Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50165
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張斐章(Fi-John Chang)
dc.contributor.authorTai-Chen Chenen
dc.contributor.author陳戴幀zh_TW
dc.date.accessioned2021-06-15T12:31:22Z-
dc.date.available2020-08-18
dc.date.copyright2020-08-24
dc.date.issued2020
dc.date.submitted2020-08-18
dc.identifier.citation1. Richardson, A. J., Risi En, C. Shillington, F. A. Using self-organizing maps to identify patterns in satellite imagery. in Progress in Oceanography vol. 59 223–239 (Pergamon, 2003).
2. Moradkhani, H., Hsu, K. L., Gupta, H.V. Sorooshian, S. Improved streamflow forecasting using self-organizing radial basis function artificial neural networks. J. Hydrol. 295, 246–262 (2004).
3. Chang, F.-J., Chang, L.-C. Wang, Y.-S. Enforced self-organizing map neural networks for river flood forecasting. Hydrol. Process. 21, 741–749 (2007).
4. Srinivas, V.V., Tripathi, S., Rao, A. R. Govindaraju, R. S. Regional flood frequency analysis by combining self-organizing feature map and fuzzy clustering. J. Hydrol. 348, 148–166 (2008).
5. Lin, G. F. Wu, M. C. A hybrid neural network model for typhoon-rainfall forecasting. J. Hydrol. 375, 450–458 (2009).
6. Chang, F. J., Chang, L. C., Kao, H. S. Wu, G. R. Assessing the effort of meteorological variables for evaporation estimation by self-organizing map neural network. J. Hydrol. 384, 118–129 (2010).
7. Bizzi, S. Lerner, D. N. Characterizing physical habitats in rivers using map-derived drivers of fluvial geomorphic processes. Geomorphology 169–170, 64–73 (2012).
8. Farsadnia, F. et al. Identification of homogeneous regions for regionalization of watersheds by two-level self-organizing feature maps. J. Hydrol. 509, 387–397 (2014).
9. Tsai, W. P., Chang, F. J., Chang, L. C. Herricks, E. E. AI techniques for optimizing multi-objective reservoir operation upon human and riverine ecosystem demands. J. Hydrol. 530, 634–644 (2015).
10. Chang, F. J. Tsai, M. J. A nonlinear spatio-temporal lumping of radar rainfall for modeling multi-step-ahead inflow forecasts by data-driven techniques. J. Hydrol. 535, 256–269 (2016).
11. Chen, I. T., Chang, L. C. Chang, F. J. Exploring the spatio-temporal interrelation between groundwater and surface water by using the self-organizing maps. J. Hydrol. 556, 131–142 (2018).
12. Lee, K. J. et al. The combined use of self-organizing map technique and fuzzy c-means clustering to evaluate urban groundwater quality in Seoul metropolitan city, South Korea. J. Hydrol. 569, 685–697 (2019).
13. Nakagawa, K., Yu, Z. Q., Berndtsson, R. Hosono, T. Temporal characteristics of groundwater chemistry affected by the 2016 Kumamoto earthquake using self-organizing maps. J. Hydrol. 582, 124519 (2020).
14. Chang, L. C. et al. Self-organizing maps of typhoon tracks allow for flood forecasts up to two days in advance. Nat. Commun. 11, 1–13 (2020).
15. Wu, C. L., Chau, K. W. Fan, C. Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques. J. Hydrol. 389, 146–167 (2010).
16. Al-Qudah, O., Woocay, A. Walton, J. Identification of probable groundwater paths in the Amargosa Desert vicinity. Appl. Geochemistry 26, 565–574 (2011).
17. Ay, M. Kisi, O. Modelling of chemical oxygen demand by using ANNs, ANFIS and k-means clustering techniques. J. Hydrol. 511, 279–289 (2014).
18. Zahmatkesh, Z., Karamouz, M. Nazif, S. Uncertainty based modeling of rainfall-runoff: Combined differential evolution adaptive Metropolis (DREAM) and K-means clustering. Adv. Water Resour. 83, 405–420 (2015).
19. Beskow, S. et al. Artificial intelligence techniques coupled with seasonality measures for hydrological regionalization of Q90 under Brazilian conditions. J. Hydrol. 541, 1406–1419 (2016).
20. Javadi, S., Hashemy, S. M., Mohammadi, K., Howard, K. W. F. Neshat, A. Classification of aquifer vulnerability using K-means cluster analysis. J. Hydrol. 549, 27–37 (2017).
21. Xu, H., Ma, C., Lian, J., Xu, K. Chaima, E. Urban flooding risk assessment based on an integrated k-means cluster algorithm and improved entropy weight method in the region of Haikou, China. J. Hydrol. 563, 975–986 (2018).
22. Ferreira, L. B., daCunha, F. F., deOliveira, R. A. Fernandes Filho, E. I. Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM – A new approach. J. Hydrol. 572, 556–570 (2019).
23. Zhao, G., Pang, B., Xu, Z. Xu, L. A hybrid machine learning framework for real-time water level prediction in high sediment load reaches. J. Hydrol. 581, 124422 (2020).
24. Rüttgers, M., Lee, S. You, D. Prediction of typhoon tracks using a generative adversarial network with observational and meteorological data. (2018).
25. Zhong, Z., Sun, A. Y., Yang, Q. Ouyang, Q. A deep learning approach to anomaly detection in geological carbon sequestration sites using pressure measurements. J. Hydrol. 573, 885–894 (2019).
26. Ferreira, L. B. daCunha, F. F. New approach to estimate daily reference evapotranspiration based on hourly temperature and relative humidity using machine learning and deep learning. Agric. Water Manag. 234, 106113 (2020).
27. Van, S. P. et al. Deep learning convolutional neural network in rainfall–runoff modelling. J. Hydroinformatics (2020) doi:10.2166/hydro.2020.095.
28. Wang, Y., Fang, Z., Hong, H. Peng, L. Flood susceptibility mapping using convolutional neural network frameworks. J. Hydrol. 582, 124482 (2020).
29. Panahi, M., Sadhasivam, N., Pourghasemi, H. R., Rezaie, F. Lee, S. Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR). J. Hydrol. 588, 125033 (2020).
30. Randhir, T. O. Tsvetkova, O. Spatiotemporal dynamics of landscape pattern and hydrologic process in watershed systems. J. Hydrol. 404, 1–12 (2011).
31. Gámiz-Fortis, S. R., Hidalgo-Muñoz, J. M., Argüeso, D., Esteban-Parra, M. J. Castro-Díez, Y. Spatio-temporal variability in Ebro river basin (NE Spain): Global SST as potential source of predictability on decadal time scales. J. Hydrol. 409, 759–775 (2011).
32. Paschalis, A., Fatichi, S., Molnar, P., Rimkus, S. Burlando, P. On the effects of small scale space-time variability of rainfall on basin flood response. J. Hydrol. 514, 313–327 (2014).
33. Ionita, M., Chelcea, S., Rimbu, N. Adler, M. J. Spatial and temporal variability of winter streamflow over Romania and its relationship to large-scale atmospheric circulation. J. Hydrol. 519, 1339–1349 (2014).
34. Zhang, W., Brandt, M., Guichard, F., Tian, Q. Fensholt, R. Using long-term daily satellite based rainfall data (1983–2015) to analyze spatio-temporal changes in the sahelian rainfall regime. J. Hydrol. 550, 427–440 (2017).
35. Guse, B. et al. Analysing spatio-temporal process and parameter dynamics in models to characterise contrasting catchments. J. Hydrol. 570, 863–874 (2019).
36. Visser-Quinn, A. et al. Spatio-temporal analysis of compound hydro-hazard extremes across the UK. Adv. Water Resour. 130, 77–90 (2019).
37. Gu, X. et al. The changing nature and projection of floods across Australia. J. Hydrol. 584, 124703 (2020).
38. Chang, F. J., Chang, K. Y. Chang, L. C. Counterpropagation fuzzy-neural network for city flood control system. J. Hydrol. 358, 24–34 (2008).
39. Chen, Y. hsiang Chang, F. J. Evolutionary artificial neural networks for hydrological systems forecasting. J. Hydrol. 367, 125–137 (2009).
40. Chang, L. C., Shen, H. Y., Wang, Y. F., Huang, J. Y. Lin, Y. T. Clustering-based hybrid inundation model for forecasting flood inundation depths. J. Hydrol. 385, 257–268 (2010).
41. Weerts, A. H., Winsemius, H. C. Verkade, J. S. Estimation of predictive hydrological uncertainty using quantile regression: examples from the National Flood Forecasting System (England and Wales). Hydrol. Earth Syst. Sci. 15, 255–265 (2011).
42. Versini, P. A. Use of radar rainfall estimates and forecasts to prevent flash flood in real time by using a road inundation warning system. J. Hydrol. 416–417, 157–170 (2012).
43. Lin, G. F., Chou, Y. C. Wu, M. C. Typhoon flood forecasting using integrated two-stage support vector machine approach. J. Hydrol. 486, 334–342 (2013).
44. Chang, L. C., Shen, H. Y. Chang, F. J. Regional flood inundation nowcast using hybrid SOM and dynamic neural networks. J. Hydrol. 519, 476–489 (2014).
45. Badrzadeh, H., Sarukkalige, R. Jayawardena, A. W. Hourly runoff forecasting for flood risk management: Application of various computational intelligence models. J. Hydrol. 529, 1633–1643 (2015).
46. Nanda, T., Sahoo, B., Beria, H. Chatterjee, C. A wavelet-based non-linear autoregressive with exogenous inputs (WNARX) dynamic neural network model for real-time flood forecasting using satellite-based rainfall products. J. Hydrol. 539, 57–73 (2016).
47. Lee, E. H. Kim, J. H. Development of a flood-damage-based flood forecasting technique. J. Hydrol. 563, 181–194 (2018).
48. Hu, R., Fang, F., Pain, C. C. Navon, I. M. Rapid spatio-temporal flood prediction and uncertainty quantification using a deep learning method. J. Hydrol. 575, 911–920 (2019).
49. Berkhahn, S., Fuchs, L. Neuweiler, I. An ensemble neural network model for real-time prediction of urban floods. J. Hydrol. 575, 743–754 (2019).
50. 張斐章、張麗秋,2010,「類神經網路導論:原理與應用」,滄海書局。
51. Gu, J. et al. Recent advances in convolutional neural networks. Pattern Recognit. 77, 354–377 (2018).
52. 經濟部水利署,2013,「二仁溪治理基本計畫」。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50165-
dc.description.abstract21世紀,在世界各國人口持續成長及經濟快速發展的趨勢下,許多國家面臨嚴重的都市化問題,加上近年來氣候變遷日漸加劇,導致極端水文災害頻傳,暴雨事件不僅降雨時空分布更加不均,降雨強度也相較以往增強許多,又各大都市區域大都集中於低窪且易淹水之沖積平原,故致災程度及受災人口相較以往劇烈與增加許多,因此勢必需要藉由了解集水區的淹水時空分布及變化特性,進而將其應用於即時預報,預測未來時刻的區域淹水情況。
台灣因地形變化劇烈,河川坡陡流急、集流時間短,且各大都會區均坐落於沖積平原區域,受到對流雨、鋒面雨及颱風等挾帶高降雨強度之豪雨,種種水文、地質和氣象因素使得洪水事件發生頻繁且難以掌控。近年來,面對人工智慧趨勢崛起,機器學習方法之快速及準確性已被證明能夠有效應用於解決許多即時的氣候災害議題。
本研究使用自組特徵映射網路(SOM)、K-means聚類法及卷積神經網路(CNN)針對臺南市二仁溪流域之45545個40×40m的淹水網格點進行區域淹水變化量之預報。SOM可將高維度的歷史淹水事件以聚類的方式擷取淹水特徵,進而映射至二維特徵拓樸圖上,其拓樸結構有助於探討集水區發生不同程度淹水之時空變化特性;K-means聚類法則用於根據淹水時空變化特徵將集水區進行分區;CNN可藉由卷積運算擷取時間序列資訊之特徵,進而進行未來1~3小時之淹水變化量之預報。
本研究認為使用4×4的SOM網路大小,並於形成次序階段及收斂階段分別迭代2500及500次之結果最能完整涵蓋二仁溪流域之淹水變化特徵。以預測未來一小時變化量(T+1)模式為例,本研究比較全區預測模式及分區預測模式結果,評估指標結果MAE分別為0.038和0.034及RMSE為0.159和0.151,均顯示使用SOM拓樸圖權重進行分區確實能提高預報精準度、降低累積誤差量。SOM-CNN套配結果亦顯示分區模式能有效降低大部份分區之誤差指標。
研究結果顯示結合SOM、K-means及CNN進行區域淹水變化預報方法能快速掌握區域的淹水特徵及淹水變化趨勢,本研究提出的方法可為決策者和當地居民提供區域淹水的時空資訊,進而針對防範洪水採取預防措施。
zh_TW
dc.description.abstractThe frequency of extreme hydrological events caused by climate change has increased in recent years. Besides, most of the urban areas in various countries are located on low-lying and flood-prone alluvial plains such that the severity of flooding disasters and the number of affected people increase significantly. Therefore, it is imperative to explore the spatio-temporal variation characteristics of regional floods and apply them to real-time flood forecasting. Flash floods are common and difficult to control in Taiwan due to several geo-hydro-meteorological factors, including drastic changes in topography, steep rivers, short concentration time, and heavy rain. In recent decades, the emergence of artificial intelligence (AI) and machine learning techniques has proven to be effective in tackling real-time climate-related disasters. This study combines an unsupervised and competitive neural network, the self-organizing map (SOM), K-means clustering, and the convolutional neural networks to make regional flood inundation forecasts. The SOM can be used to cluster high-dimensional historical flooding events and map the events onto a two-dimensional topological feature map. The topological structure displayed in the output space is helpful in exploring the characteristics of the spatio-temporal variation of different flood events in the investigative watershed. The K-means clustering is used to regionalize the river basin using the spatio-temporal characteristic of inundation variation. The convolutional neural networks are suitable for forecasting time-vary systems because its convolution mechanism can extract the feature of time series data, and predict the variation of t+1~t+3. The results demonstrate that the real-time regional flood inundation forecast model combining SOM, K-means, and convolutional neural networks can more quickly extract the characteristics of regional flood inundation and more accurately produce multi-step ahead flood inundation forecasts than the traditional methods. The proposed methodology can provide spatio-temporal information of flood inundation to decision-makers and residents for taking precautionary measures against flooding.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:31:22Z (GMT). No. of bitstreams: 1
U0001-1108202015051500.pdf: 13785355 bytes, checksum: dffad3c559bbfa6420ef73f33612a941 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents謝誌 I
摘要 IV
Abstract VI
目錄 VIII
表目錄 X
圖目錄 XI
一、前言 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 論文章節架構 3
二、文獻回顧 4
2.1 自組特徵映射網路之應用 4
2.2 K-Means聚類法之應用 6
2.3 卷積神經網路之應用 7
2.4 時空動態分布之相關研究 8
2.5 推估預報之相關研究 9
三、理論概述 11
3.1 自組特徵映射網路SOM 11
3.1.1 自組特徵映射網路架構 11
3.1.2 自組特徵映射網路演算法 12
3.1.3 自組特徵映射網路參數設定 16
3.2 K-Means聚類法 18
3.2.1 K-Means架構 18
3.2.2 K-Means聚類演算法 18
3.3 卷積神經網路CNN 20
3.3.1 卷積神經網路架構 20
3.3.2 超參數設定 28
四、研究案例 30
4.1 研究區域 30
4.2 資料蒐集 33
4.3 模式架構 39
4.4 評估指標 41
五、結果與討論 43
5.1 時空變化特性分析 43
5.1.1 淹水變化量拓樸圖 44
5.1.2 時空分布特性 51
5.1.3 場次分析 56
5.1.4 淹水特性分區 63
5.2 區域淹水變化量預測模式 68
5.2.1 水文因子分析 68
5.2.2 模式設定 71
5.2.3 預測結果 72
5.3 整合模式 90
六、結論與建議 93
6.1 結論 93
6.2 建議 95
參考文獻 96
附錄A 不同網路大小之SOM拓樸圖 103
附錄B 各淹水場次對應之神經元路徑 105
附錄C 分區預測模式之訓練及驗證結果 107
dc.language.isozh-TW
dc.subject自組特徵映射網路zh_TW
dc.subject自組特徵映射網路zh_TW
dc.subjectK-means聚類法zh_TW
dc.subject卷積神經網路zh_TW
dc.subject淹水時空特徵分析zh_TW
dc.subject流域區域化zh_TW
dc.subject區域淹水預測zh_TW
dc.subject區域淹水預測zh_TW
dc.subject流域區域化zh_TW
dc.subject淹水時空特徵分析zh_TW
dc.subject卷積神經網路zh_TW
dc.subjectK-means聚類法zh_TW
dc.subjectRegional Flood Forecastingen
dc.subjectSelf-Organizing Map (SOM)en
dc.subjectK-means Clusteringen
dc.subjectConvolutional Neural Networks (CNN)en
dc.subjectSpatio-temporal Analysis of Flooden
dc.subjectRegionalizationen
dc.subjectRegional Flood Forecastingen
dc.subjectSelf-Organizing Map (SOM)en
dc.subjectK-means Clusteringen
dc.subjectConvolutional Neural Networks (CNN)en
dc.subjectSpatio-temporal Analysis of Flooden
dc.subjectRegionalizationen
dc.title運用SOM和CNN建置以淹水時空變化特性為基礎之區域淹水預報模式zh_TW
dc.titleRegional Flood Forecasting Based on the Spatio-temporal Variation Characteristics using SOM and Convolutional Neural Networken
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張麗秋(Li-Chiu Chang),黃文政(Wen-Cheng Huang),陳永祥(Yung-Hsiang Chen)
dc.subject.keyword自組特徵映射網路,K-means聚類法,卷積神經網路,淹水時空特徵分析,流域區域化,區域淹水預測,zh_TW
dc.subject.keywordSelf-Organizing Map (SOM),K-means Clustering,Convolutional Neural Networks (CNN),Spatio-temporal Analysis of Flood,Regionalization,Regional Flood Forecasting,en
dc.relation.page112
dc.identifier.doi10.6342/NTU202002957
dc.rights.note有償授權
dc.date.accepted2020-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
U0001-1108202015051500.pdf
  未授權公開取用
13.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved