Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50173
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江博明(Bor-Ming Jahn)
dc.contributor.authorTsung-Jui Wuen
dc.contributor.author吳宗叡zh_TW
dc.date.accessioned2021-06-15T12:31:36Z-
dc.date.available2020-08-24
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-08-03
dc.identifier.citationAndersen, T., 2002. Correction of common lead in U–Pb analyses that do not report 204 Pb. Chemical geology, 192(1): 59-79.
Anderson, D.L., 2007. The eclogite engine: Chemical geodynamics as a Galileo thermometer. Geological Society of America Special Papers, 430: 47-64.
Bédard, J.H., 2006. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochimica et Cosmochimica Acta, 70(5): 1188-1214.
Baba, A.K. et al., 2007. New age constraints on counter-clockwise rotation of NE Japan. Geophysical Journal International, 171(3): 1325-1341.
Castillo, P.R., 2012. Adakite petrogenesis. Lithos, 134: 304-316.
Celaya, M., McCabe, R., 1987. Kinematic model for the opening of the Sea of Japan and the bending of the Japanese islands. Geology, 15(1): 53-57.
Chashchin, A., Nechaev, V., Nechaeva, E., Blokhin, M., 2011. Discovery of Eocene adakites in Primor’e, Doklady Earth Sciences. Springer, pp. 744-749.
Chekryzhov, I.Y., Popov, V., Panichev, A., Seredin, V., Smirnova, E., 2010. New data on the stratigraphy, volcanism, and zeolite mineralization of the Cenozoic Vanchinskaya Depression in Primorye. Russian Journal of Pacific Geology, 4(4): 314-330.
Chen, B., Jahn, B.M., Suzuki, K., 2013. Petrological and Nd-Sr-Os isotopic constraints on the origin of high-Mg adakitic rocks from the North China Craton: Tectonic implications. Geology, 41(1): 91-94.
Chung, S.L. et al., 2003. Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology, 31(11): 1021-1024.
Corfu, F., Hanchar, J.M., Hoskin, P.W., Kinny, P., 2003. Atlas of zircon textures. Reviews in mineralogy and geochemistry, 53(1): 469-500.
Cousens, B.L., Allan, J.F., Gorton, M.P., 1994. Subduction-modified pelagic sediments as the enriched component in back-arc basalts from the Japan Sea: Ocean Drilling Program Sites 797 and 794. Contributions to Mineralogy and Petrology, 117(4): 421-434.
Dacheng, J., Ruizhong, H., Yan, L., Xuelin, Q., 2004. Collision belt between the Khanka block and the North China block in the Yanbian Region, Northeast China. Journal of Asian Earth Sciences, 23(2): 211-219.
Defant, M.J., Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665.
Didenko, A., Khanchuk, A., Tikhomirova, A., Voinova, I., 2014. Eastern segment of the Kiselevka-Manoma terrane (Northern Sikhote Alin): Paleomagnetism and geodynamic implications. Russian Journal of Pacific Geology, 8(1): 18-37.
Drummond, M.S., Defant, M.J., 1990. A model for trondhjemite‐tonalite‐dacite genesis and crustal growth via slab melting: Archean to modern comparisons. Journal of Geophysical Research: Solid Earth, 95(B13): 21503-21521.
Engebretson, D.C., 1985. Relative motions between oceanic and continental plates in the Pacific basin, 206. Geological society of America.
Faure, M. et al., 1995. Tectonic evolution of the Anuy metamorphic rocks (Sikhote Alin, Russia) and their place in the Mesozoic geodynamic framework of East Asia. Tectonophysics, 241(3): 279-301.
Gómez‐Tuena, A. et al., 2003. Temporal control of subduction magmatism in the eastern Trans‐Mexican Volcanic Belt: Mantle sources, slab contributions, and crustal contamination. Geochemistry, Geophysics, Geosystems, 4(8).
Gill, J., 2012. Orogenic andesites and plate tectonics, 16. Springer Science & Business Media.
Grebennikov, A., Popov, V., 2014. Petrogeochemical aspects of the Late Cretaceous and Paleogene ignimbrite volcanism of East Sikhote-Alin. Russian Journal of Pacific Geology, 8(1): 38-55.
Gu, H.O. et al., 2013. Spatial and temporal distribution of Mesozoic adakitic rocks along the Tan-Lu fault, Eastern China: constraints on the initiation of lithospheric thinning. Lithos, 177: 352-365.
Gutscher, M.A., Spakman, W., Bijwaard, H., Engdahl, E.R., 2000. Geodynamics of flat subduction: Seismicity and tomographic constraints from the Andean margin. Tectonics, 19(5): 814-833.
Hildreth, W., Moorbath, S., 1988. Crustal contributions to arc magmatism in the Andes of central Chile. Contributions to mineralogy and petrology, 98(4): 455-489.
Irvine, T., Baragar, W., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian journal of earth sciences, 8(5): 523-548.
Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology, 211(1): 47-69.
Jacobsen, S.B., Wasserburg, G., 1980. Sm-Nd isotopic evolution of chondrites. Earth and Planetary Science Letters, 50(1): 139-155.
Jahn, B.M., Bernard-Griffiths, J., Charlot, R., Cornichet, J., Vidal, F., 1980. Nd and Sr isotopic compositions and REE abundances of Cretaceous MORB (Holes 417D and 418A, Legs 51, 52 and 53). Earth and Planetary Science Letters, 48(1): 171-184.
Jahn, B.M., Glikson, A., Peucat, J., Hickman, A., 1981. REE geochemistry and isotopic data of Archean silicic volcanics and granitoids from the Pilbara Block, Western Australia: implications for the early crustal evolution. Geochimica et Cosmochimica Acta, 45(9): 1633-1652.
Jahn, B.M., Usuki, M., Usuki, T., Chung, S.L., 2014. Generation of Cenozoic granitoids in Hokkaido (Japan): Constraints from zircon geochronology, Sr-Nd-Hf isotopic and geochemical analyses, and implications for crustal growth. American Journal of Science, 314(2): 704-750.
Jahn, B.M., Valui, G., Kruk, N., Gonevchuk, V., Usuki, M., Wu, J.T., 2015. Emplacement ages, geochemical and Sr–Nd–Hf isotopic characterization of Mesozoic to early Cenozoic granitoids of the Sikhote-Alin Orogenic Belt, Russian Far East: Crustal growth and regional tectonic evolution. Journal of Asian Earth Sciences, 111: 872-918.
Janney, P.E., Castillo, P.R., 1997. Geochemistry of Mesozoic Pacific mid‐ocean ridge basalt: Constraints on melt generation and the evolution of the Pacific upper mantle. Journal of Geophysical Research: Solid Earth, 102(B3): 5207-5229.
Jochum, K., Verma, S., 1996. Extreme enrichment of Sb, Tl and other trace elements in altered MORB. Chemical Geology, 130(3): 289-299.
Jolivet, L., Tamaki, K., Fournier, M., 1994. Japan Sea, opening history and mechanism: A synthesis. Journal of Geophysical Research: Solid Earth, 99(B11): 22237-22259.
Kamei, A., 2004. An adakitic pluton on Kyushu Island, southwest Japan arc. Journal of Asian Earth Sciences, 24(1): 43-58.
Kay, R., 1978. Aleutian magnesian andesites: melts from subducted Pacific Ocean crust. Journal of Volcanology and Geothermal Research, 4(1): 117-132.
Kemkin, I.V., 2006. Geodynamic evolution of the Sikhote-Alin and Sea of Japan region in Mesozoic. Nauka, Moscow.
Kemkin, I.V., 2008. Structure of terranes in a Jurassic accretionary prism in the Sikhote-Alin-Amur area: implications for the Jurassic geodynamic history of the Asian eastern margin. Russian Geology and Geophysics, 49(10): 759-770.
Kemkin, I.V., 2009. Early Cretaceous radiolarians of the Amur River lower stream area (Russia Far East) and their tectonic significance. Acta Geoscientica Sinica, 30(S1): 21-24.
Kemkin, I.V., Taketani, Y., 2008. Structure and age of lower structural unit of Taukha terrane of Late Jurassic–Early Cretaceous accretionary prism, southern Sikhote–Alin. Island Arc, 17(4): 517-530.
Khanchuk, A., 2001. Pre-Neogene tectonics of the Sea-of-Japan region: a view from the Russian side. Earth Science (Chikyu Kagaku), 55: 275-291.
Khanchuk, A., 2006. Geodynamics, Magmatism, and Metallogeny of Eastern Russia. Dal'nauka, Vladivostok, 1: 1-572.
Khanchuk, A., Kemkin, I., Kruk, N., 2016. The Sikhote–Alin orogenic belt, Russian South East: terranes and the formation of continental lithosphere based on geological and isotopic data. Journal of Asian Earth Sciences, 120:117-138.
Khanchuk, A, Kruk, N., Golozubov, V., Kovach, V.P., Serov, P.A., Kholodnov, V.V., Gvozdev, V.I., Kasatkin, S.A., 2013. The nature of the continental crust of Sikhote-Alin as evidenced from the Nb isotopy of Rocks of Southern Primorie, Doklady Earth Sciences. Springer Science & Business Media, pp. 809.
Khanchuk, A., Panchenko, I., Kemkin, I., 1988. Geodynamic evolution of Sikhote Alin and Sakhalin in the Late Paleozoic and the Mesozoic. Preprint, Far Eastern Branch of USSR Academy of Sciences, Vladivostok.
Kiji, M., Ozawa, H., Murata, M., 2000. Cretaceous adakitic Tamba granitoids in northern Kyoto, San'yo belt, Southwest Japan. Japanese Magazine of Mineralogical and Petrological Sciences, 29: 136-149.
Kimura, G., Rodzdestvenskiy, V., Okumura, K., Melinikov, O., Okamura, M., 1992. Mode of mixture of oceanic fragments and terrigenous trench fill in an accretionary complex: Example from southern Sakhalin. Tectonophysics, 202(2): 361-374.
Kimura, T., 1987. Geographical distribution of Palaeozoic and Mesozoic plants in East and Southeast Asia. Historical biogeography and plate tectonic evolution of Japan and Eastern Asia: 135-200.
Kincaid, C., Griffiths, R., 2003. Laboratory models of the thermal evolution of the mantle during rollback subduction. Nature, 425(6953): 58-62.
Kojima, S., Igor’V, K., Kametaka, M., Ando, A., 2000. A correlation of accretionary complexes of southern Sikhote-Alin of Russia and the Inner Zone of Southwest Japan. Geosciences Journal, 4(3): 175-185.
Kravchinsky, V.A., Cogné, J. P., Harbert, W.P., Kuzmin, M.I., 2002. Evolution of the Mongol-Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol-Okhotsk suture zone, Siberia. Geophysical Journal International, 148(1): 34-57.
Kruk, N., Simanenko, V.P., Gvozdez, V.I., Golozubov, V.V., Kovach, V.P., Serov, P.I., Kholodnov, V.V., Moskalenko, E., Kuibida, M.L., 2014. Early Cretaceous granitoids of the Samarka terrane (Sikhote-Alin’): geochemistry and sources of melts. Russian Geology and Geophysics, 55(2): 216-236.
Lallemand, S., Jolivet, L., 1986. Japan Sea: a pull-apart basin? Earth and Planetary Science Letters, 76(3): 375-389.
Li, C., van der Hilst, R.D., Engdahl, E.R., Burdick, S., 2008. A new global model for P wave speed variations in Earth's mantle. Geochemistry, Geophysics, Geosystems, 9(5).
Liao, J.P., Alexandrov, I., Jahn, B.M., 2016. Eocene Granitoids of the Okhotsk Complex in Sakhalin Island, Russian Far East: Petrogenesis and tectonic implications from zircon U-Pb ages, geochemical and Sr-Nd isotopic characteristics, EGU General Assembly 2016. Geophysical Research Abstracts, Vienna.
Lin, I.J. et al., 2012. Geochemical and Sr–Nd isotopic characteristics of Cretaceous to Paleocene granitoids and volcanic rocks, SE Tibet: petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 53: 131-150.
Litvinovsky, B. et al., 2002. Petrogenesis of syenite–granite suites from the Bryansky Complex (Transbaikalia, Russia): implications for the origin of A-type granitoid magmas. Chemical Geology, 189(1): 105-133.
Ludwig, K., 2003. User's manual for Isoplot 3.00: a geochronological toolkit for Microsoft Excel. Kenneth R. Ludwig.
Lugmair, G., Marti, K., 1978. Lunar initial 143 Nd/144 Nd: differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters, 39(3): 349-357.
Macpherson, C.G., Dreher, S.T., Thirlwall, M.F., 2006. Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3): 581-593.
Maeda, J.I., 1990. Opening of the Kuril Basin deduced from the magmatic history of Central Hokkaido, North Japan. Tectonophysics, 174(3-4): 235-255.
Malinovsky, A., 2010. Lithological composition of island-arc complexes in the Russian Far East. Lithology and Mineral Resources, 45(1): 24-38.
Malinovsky, A., Golozoubov, V., Simanenko, V., 2006. The Kema island-arc terrane, eastern Sikhote Alin: Formation settings and geodynamics, Doklady earth sciences. Springer, pp. 1026-1029.
Malinovsky, A., Golozubov, V., 2012. Structure, composition, and depositional environments of the lower cretaceous rocks of the Zhuravlevka terrane, Central Sikhote Alin. Lithology and Mineral Resources (in Japanese), 47(4): 355-378.
Malinovsky, A.I., Golozoubov, V.V., Simanenko, V.P., Simanenko, L.F., 2008. Kema terrane: A fragment of a back‐arc basin of the early Cretaceous Moneron–Samarga island‐arc system, East Sikhote–Alin range, Russian Far East. Island Arc, 17(3): 285-304.
Maniar, P.D., Piccoli, P.M., 1989. Tectonic discrimination of granitoids. Geological society of America bulletin, 101(5): 635-643.
Markevich, P. et al., 2005. 12. Cyclicity of the mesozoic sedimentation on the eastern margin of the Chinese Craton as a response to the main geodynamic events in the adjacent active oceanic area. Developments in Sedimentology, 57: 355-395.
Martin, H., 1986. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 14(9): 753-756.
Martin, H., 1999. Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46(3): 411-429.
Martin, H., Chauvel, C., Jahn, B. M., 1983. Major and trace element geochemistry and crustal evolution of Archaean granodioritic rocks from eastern Finland. Precambrian Research, 21(3): 159-180.
Martin, H., Smithies, R., Rapp, R., Moyen, J. F., Champion, D., 2005. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79(1): 1-24.
Martynov, Y.A., Khanchuk, A., 2013. Cenozoic volcanism of the eastern Sikhote Alin: petrological studies and outlooks. Petrology, 21(1): 85-99.
Moyen, J. F., 2009. High Sr/Y and La/Yb ratios: the meaning of the “adakitic signature”. Lithos, 112(3): 556-574.
Nakanishi, M., Tamaki, K., Kobayashi, K., 1992. Magnetic anomaly lineations from Late Jurassic to Early Cretaceous in the west-central Pacific Ocean. Geophysical Journal International, 109(3): 701-719.
Northrup, C., Royden, L., Burchfiel, B., 1995. Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia. Geology, 23(8): 719-722.
Okawa, H. et al., 2013. Detrital zircon geochronology of the Silurian–Lower Cretaceous continuous succession of the South Kitakami Belt, Northeast Japan. Memoir of the Fukui Prefectural Dinosaur Museum, 12: 35-78.
Otofuji, Y. et al., 1995. Late Cretaceous to early Paleogene paleomagnetic results from Sikhote Alin, far eastern Russia: implications for deformation of East Asia. Earth and Planetary Science Letters, 130(1): 95-108.
Otofuji, Y., Matsuda, T., Nohda, S., 1985. Opening mode of the Japan Sea inferred from the palaeomagnetism of the Japan Arc.
Parfenov, L., 1983. Continental margins and island arcs in the Mesozoides of northeast Asia and kinematics of Mesozoic folding. Article 1, Mesozoides of the Verkhoyansk-Chukotka region. Tikhookean. Geol, 3: 3-27.
Parfenov, L.M. et al., 2011. Tectonic and metallogenic model for Northeast Asia. US Department of the Interior, US Geological Survey.
Peacock, S.M., Rushmer, T., Thompson, A.B., 1994. Partial melting of subducting oceanic crust. Earth and planetary science letters, 121(1): 227-244.
Peucat, J., Vidal, P., Bernard-Griffiths, J., Condie, K., 1989. Sr, Nd, and Pb isotopic systematics in the Archean low-to high-grade transition zone of southern India: syn-accretion vs. post-accretion granulites. The Journal of Geology: 537-549.
Plank, T., 2014. The chemical composition of subducting sediments. In: Holland, H., Turekian, K. (Eds.), Treatise on Geochemistry (Second Edition). Elsevier, pp. 607-629.
Rasskazov, S. et al., 2004. Cenozoic Magmatism of the Southwestern Primorye: Pulsed Melting of Mantle and Crust. Tikhookean. Geol, 23(6): 3-31.
Ren, J., Tamaki, K., Li, S., Junxia, Z., 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas. Tectonophysics, 344(3): 175-205.
Rickwood, P.C., 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): 247-263.
Rubatto, D., 2002. Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chemical Geology, 184(1): 123-138.
Sajona, F.G., Maury, R.C., Bellon, H., Cotten, J., Defant, M., 1996. High Field Strength Element Enrichment of Pliocene—Pleistocene Island Arc Basalts, Zamboanga Peninsula, Western Mindanao (Philippines). Journal of Petrology, 37(3): 693-726.
Sakhno, V., Kovalenko, S., Alenicheva, A., 2011. Monzonitoid magmatism of the copper-porphyritic Lazurnoe deposit (South Primor’e): U-Pb and K-Ar geochronology and peculiarities of ore-bearing magma genesis by the data of isotopic-geochemical studies, Doklady Earth Sciences. Springer, pp. 569-577.
Sayadyan, G., 2004. Geology, magmatism and gold mineralization of South Primorye (the Askold strike-slip fault zone, Sergeevka terrane), Metallogeny of the Pacific Northwest (Russian Far East): Tectonics, Magmatism and Metallogeny of Active Continental Margins. Interim IAGOD Conference Excursion Guidebook. Dalnauka Publ. House, Vladivostok, pp. 137-146.
Sengör, A.C., Natal'In, B.A., 1996. Turkic-type orogeny and its role in the making of the continental crust. Annual Review of Earth and Planetary Sciences, 24(1): 263-337.
Seton, M. et al., 2015. Ridge subduction sparked reorganization of the Pacific plate‐mantle system 60–50 million years ago. Geophysical Research Letters, 42(6): 1732-1740.
Seton, M. et al., 2012. Global continental and ocean basin reconstructions since 200Ma. Earth-Science Reviews, 113(3): 212-270.
Shimoda, G., Tatsumi, Y., Nohda, S., Ishizaka, K., Jahn, B., 1998. Setouchi high-Mg andesites revisited: geochemical evidence for melting of subducting sediments. Earth and Planetary Science Letters, 160(3): 479-492.
Sláma, J. et al., 2008. Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 249(1): 1-35.
Stern, C.R., Kilian, R., 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contributions to mineralogy and petrology, 123(3): 263-281.
Sun, S. S., McDonough, W., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313-345.
Thorkelson, D.J., Breitsprecher, K., 2005. Partial melting of slab window margins: genesis of adakitic and non-adakitic magmas. Lithos, 79(1): 25-41.
Tsuchiya, N., Furukawa, S., Kimura, J., 1999. Petrochemical study of the Jodogahama Rhyolitic Rocks in the North Kitakami Belt, Japan-origin of peraluminous adakites-. The Memoirs of the Geological Society of Japan (in Japanese), 53: 57-83.
Tsuchiya, N., Kimura, J., Kagami, H., 2007. Petrogenesis of Early Cretaceous adakitic granites from the Kitakami mountains, Japan. Journal of Volcanology and Geothermal Research, 167(1): 134-159.
Tsuchiya, N., Suzuki, S., Kimura, J., Kagami, H., 2005. Evidence for slab melt/mantle reaction: petrogenesis of Early Cretaceous and Eocene high-Mg andesites from the Kitakami Mountains, Japan. Lithos, 79(1): 179-206.
Tsuchiya, N., Takeda, T., Tani, K., 2014. Zircon U-Pb age and its geological significance of late Carboniferous and early Cretaceous adakitic granites from eastern margin of the Abukuma Mountains, Japan. Journal of the Geological Society of Japan, 120(2): 37-51.
Tsuchiya, N. et al., 2012. Zircon U-Pb geochoronology and petrochemistry of Early Cretaceous adakitic granites in the Kitakami Mountains, Japan, Annual Meeting of Japan Association of Mineralogical Sciences. Japan Association of Mineralogical Sciences, pp. 190.
Tsutsumi, Y. et al., 2012. LA-ICP-MS and SHRIMP ages of zircons in chevkinite and monazite tuffs from the Boso Peninsula, Central Japan. Bulletin of the National Museum of Nature and Science, Series C, 38: 15-32.
Utkin, V., 1980. Strike-Slip-Fault Deformations and Methods of their Study. Nauka, Moscow.
Wang, C., Song, S., Niu, Y., Su, L., 2015. Late Triassic adakitic plutons within the Archean terrane of the North China Craton: Melting of the ancient lower crust at the onset of the lithospheric destruction. Lithos, 212: 353-367.
Wee, S. M., Kim, Y. J., Choi, S. G., Park, J. W., Ryu, I.C., 2007. Adakitic signatures of the Jindong granitoids. Economic and Environmental Geology, 40(2): 223-236.
White, W., Klein, E., 2014. Composition of the Oceanic Crust. In: Holland, H., Turekian, K. (Eds.), Treatise on Geochemistry (Second Edition). Elsevier, pp. 457-496.
Wiedenbeck, M. et al., 1995. Three natural zircon standards for U‐Th‐Pb, Lu‐Hf, trace element and REE analyses. Geostandards newsletter, 19(1): 1-23.
Wilde, S.A., Wu, F.Y., Zhao, G., 2010. The Khanka Block, NE China, and its significance for the evolution of the Central Asian Orogenic Belt and continental accretion. Geological Society, London, Special Publications, 338(1): 117-137.
Yamakita, S., Otoh, S., 1999. Reconstruction of the geological continuity between Primorye and Japan before the opening of the Sea of Japan. Institute for Northeast Asian Studies Research Annual, 24: 1-16.
Yogodzinski, G. et al., 2001. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature, 409(6819): 500-504.
Zonenshaĭn, L.P., Kuzʹmin, M.I., Natapov, L.M., 1990. Geology of the USSR: a plate-tectonic synthesis, 21. American Geophysical Union.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50173-
dc.description.abstract亞洲大陸東緣,包括俄羅斯遠東、日本、菲律賓以及印尼等西南太平洋群島,為亞洲最年輕的「西太平洋造山帶」的範圍。大量新生大陸物質於此增積造山帶形成,因而西太平洋造山帶之研究對探討大陸地殼增生的機制具有重大意義。本研究著重於研究俄羅斯遠東Sikhote-Alin地區東南側的岩石成因。
Sikhote-Alin地區大致分為兩個地質單元:(1)西側的新元古代布瑞亞–佳木斯–興凱地塊(Bureya–Jiamusi–Khanka terrane),和(2)東側的中生代Sikhote-Alin Orogenic Belt。白堊紀至新生代早期的火成岩帶—East Sikhote-Alin volcano-plutonic belt (ESAVPB)的火山岩與深成岩廣泛覆蓋、侵入在這兩個地質單元中。近幾年,ESAVPB的鋯石鈾鉛定年與全岩微量元素、同位素的報導陸續發表,對Sikhote-Alin地區的晚中生代、新生代的地體構造演化有進一步的認識。本研究在Sikhote-Alin地區南部發現兩期埃達克岩,年代分別為早白堊紀(130–100 Ma)與始新世(~45Ma)。埃達克岩是高壓基性岩發生部分熔融而產生的火山岩,其岩石成因常與特殊的地體構造環境有關。本研究針對兩期埃達克岩進行全岩主量、微量與鍶釹同位素分析,與鋯石鈾鉛定年的結果,討論其岩石成因、以及對東北亞地體構造演化的意義。
早白堊紀與始新世埃達克岩大多分布於興凱地塊(Khanka terrane)中。鋯石定年結果顯示這些岩體在132–98 Ma與46–39 Ma形成,地球化學分析表明有埃達克岩性質: SiO2= 57–73%;Al2O3= 15–18%;Na2O= 3.5–5.9%;K2O= 0.7–3.7%; Na2O/K2O= 1.3–3.9;Sr/Y= 30–140;(La/Yb)N= 11–53,重稀土與高場力鍵結元素皆有虧損情形。早白堊紀埃達克岩的銣、鍶同位素成分為:εNd(T)= -1.0–3.2;ISr= 0.705227–0.708967;始新世埃達克岩則是εNd(T)= -1.9–2.1;ISr= 0.704318–0.705758。
本研究認為,兩期埃達克岩的岩石成因為隱沒海洋地殼與沉積物的熔融,並標誌著Sikhote-Alin地區隱沒帶岩漿作用的開始與結束。早白堊紀埃達克岩於東北亞已有許多前人報導,噴發時間長達三千萬年,空間、時間分布皆十分廣泛。同時期的島弧岩漿ESAVPB也開始噴發。隱沒初始以及高溫的年輕海洋地殼隱沒,可能是產生這一期埃達克質岩漿作用的機制。始新世埃達克岩伴隨基性岩與酸性岩一同出現,顯示同期有數個岩漿源區。同時期的島弧岩漿活動,出現於東側的庫頁島、日本北海道。一次海洋板塊的回捲(Slab roll-back)可能在此時發生,增強的地函熱對流使海洋地殼發生部分熔融,也令島弧岩漿的噴發向東移至庫頁島、北海道。
此外,日本本州Kitakami地區的早白堊紀與始新世TTG、埃達克岩,具有與Sikhote-Alin埃達克岩相似的年代與地球化學特性。分布於兩個地區的埃達克岩可能來自同一個岩漿系統,並且可作為一對比證據,支持在日本海張裂以前,Sikhote-Alin與Kitakami地區為東亞大陸邊緣相鄰區域的古地理重建模式。
zh_TW
dc.description.abstractThe Mesozoic-to-Cenozoic Sikhote-Alin orogenic belt and late Precambrian Khanka block are two major tectonic units in the southmost Russian Far East. The Sikhote-Alin belt comprises several tectonostratigraphic terranes, including late Precambrian nappes, and Mesozoic accretionary prisms and turbidite basins. These terranes are overlain by Cretaceous to Paleocene felsic to intermediate volcanic rocks and intruded by granitoids. The magmatic rocks are collectively known as “the East Sikhote-Alin volcano-plutonic belt” (ESAVPB), and mainly characterized by acid-to-intermediate compositions. This work concerns a petrogenetic study of adakitic rocks from Sikhote-Alin, and discusses its tectonic implications.
Adakitic rocks of Sikhote-Alin were emplaced in two main periods: Early Cretaceous (132–98 Ma) and Eocene (46–39 Ma). They mainly occur in the Khanka block, with a subordinate amount in the ESAVPB. The adakites show a large range of chemical composition: SiO2 = 57–74%, Al2O3 = 15–18%, Na2O = 3.5–6.1%, K2O = 0.7–3.2%, Na2O/K2O = 1.1–3.9, Sr/Y = 33–145, and (La/Yb)N = 11–53. HREE and HFSE are remarkably depleted. The Early Cretaceous adakites show Nd(T) = -1.0 to +3.2;ISr = 0.7040 – 0.7090, and the Eocene adakites have Nd(T) = -2.0 to +2.2;ISr = 0.7042 – 0.7058. Thus, the Sr-Nd isotopic compositions of Cretaceous and Eocene adakites are not readily distinguishable.
Adakites may have different modes of generation. However, according to a modal calculation, partial melting of meta-basic rocks in a subduction zone is considered as the most likely mode for the present case. The two periods of adakites have probably formed in the following scenario. The early Cretaceous (130–100 Ma) emplacement time for the adakites and the oldest granitoids of the ESAVPB, is considered as the time of initiation of the Paleo-Pacific subduction in NE Asia. Furthermore, to explain a slab melting process with such long period of time, the generation of the adakites was probably connected with subduction of a young slab. The Eocene (~45 Ma) adakites were also generated in subduction zone, and during the generation, a small amount of andesite and rhyolite was also produced. Contem- poraneous granitoids were emplaced 200-400 km to the east of the study area in Sakhalin as well as in Hokkaido (Japan). With this scenario, we may speculate a roll-back of subducting Pacific plate during the Eocene, and a shifting of arc magmatism from the ESAVPB to Sakhalin Island and Hokkaido.
Note that abundant adakitic rocks of early Cretaceous and Eocene ages also occur in the Kitakami and Abukuma Mountains of NE Japan. Consequently, geological correlation between Sikhote-Alin and Kitakami-Abukuma is highly probable, particularly before the opening of the Japan Sea that took place in late Cenozoic.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:31:36Z (GMT). No. of bitstreams: 1
ntu-105-R01224122-1.pdf: 15860203 bytes, checksum: 5d02a045c0732f5e8e40b4c0a2a592d2 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents第一章 緒論 1
第二章 文獻回顧 2
2-1區域地體構造 2
2-2地體構造演化 5
2-3東北亞的埃達克岩與TTG 7
第三章 埃達克岩的岩石成因 9
3-1地球化學特徵與岩石學意義 9
3-2埃達克岩形成機制 14
第四章 研究方法 20
4-1野外調查與採樣 20
4-2燒失量分析 20
4-3全岩主量元素分析 24
4-4全岩微量元素分析 24
4-5鍶、釹同位素分析 31
4-5-1分解樣品 31
4-5-2鍶、釹元素分離 32
4-5-3燈絲製備與載樣 35
4-6鋯石鈾-鉛定年分析 35
4-6-1鋯石黏貼 37
4-6-2環氧樹脂配置與灌注 37
4-6-3打磨與拋光 38
4-6-4顯微照相 39
第五章 研究結果 40
5-1野外觀察 40
5-2岩石薄片觀察 44
5-2-1早白堊紀火山岩 44
5-2-2始新世火山岩 47
5-3鋯石鈾-鉛定年結果 51
5-4主量元素分析結果 60
5-5微量元素分析結果 67
5-6鍶、釹同位素分析結果 72
第六章 討論 76
6-1 早白堊紀埃達克岩的岩石成因 78
6-2始新世埃達克岩的岩石成因 84
6-3 Sikhote-Alin埃達克岩的地體構造演化意義 88
6-3-1 Kitakami TTG/adakite 與
Sikhote-Alin adaktie的對比 89
6-3-2 早白堊紀的東北亞地體構造演化 91
6-3-3 始新世的東北亞地體構造演化 93
第七章 結論 96
參考文獻 97
附錄A 埃達克質熔體化學成分的模式計算 108
dc.language.isozh-TW
dc.subject錫霍特-阿蘭zh_TW
dc.subject東北亞zh_TW
dc.subject東北亞zh_TW
dc.subject錫霍特-阿蘭zh_TW
dc.subject埃達克岩zh_TW
dc.subject埃達克岩zh_TW
dc.subjectNortheast Asiaen
dc.subjectadakiteen
dc.subjectadakiteen
dc.subjectSikhote-Alinen
dc.subjectSikhote-Alinen
dc.subjectNortheast Asiaen
dc.title俄羅斯錫霍特-阿蘭地區埃達克岩的地球化學特性與岩石成因zh_TW
dc.titleGeochemical Characteristics and Petrogenesis of Adakites in Sikhote-Alin, Russian Far Easten
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳正宏(Cheng-Hong Chen),鄧屬予(Louis S. Teng),鍾孫霖(Sun-Lin Chung),王國龍(Kuo-Lung Wang)
dc.subject.keyword埃達克岩,錫霍特-阿蘭,東北亞,zh_TW
dc.subject.keywordadakite,Sikhote-Alin,Northeast Asia,en
dc.relation.page121
dc.identifier.doi10.6342/NTU201601821
dc.rights.note有償授權
dc.date.accepted2016-08-04
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
15.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved