, C. (2003). Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples. Environmental Pollution, 122(3), 323-342. Sánchez, D. M., Quejido, A. J., Fernández, M., Hernández, C., Schmid, T., Millán, R., González, M., Aldea, M., Martín, R., Morante, R. (2005). Mercury and trace element fractionation in Almaden soils by application of different sequential extraction procedures. Analytical and Bioanalytical Chemistry, 381(8), 1507-1513. Sarkar, D., Makris, K. C., Parra-Noonan, M. T., Datta, R. (2007). Effect of soil properties on arsenic fractionation and bioaccessibility in cattle and sheep dipping vat sites. Environment International, 33(2), 164-169. Smedley, P. L., Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517-568. Smith, E., Scheckel, K., Miller, B. W., Weber, J., Juhasz, A. L. (2014). Influence of in vitro assay pH and extractant composition on As bioaccessibility in contaminated soils. Science of the Total Environment, 473, 171-177. Syversen, T., Kaur, P. (2012). The toxicology of mercury and its compounds. Trace Elements in Medicine and Biology, 26(4), 215-226. Taiwan EPA (2010). Amendment, enhancement and consultation of human health risk assessment protocol for soil and groundwater contaminated sites. Environmental Protection Administration, R.O.C. (Taiwan). EPA-98-GA101-03-A216. Taiwan EPA (2015). Identify the health-risk based on exposure factors for children nearby contaminate sites. Environmental Protection Administration, R.O.C. (Taiwan). EPA-103-GA11-03-A216. Tang, X. Y., Zhu, Y. G., Shan, X. Q., McLaren, R., Duan, J. (2007). The ageing effect on the bioaccessibility and fractionation of arsenic in soils from China. Chemosphere, 66(7), 1183-1190. Turaga, R. M. R., Howarth, R. B., Borsuk, M. E. (2014). Perceptions of Mercury Risk and Its Management. Human and Ecological Risk Assessment, 20(5), 1385-1405. U.S.EPA (1989). Risk Assessment Guidance for Superfund. Volume I: Human Health Evaluation Manual (Part A). Washington, DC: U.S Office of Emergency and Remedial Response. U.S.EPA (1997). Guiding principles for Monte Carlo Analysis. U.S. Environmental Protection Agency. DC: U.S Office of Solid Waste. U.S.EPA (2007). Toxicity and Exposure Assessment for Children's Health, Land and Chemicals Division. U.S.EPA (2007a). Estimation of Relative Bioavailability of Lead in Soil and Soil-Like Materials Using In Vivo and In Vitro Methods. U.S.EPA (2009). Application of bioavailability in the Assessment of Human Health Hazards and Cancer Risk. U.S.EPA (2011). Exposure factors handbook: 2011 edition. Washington, DC: U.S. Environmental Protection Agency. U.S.EPA (2012). Compilation and review of data on relative bioavailability of arsenic in soil. Washington, DC: U.S. Environmental Protection Agency. Violante, A., Cozzolino, V., Perelomov, L., Caporale, A., Pigna, M. (2010). Mobility and bioavailability of heavy metals and metalloids in soil environments. Soil Science and Plant Nutrition, 10(3), 268-292. Wallschläger, D., Desai, M. V., Spengler, M., Wilken, R. D. (1998). Mercury speciation in floodplain soils and sediments along a contaminated river transect. Environmental Quality, 27(5), 1034-1044 Waychunas, G. A., Rea, B. A., Fuller, C. C., Davis, J. A. (1993). Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochimica et Cosmochimica Acta, 57(10), 2251-2269. Welfringer, B., Zagury, G. J. (2009). Evaluation of two in vitro protocols for determination of mercury bioaccessibility: influence of mercury fractionation and soil properties. Environmental Quality, 38(6), 2237-2244. Wenzel, W. W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E., Adriano, D. C. (2001). Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimica Acta, 436(1), 309–323. Whitacre, D. M., Gunther, F. A. (2010). Reviews of environmental contamination and toxicology. Springer. Wragg, J., Cave, M., Basta, N., Brandon, E., Casteel, S., Denys, S., Gron, C., Oomen, A., Reimer, K., Tack, K. Van de Wiele, T. (2011). An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil. Science of the Total Environment, 409(19), 4016-4030. Yang, J.-K., Barnett, M. O., Jardine, P. M., Basta, N. T., Casteel, S. W. (2002). Adsorption, Sequestration, and Bioaccessibility of As(V) in Soils. Environmental Science and Technology, 36, 4562-4569. Zagury, G. J., Bedeaux, C., Welfringer, B. (2009). Influence of mercury speciation and fractionation on bioaccessibility in soils. Archives of Environmental Contamination and Toxicology, 56(3), 371-379. Zimmerman, A. J., Weindorf, D. C. (2010). Heavy metal and trace metal analysis in soil by sequential extraction: a review of procedures. Analytical Chemistry, 387803. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50183 | - |
dc.description.abstract | 因土壤與地下水污染,台灣環保署已經公告超過2,900個整治場址及控制場址,表示台灣居民正暴露於一個高風險的環境下。土壤直接攝入為重金屬經污染土壤進入人體的途徑之一 ,其中又以六歲以下孩童容易將手放入口部行為使孩童的暴露風險高於成人,因此有必要進行污染土壤直接攝入的健康風險評估。然而,以往的健康風險評估皆基於土壤中污染物的總量做為計算,明顯造成風險結果過於高估;已經有研究指出當誤食重金屬污染土壤時,並非污染土壤中的所有重金屬皆會被人體吸收,需要考慮重金屬之生物有效性(bioavailability),然而體內萃取試驗(in-vivo test)費時且成本高,進而發展出體外萃取試驗(in-vitro test),以生物可及性 (bioaccessibility)評估取代。
為了得到更為合理的健康風險評估結果,本研究以台灣之砷、汞污染土壤場址為例,包括台北關渡平原天然砷污染場址、台南安順、高雄前鎮汞污染場址以及屏東赤山巖砷、汞污染場址,以生理萃取試驗法(physiologically based extraction test, PBET)及(simplified bioaccessibility extraction test, SBET)兩種體外萃取試驗進行生物可及性評估 ,再以序列萃取法(sequential extraction procedure, SEP)探討重金屬的化學型態與生物可及性濃度的關係,進而提供建立土壤中重金屬對於孩童的健康風險評估中暴露劑量的參考。實驗結果顯示As在模擬胃腸道中之生物可及性與非專一性吸附、專一性吸附有顯著正相關(p<0.05); Hg 之生物可及性則與水可溶解態、可交換態亦有顯著正相關(p<0.01) 。土壤有機質、粘粒與As、Hg之生物可及性濃度有顯著負相關(p<0.05)。 最後,將所得之生物可及性作為本土砷、汞污染場址健康風險評估中暴露劑量之參數,顯示健康風險值確實降低 ,此結果可提供政府管理單位在未來對污染場址管理與決策做為更適當的參考依據。 | zh_TW |
dc.description.abstract | Taiwan Environmental Protection Administration has declared more than 2,900 control and remediation sites due to soil and groundwater contamination. People who live on or close to these contaminated sites may have high exposure risk. Moreover, higher-frequency hand-to-mouthing behaviors could lead children under six years old to greater health risk than adults due to direct ingestion. Hence, health risk assessment is necessary for children living in the neighborhood of the contaminated sites. However, the assessment based on total content of contaminants may overestimate the risk; consequently, it is important to determine bioavailable metals in soils. Although in-vivo approaches reflect quasi-physiological conditions, these methods are expensive and time-consuming. Therefore, in-vitro methods are developed and recognized as fast screening tools in assessing bioaccessibility of metals in the soils of contaminated sites.
In this study, eight asenic (As)-contaminated and mercury (Hg)-contaminated soils were collected from four different sites in Taiwan (i.e., Guandu, Cianjhen, Anshun and Chishan-Yen sites). One of the objectives is to provide more proper results for exposure assessment via acquisition of As and Hg bioaccessibility by using two in-vitro assays, namely physiologically based extraction test (PBET) and simplified bioaccessibility extraction test (SBET). Moreover, sequential extraction procedure (SEP) was employed to understand the solubilities and motilities of As and Hg in the soils. The experimental results showed that positive significant (P<0.05) relationships were found between As proportions in fraction 1, fraction 2 of SEP and As bioaccessibility; the positive significant (P<0.01) relationships was also established between Hg proportions in fraction 1, fraction 2 of SEP and Hg bioaccessibility. The soil properties (e.g., organic carbon and clay content) had significant (P<0.05) correlation with As and Hg bioaccessibility. As expected, the risk results after adjustment by bioaccessibility were lower than that obtained based on total metal contents. Results obtained in this research provide suggestions to the decision makers on setting new strategies in the risk management of metal-contaminated soil sites. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T12:31:52Z (GMT). No. of bitstreams: 1 ntu-105-R03541107-1.pdf: 7866461 bytes, checksum: baec9fd3a802b931633a7e825e157ba4 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 中文摘要 i
Abstract ii Contents iv List of Figure viii List of Table x List of Abbreviations xii Chapter 1. Introduction 1 1.1. Motivation 1 1.2. Research Objectives 2 Chapter 2. Literature Review 6 2.1. Background of Heavy Metal 6 2.1.1. Arsenic (As) 6 2.1.2. Mercury (Hg) 7 2.2. Bioavailability and Bioaccessibility 8 2.2.1. Physiologically based extraction test (PBET) 11 2.2.2. Simple bioaccessibility extraction test (SBET) 12 2.3. Soil Physicochemical Properties 15 2.3.1. Soil characterization related to metal bioaccessibility 15 2.4. Sequential Extraction Procedure (SEP) 16 2.4.1. The fractions of As and Hg in contaminated soil 19 2.4.2. Correlation of bioaccessible metal with different fractions in soils 22 2.5. Health Risk Assessment 23 2.5.1. The process of human health risk assessment 24 2.5.2. Exposure pathway 26 Chapter 3. Materials and Methods 27 3.1. Experimental Design 27 3.2. Experimental Equipments 29 3.3. Experimental Chemicals 29 3.4. Sampling Sites, Procedure, and Pretreatment 31 3.5. Soil Characterization 33 3.5.1. pH of soils 33 3.5.2. Water content 33 3.5.3. Total organic carbon 34 3.5.4. Particle-size distribution 35 3.6. Total Metal Content (microwave digestion with aqua regia) 36 3.7. In-vitro Bioaccessibility Method 37 3.7.1. Physiologically based extraction test (PBET) 38 3.7.2. Simple bioaccessibility extraction test (SBET) 39 3.8. Sequential Extraction Procedure 39 3.8.1. As SEP 40 3.8.2. Hg SEP 42 3.9. Health Risk Assessment 43 3.9.1. Hazard identification 44 3.9.2. Dose-response assessment 45 3.9.3. Exposure assessment 46 3.9.3.1. Exposure pathways and factors 46 3.9.4. Risk characterization 48 3.9.4.1. Carcinogenic risk 48 3.9.4.2. Non-carcinogenic risk 48 3.9.5. Uncertainty and sensitivity analysis 49 Chapter 4. Results and Discussion 50 4.1. General Physical and Chemical Properties of Soil 50 4.1.1. General properties of soils from As-polluted sites 50 4.1.2. General properties of soils from Hg-polluted sites 53 4.2 Fraction of the Different Elements (sequential extraction procedure, SEP) 53 4.2.1 Sequential extraction of arsenic 53 4.2.2. Sequential extraction of mercury 54 4.3. Arsenic and Mercury Bioaccessibility Based on Two In-vitro Assays 58 4.3.1. Bioaccessibility of As 58 4.3.2. Bioaccessibility of Hg 59 4.4. Relationship between Soil Characterization and Bioaccessible Heavy Metal 64 4.4.1. Effects of soil properties on bioaccessible As 64 4.4.2. Effects of soil properties on bioaccessible Hg 65 4.5. Correlation of Bioaccessible Metal with Heavy Metal in Different Fractions in Soils 72 4.5.1. The relationship between As fractionation and bioaccessibility 72 4.5.2. The relationship between Hg fractionation and bioaccessibility 73 4.6. Health Risk Assessment 76 4.6.1. Exposure assessment and risk characterization in As-polluted sites 76 4.6.2. Exposure assessment and risk characterization in Hg-polluted sites 82 Chapter 5. Conclusions and Recommendations 86 5.1. Conclusions 86 5.1.1. Influence of soil properties and arsenic fractionation on bioaccessibility 86 5.1.2. Influence of soil properties and mercury fractionation on bioaccessibility 87 5.1.3. Health risk assessment 88 5.2. Recommendations 88 | |
dc.language.iso | en | |
dc.title | 土壤中砷、汞生物可及性、移動性、及健康風險評估 | zh_TW |
dc.title | Bioaccessibility, mobility,
and health risk assessment of arsenic and mercury in soils | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 馬鴻文,許正一,簡伶朱 | |
dc.subject.keyword | 砷,汞,污染土壤,生物可及性,生物有效性,健康風險評估, | zh_TW |
dc.subject.keyword | Asenic,mercury,contaminated soils,bioaccessibility,bioavailability,health risk assessment, | en |
dc.relation.page | 100 | |
dc.identifier.doi | 10.6342/NTU201601205 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-04 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 7.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。