請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50159
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳信希(Hsin-Hsi Chen) | |
dc.contributor.author | Hao Ke | en |
dc.contributor.author | 葛浩 | zh_TW |
dc.date.accessioned | 2021-06-15T12:31:12Z | - |
dc.date.available | 2016-08-24 | |
dc.date.copyright | 2016-08-24 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-04 | |
dc.identifier.citation | Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Paşca, M., & Soroa, A. (2009, May). A
study on similarity and relatedness using distributional and wordnet-based approaches. In Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics (pp. 19-27). Association for Computational Linguistics. Barzilay, R., & Elhadad, M. (1999). Using lexical chains for text summarization. Advances in automatic text summarization, 111-121. Budanitsky, A., & Hirst, G. (2006). Evaluating wordnet-based measures of lexical semantic relatedness. Computational Linguistics, 32(1), 13-47. Baroni, M., Dinu, G., & Kruszewski, G. (2014, June). Don't count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors. In ACL (1) (pp. 238-247). Bruni, E., Tran, N. K., & Baroni, M. (2014). Multimodal Distributional Semantics. J. Artif. Intell. Res.(JAIR), 49(1-47). Banjade, R., Maharjan, N., Niraula, N. B., Rus, V., & Gautam, D. (2015, April). Lemon and tea are not similar: Measuring word-to-word similarity by combining different methods. In International Conference on Intelligent Text Processing and Computational Linguistics (pp. 335-346). Springer International Publishing. Cohen, P. R., & Kjeldsen, R. (1987). Information retrieval by constrained spreading activation in semantic networks. Information processing & management, 23(4), 255-268. Clark, S. (2013). Vector space models of lexical meaning. Handbook of Contemporary Semantic Theory, The, 493-522. Camacho-Collados, J., Pilehvar, M. T., & Navigli, R. (2015). NASARI: a novel approach to a semantically-aware representation of items. In Proceedings of NAACL (pp. 567-577). Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., & Ruppin, E. (2001, April). Placing search in context: The concept revisited. In Proceedings of the 10th international conference on World Wide Web (pp. 406-414). ACM. Faruqui, M., Dodge, J., Jauhar, S. K., Dyer, C., Hovy, E., & Smith, N. A. (2014). Retrofitting word vectors to semantic lexicons. arXiv preprint arXiv:1411.4166. George A. Miller (1995). WordNet: A Lexical Database for English. InCommunications of the ACM Vol. 38, No. 11 (pp. 39-41). Goikoetxea, J., Agirre, E., & Soroa, A. (2016). Single or Multiple? Combining Word Representations Independently Learned from Text and WordNet. Proceedings of AAAI. Phoenix, USA.(PDF, Concatenated embeddings). Hill, F., Reichart, R., & Korhonen, A. (2014). Simlex-999: Evaluating semantic models with (genuine) similarity estimation. Computational Linguistics. Iacobacci, I., Pilehvar, M. T., & Navigli, R. (2015). SensEmbed: learning sense embeddings for word and relational similarity. In Proceedings of ACL (pp. 95-105). Lin, D. (1998, July). An information-theoretic definition of similarity. In ICML (Vol. 98, pp. 296-304). Leacock, C., & Chodorow, M. (1998). Combining local context and WordNet similarity for word sense identification. WordNet: An electronic lexical database, 49(2), 265-283. Luong, T., Socher, R., & Manning, C. D. (2013, August). Better Word Representations with Recursive Neural Networks for Morphology. In CoNLL (pp. 104-113). Miller, G. A., & Charles, W. G. (1991). Contextual correlates of semantic similarity. Language and cognitive processes, 6(1), 1-28. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems (pp. 3111-3119). Moro, A., Raganato, A., & Navigli, R. (2014). Entity linking meets word sense disambiguation: a unified approach. Transactions of the Association for Computational Linguistics, 2, 231-244. Mrkšić, N., Séaghdha, D. Ó., Thomson, B., Gašić, M., Rojas-Barahona, L., Su, P. H., ... & Young, S. (2016). Counter-fitting Word Vectors to Linguistic Constraints. arXiv preprint arXiv:1603.00892. Pilehvar, M. T., Jurgens, D., & Navigli, R. (2013, August). Align, Disambiguate and Walk: A Unified Approach for Measuring Semantic Similarity. In ACL (1) (pp. 1341-1351). Pucher, M. (2007, June). WordNet-based semantic relatedness measures in automatic speech recognition for meetings. In Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions (pp. 129-132). Association for Computational Linguistics. Pirró, G., & Euzenat, J. (2010, November). A feature and information theoretic framework for semantic similarity and relatedness. In International Semantic Web Conference (pp. 615- 630). Springer Berlin Heidelberg. Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global Vectors for Word Representation. In EMNLP (Vol. 14, pp. 1532-43). Rubenstein, H., & Goodenough, J. B. (1965). Contextual correlates of synonymy. Communications of the ACM, 8(10), 627-633. Rada, R., & Bicknell, E. (1989). Ranking documents with a thesaurus. Journal of the American Society for Information Science, 40(5), 304. Richardson, R., Smeaton, A., & Murphy, J. (1994). Using WordNet as a knowledge base for measuring semantic similarity between words. Resnik, P. (1995). Using information content to evaluate semantic similarity in a taxonomy. In Proceedings of the 14th International Joint Conference on Articial Intelligence, 448-453. Rink, B., & Harabagiu, S. (2013). The Impact of Selectional Preference Agreement on Semantic Relational Similarity. In Proceedings of the 10th International Conference on Computational Semantics, pages 204–215 Sussna, M. (1993, December). Word sense disambiguation for free-text indexing using a massive semantic network. In Proceedings of the second international conference on Information and knowledge management (pp. 67-74). ACM. Sun, F., Guo, J., Lan, Y., Xu, J., & Cheng, X. (2016, March). Inside Out: Two Jointly Predictive Models for Word Representations and Phrase Representations. In Thirtieth AAAI Conference on Artificial Intelligence. Thompson-Schill, S. L., Kurtz, K. J., & Gabrieli, J. D. (1998). Effects of semantic and associative relatedness on automatic priming. Journal of Memory and Language, 38(4), 440-458. Varelas, G., Voutsakis, E., Raftopoulou, P., Petrakis, E. G., & Milios, E. E. (2005, November). Semantic similarity methods in wordNet and their application to information retrieval on the web. In Proceedings of the 7th annual ACM international workshop on Web information and data management (pp. 10-16). ACM. Wu, Z., & Palmer, M. (1994, June). Verbs semantics and lexical selection. In Proceedings of the 32nd annual meeting on Association for Computational Linguistics (pp. 133-138). Association for Computational Linguistics. Yang, D., & Powers, D. M. (2006). Verb similarity on the taxonomy of WordNet. Masaryk University. Yih, W. T., & Qazvinian, V. (2012, June). Measuring word relatedness using heterogeneous vector space models. In Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 616-620). Association for Computational Linguistics. Zesch, T., Müller, C., & Gurevych, I. (2008, July). Using Wiktionary for Computing Semantic Relatedness. In AAAI (Vol. 8, pp. 861-866). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50159 | - |
dc.description.abstract | 本文提出三種不同的方法來處理計算語義關聯度的問題:一、去除或調整GloVe詞向量內之不正常維度來提高效能;二、利用WordNet的距離資訊與詞向量做線性組合;三、用詞向量以及十二個從WordNet擷取出來的資訊作為SVR的特徵做監督式學習。
本文在六個評測基準資料集進行了實驗,以皮爾森相關係數與斯皮爾曼相關係數計算本文的方法產生之結果與正確標記之間的相關程度,並且與三個近期提出的計算語義關聯度方法做比較。實驗結果顯示,本文的方法在多組評測基準資料集上超越了以上三個近期提出的方法。 | zh_TW |
dc.description.abstract | In this thesis, we propose three different approaches to measure the semantic relatedness: (1) Boost the performance of GloVe word embedding by removing ortransforming abnormal dimensions. (2) Linearly combines the path information extracted from WordNet and the word embedding. (3) Utilize word embedding and twelve linguisticinformation extracted from WordNet as features for support vector regression.
We conduct our experiments on six benchmark data sets. The evaluation measurecomputes the Pearson and Spearman correlation between the output of our methods and the ground truth. We report our results together with three state-of-the-art approaches. Theexperimental results show that our methods outperform the state-of-the-art approaches in most of the benchmark data sets. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T12:31:12Z (GMT). No. of bitstreams: 1 ntu-105-R03922118-1.pdf: 1811568 bytes, checksum: 82370f327d85e8279f5aebf35bc4529a (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 口試委員審定書......................................................................................................................i
誌謝.........................................................................................................................................ii 摘要.......................................................................................................................................iii Abstract..................................................................................................................................iv 圖目錄..................................................................................................................................vii 表目錄.................................................................................................................................viii 第一章 緒論...........................................................................................................................1 第二章 相關研究...................................................................................................................3 第三章 使用資源...................................................................................................................6 3.1 WordNet................................................................................................................6 3.2 測試資料集...........................................................................................................8 3.2.1 RG-65.................................................................................................................8 3.2.2 WordSim-353.....................................................................................................8 3.2.3 YP-130..............................................................................................................10 3.2.4 MEN.................................................................................................................10 3.2.5 SimLex-999......................................................................................................11 3.2.6 Rare Words.......................................................................................................12 第四章 語義關聯度計算方法.............................................................................................15 4.1 方法一:詞向量.................................................................................................15 4.1.1 GloVe詞向量中之不正常維度...........................................................15 4.1.2 去除及調整不正常維度......................................................................19 4.2 方法二:詞向量與WordNet.............................................................................21 4.3 方法三:詞向量與SVR....................................................................................22 第五章 實驗.........................................................................................................................24 5.1 皮爾森相關係數與斯皮爾曼相關係數.............................................................24 5.2 比較對象.............................................................................................................25 5.3 方法一.................................................................................................................25 5.4 方法二.................................................................................................................30 5.5 方法三.................................................................................................................32 5.6 WordNet特徵分析.............................................................................................34 第六章 結論.........................................................................................................................37 參考文獻...............................................................................................................................38 | |
dc.language.iso | zh-TW | |
dc.title | 數種結合詞向量與字典資源之方法用於字義相似度測量 | zh_TW |
dc.title | Some approaches of combining word embedding and lexical
resource for semantic relateness mesurement | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鄭卜壬(Pu-Jen Cheng),蔡宗翰(Tzong-Han Tsai),蔡銘峰(Ming-Feng Tsai) | |
dc.subject.keyword | 語義關聯度,詞向量,WordNet,GloVe,Word2Vec, | zh_TW |
dc.subject.keyword | semantic relatedness,word embedding,WordNet,GloVe,Word2Vec, | en |
dc.relation.page | 41 | |
dc.identifier.doi | 10.6342/NTU201601910 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-04 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
顯示於系所單位: | 資訊工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 1.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。