Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50152
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張富雄
dc.contributor.authorI-Hung Chuen
dc.contributor.author朱逸翃zh_TW
dc.date.accessioned2021-06-15T12:31:02Z-
dc.date.available2021-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-04
dc.identifier.citationAyers, D. and A. Nasti ,Utilisation of nanoparticle technology in cancer chemoresistance, J .Drug. Deliv. 2012 (2012) 265691.
Arpicco, S., P. Milla, B. Stella and F. Dosio ,Hyaluronic acid conjugates as vectors for the active targeting of drugs, genes and nanocomposites in cancer treatment, Molecules. 19(3) (2014) 3193-3230.
Broxterman, H. J., J. Lankelma and K. Hoekman, Resistance to cytotoxic and anti-angiogenic anticancer agents: similarities and differences, Drug. Resist. Updat .6(3) (2003) 111-127.
Borjesson, P. K., E. J. Postema, J. C. Roos, D. R. Colnot, H. A. Marres, M. H. van Schie, G. Stehle, R. de Bree, G. B. Snow, W. J. Oyen and G. A. van Dongen ,Phase I therapy study with (186)Re-labeled humanized monoclonal antibody BIWA 4 (bivatuzumab) in patients with head and neck squamous cell carcinoma, Clin. Cancer. Res. 9(10 Pt 2) (2003) 3961S-3972S.
Bagari, R., D. Bansal, A. Gulbake, A. Jain, V. Soni and S. K. Jain ,Chondroitin sulfate functionalized liposomes for solid tumor targeting, J. Drug. Target. 19(4) (2011) 251-257.
Bishop, N. E. , An Update on Non-clathrin-coated Endocytosis, Rev. Med. Virol. 7(4) (1997) 199-209.
Bello-Reuss, E., S. Ernest, O. B. Holland and M. R. Hellmich , Role of multidrug resistance P-glycoprotein in the secretion of aldosterone by human adrenal NCI-H295 cells, Am. J. Physiol .Cell. Physiol .278(6) (2000) C1256-1265.
Cho, H. J., I. S. Yoon, H. Y. Yoon, H. Koo, Y. J. Jin, S. H. Ko, J. S. Shim, K. Kim, I. C. Kwon and D. D. Kim, Polyethylene glycol-conjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin, Biomaterials. 33(4) (2012)1190-1200.
Cai, C., K. Solakyildirim, B. Yang, J. M. Beaudet, A. Weyer, R. J. Linhardt and F. Zhang , Semi-synthesis of chondroitin sulfate-E from chondroitin sulfate-A, Carbohydr Polym . 87(1) (2012) 822-829.
Caliceti,P., and Veronese,FM., Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates, Adv.Drug.Deliv.Rev.55, (2003)1261-77.
Cohen, K., R. Emmanuel, E. Kisin-Finfer, D. Shabat and D. Peer , Modulation of drug resistance in ovarian adenocarcinoma using chemotherapy entrapped in hyaluronan-grafted nanoparticle clusters, ACS. Nano. 8(3) (2014) 2183-2195.
Dantzig, A. H., D. P. de Alwis and M. Burgess , Considerations in the design and development of transport inhibitors as adjuncts to drug therapy, Adv. Drug. Deliv. Rev. 55(1) (2003) 133-150.
Dufay Wojcicki, A., H. Hillaireau, T. L. Nascimento, S. Arpicco, M. Taverna, S. Ribes, M. Bourge, V. Nicolas, A. Bochot, C. Vauthier, N. Tsapis and E. Fattal, Hyaluronic acid-bearing lipoplexes: physico-chemical characterization and in vitro targeting of the CD44 receptor, J .Control. Release. 162(3) (2012)545-552.
Elizondo, E., E. Moreno, I. Cabrera, A. Cordoba, S. Sala, J. Veciana and N. Ventosa , Liposomes and other vesicular systems: structural characteristics, methods of preparation, and use in nanomedicine, Prog. Mol. Biol. Transl .Sci. 104(2011) 1-52.
Fardel, O., V. Lecureur, A. Corlu and A. Guillouzo , P-glycoprotein induction in rat liver epithelial cells in response to acute 3-methylcholanthrene treatment, Biochem .Pharmacol. 51(11) (1996) 1427-1436.
Fox, E. and S. E. Bates , Tariquidar (XR9576): a P-glycoprotein drug efflux pump inhibitor, Expert. Rev. Anticancer. Ther .7(4) (2007) 447-459.
Fujimoto, T., H. Kawashima, T. Tanaka, M. Hirose, N. Toyama-Sorimachi, Y. Matsuzawa and M. Miyasaka , CD44 binds a chondroitin sulfate proteoglycan, aggrecan, Int. Immunol. 13(3) (2001) 359-366.
Ghalandarlaki, N., A. M. Alizadeh and S. Ashkani-Esfahani, Nanotechnology-applied curcumin for different diseases therapy, Biomed. Res. Int .(2014) 394264.
Ganta, S. and M. Amiji , Coadministration of Paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells, Mol. Pharm. 6(3) (2009) 928-939.
Guo, S., and Huang, L. , Nanoparticles containing insoluble drug for cancer therapy, Biotechnol. Adv. 32(2013)778-788.
Guvench, O. , Revealing the Mechanisms of Protein Disorder and N-Glycosylation in CD44-Hyaluronan Binding Using Molecular Simulation, Front. Immunol. 6(2015)305.
Hussein-Al-Ali, S., Arulselvan, P., Fakurazi, S., Hussein, M.Z., and Dorniani, D., Arginine-chitosan- and arginine- polyethylene glycol-conjugated superparamagnetic nano particles: Preparation, cytotoxicity and controlled-release, J. Biomater. Appl. (2014) doi: 10.1177/0885328213519691
Iyer, A. K., A. Singh, S. Ganta and M. M. Amiji , Role of integrated cancer nanomedicine in overcoming drug resistance, Adv. Drug. Deliv. Rev. 65(13-14) (2013)1784-1802.
Iovu, M., G. Dumais and P. du Souich , Anti-inflammatory activity of chondroitin sulfate, Osteoarthritis. Cartilage. 16 Suppl .3(2008) S14-18.
Jain, R. K. and T. Stylianopoulos , Delivering nanomedicine to solid tumors, Nat. Rev. Clin. Oncol .7(11) (2010) 653-664.
Kapse-Mistry, S., T. Govender, R. Srivastava and M. Yergeri , Nanodrug delivery in reversing multidrug resistance in cancer cells, Front. Pharmacol .5(2014)159.
Kabanov, A. V. and V. Y. Alakhov , Pluronic block copolymers in drug delivery: from micellar nanocontainers to biological response modifiers, Crit. Rev. Ther. Drug. Carrier. Syst. 19(1) (2002) 1-72.
Kumar GP, Rajeshwarrao P. , Nonionic surfactant vesicular systems for effective drug delivery—an overview, Acta. Pharm. Sin B.;1(2011) 208–19.
Kurosaki, T., T. Kitahara, S. Kawakami, K. Nishida, J. Nakamura, M. Teshima, H. Nakagawa, Y. Kodama, H. To and H. Sasaki , The development of a gene vector electrostatically assembled with a polysaccharide capsule, Biomaterials. 30(26) (2009) 4427-4434.
Lin Ching-ling, Establishment and characterization of a multidrug resistant (MDR) colon carcinoma cell line and MDR tumor model in BALB/c mice, Ph.D. dissertation (2007)
Lee, E. S., K. Na and Y. H. Bae , Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor, J. Control. Release. 103(2) (2005) 405-418.
Liu, Y., J. Sun, H. Lian, W. Cao, Y. Wang and Z. He , Folate and CD44 receptors dual-targeting hydrophobized hyaluronic acid paclitaxel-loaded polymeric micelles for overcoming multidrug resistance and improving tumor distribution, J. Pharm. Sci. 103(5) (2014)1538-1547.

Liu, Q., J. Li, G. Pu, F. Zhang, H. Liu and Y. Zhang , Co-delivery of baicalein and doxorubicin by hyaluronic acid decorated nanostructured lipid carriers for breast cancer therapy, Drug. Deliv. 23(4) (2016) 1364-1368.
Li, F., and Na, K., Self-assembled chlorin e6 conjugated chondroitin sulfate nanodrug for photodynamic therapy, Biomacromolecules. 12(5) (2011)1724–1730
Lo, Y.-L., Sung, K.-H., Chiu, C.-C., and Wang, L.-F. , Chemically conjugating polyethylenimine with chondroitin sulfate to promote CD44-mediated endocytosis for gene delivery, Molecular. Pharmaceutics.10(2) (2013) 664–676
Long M, Huang SH, Wu CH, Shackleford GM, Jong A. , Lipid raft/caveolae signaling is required for Cryptococcus neoformans invasion into human brain microvascular endothelial cells, J. Biomed. Sci. 19(2012) 19.
Liu, Y. S., C. C. Chiu, H. Y. Chen, S. H. Chen and L. F. Wang , Preparation of chondroitin sulfate-g-poly(epsilon-caprolactone) copolymers as a CD44-targeted vehicle for enhanced intracellular uptake , Mol. Pharm. 11(4) (2014) 1164-1175.
Lopez, D. and S. Martinez-Luis, Marine natural products with P-glycoprotein inhibitor properties, Mar .Drugs. 12(1) (2014) 525-546.
Lo, Y. L., K. H. Sung, C. C. Chiu and L. F. Wang, Chemically conjugating polyethylenimine with chondroitin sulfate to promote CD44-mediated endocytosis for gene delivery, Mol .Pharm .10(2) (2013)664-676.
Müller, R.H., Mäder, K., and Gohla, S. , Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art, Eur. J. Pharm. Biopharm. 50(2000)161-177.
Misra S, Hascall VC, Markwald RR, Ghatak S., Interactions between Hyaluronan and Its Receptors (CD44, RHAMM) Regulate the Activities of Inflammation and Cancer, Front. Immunol. 6(2015) 201.
Mucci, A., Schenetti, L., and Volpi, N. ,1H and 13C nuclear magnetic resonance identification and characterization of components of chondroitin sulfates of various origin, Carbohydrate. Polymers. 41(1) (2000)37–45.
Malmo, J., A. Sandvig, K. M. Varum and S. P. Strand , Nanoparticle mediated P-glycoprotein silencing for improved drug delivery across the blood-brain barrier: a siRNA-chitosan approach, PLoS. One. 8(1) (2013) e54182.
Mickler, F. M., Y. Vachutinsky, M. Oba, K. Miyata, N. Nishiyama, K. Kataoka, C. Brauchle and N. Ruthardt , Effect of integrin targeting and PEG shielding on polyplex micelle internalization studied by live-cell imaging, J. Control. Release. 156(3) (2011) 364-373.
Onoue, S., S. Yamada and H. K. Chan, Nanodrugs:pharmacokinetics and safety, Int. J. Nanomedicine. 9(2014) 1025-1037.
Patil, Y. B., S. K. Swaminathan, T. Sadhukha, L. Ma and J. Panyam , The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance, Biomaterials .31(2) (2010)358-365.
Park, W., Park, S. J., and Na, K. , Potential of self-organizing nanogel with acetylated chondroitin sulfate as an anti-cancer drug carrier, Colloids and Surfaces B:Biointerface. 79(2) (2010) 501–508.
Ping, Y., Hu, Q., Tang, G., and Li, J. , FGFR-targeted gene delivery mediated by supramolecular assembly between beta-cyclodextrin-crosslinked PEI and redox-sensitive PEG, Biomaterials. 34(27) (2013) 6482–6494.
Petros, R. A. and J. M. DeSimone , Strategies in the design of nanoparticles for therapeutic applications, Nat. Rev. Drug. Discov. 9(8) (2010)615-627.
Qhattal, H. S. and X. Liu , Characterization of CD44-mediated cancer cell uptake and intracellular distribution of hyaluronan-grafted liposomes, Mol. Pharm. 8(4) (2011) 1233-1246.
Sharom, F. J. , The P-glycoprotein efflux pump: how does it transport drugs? , J Membr. Biol. 160(3) (1997)161-175.
Sripriyalakshmi, S., Jose, P., Ravindran, A., and Anjali, C.H. , Recent Trends in Drug Delivery System Using Protein Nanoparticles, Cell. Biochem. Biophys. (2014) doi: 10.1007/s12013-014-9896-5.
Soppimath, K.S., Aminabhavi, T.M., Kulkarni, A.R., and Rudzinski, W,E., Biodegradable polymeric nanoparticles as drug delivery devices, J. Control. Release. 70(2001)1-20.
Skandalis, S. S., C. Gialeli, A. D. Theocharis and N. K. Karamanos , Advances and advantages of nanomedicine in the pharmacological targeting of hyaluronan-CD44 interactions and signaling in cancer, Adv. Cancer. Res. 123(2014)277-317.
Tomida, A., and Tsuruo, T. , Drug resistance pathways as targets, Anticancer Drug Development, Chapter 5, eds B. C. Baguley and D. J. Kerr (2002) P77-90.
Uchida, S., K. Itaka, Q. Chen, K. Osada, K. Miyata, T. Ishii, M. Harada-Shiba and K. Kataoka , Combination of chondroitin sulfate and polyplex micelles from Poly(ethylene glycol)-poly{N'-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} block copolymer for prolonged in vivo gene transfection with reduced toxicity, J. Control. Release. 155(2) (2011) 296-302.
Velingkar, V., and Dandekar, V., Modulation of P-glycoprotein mediated multidrug resistance (MDR) in cancer using chemosensitizers, Int. J. Pharm. 1(2) (2010) p. 104-111.
Xu, X., W. Ho, X. Zhang, N. Bertrand and O. Farokhzad , Cancer nanomedicine: from targeted delivery to combination therapy, Trends. Mol. Med. 21(4) (2015) 223-232.
Yu, C., C. Gao, S. Lu, C. Chen, J. Yang, X. Di and M. Liu , Facile preparation of pH-sensitive micelles self-assembled from amphiphilic chondroitin sulfate-histamine conjugate for triggered intracellular drug release, Colloids. Surf. B Biointerfaces 115(2014)331-339.
Zoller, M., CD44, Hyaluronan, the Hematopoietic Stem Cell, and Leukemia-Initiating Cells, Front. Immunol. 6(2015) 235.
Zhao, L., M. Liu, J. Wang and G. Zhai , Chondroitin sulfate-based nanocarriers for drug/gene delivery, CarbohydrPolym. 133 (2015) 391-399.
Zoller, M. , CD44: can a cancer-initiating cell profit from an abundantly expressed molecule?, Nat. Rev. Cancer. 11(4) (2011) 254-267.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50152-
dc.description.abstract化學治療是目前最主要治療癌症的方法,但長時間使用藥物下會產生抗藥性降低治療的效果,像是改變藥物的標靶位置使藥物攝取量降低、改變DNA修補系統及細胞凋亡的機制讓癌細胞生存率大幅提升,亦或者是細胞膜上運送蛋白質會將藥物打出細胞體外使它無法毒殺細胞,這些皆是造成該現象的原因,然而藥物輸出蛋白中又以 P醣蛋白(P-gp) 研究最為廣泛,且許多藥物皆是它的受質,例如: Doxorubicin、Etoposide等。現今隨著奈米科技進步,發現能把抗癌藥物包覆進奈米載體中,並透過胞吞作用將藥物運輸至細胞中來避免P-gp之作用,使大量藥物累積在細胞內以達到毒殺效果。奈米載體除了能透過高滲透長滯留(EPR) 效應被動地進入到腫瘤所在的位置釋放出來外,還能修飾上主動標靶物質來增加載體專一性避免攻擊到正常的組織對身體產生副作用,像是玻尿酸能辨認到在多數腫瘤都大量表現的CD44蛋白質受體,因此當載體到達作用位置時會利用胞吞作用進入到細胞本體釋放藥物以達到克服抗藥性的目的,跟玻尿酸相同糖胺聚糖家族的硫酸軟骨素,也能辨認到腫瘤上CD44蛋白質受體,但差異之處在於硫酸軟骨素多了一個硫酸基能避免跟血液中蛋白質作用以提高在血液當中循環的時間,目前並沒有將硫酸軟骨素修飾過後之脂微粒來當作克服抗藥性的方法,因此本研究的目的是將脂微粒與硫酸軟骨素修飾過後之脂微粒做比較來觀察它是否更適合當作一個藥物傳遞系統。本實驗利用以膽固醇為基礎的正價脂質製作出帶正電之脂微粒後,再加入固定莫耳比例的硫酸軟骨素或玻尿酸,運用正負電相吸引原理來製備出被修飾的脂微粒,接著用粒徑分析儀來比較兩者奈米粒子大小,於體外實驗使用螢光顯微鏡、流式細胞儀、及細胞毒殺實驗來分析兩者的吞噬效率、標靶作用和毒性效果,最後在活體上進行腫瘤的治療,從以上實驗結果得知硫酸軟骨素修飾過之脂微粒有較小的粒徑大小有助於高滲透長滯留 (EPR) 效應進入到腫瘤組織當中,此外它的吞噬效率更好能使更多藥物進入到細胞內達到較佳的毒殺效果,在活體方面能大幅降低腫瘤的體積。本研究運用能主動標靶的硫酸軟骨素修飾到帶正價之脂微粒上,去克服由P-gp該運送蛋白質所造成的抗藥性,藉此來分析在體外及活體內治療抗藥性的效果,期望未來能當作應用於活體抗藥性治療之參考。zh_TW
dc.description.abstractChemotherapy is a major cancer treatment, but this treatment could be impeded by cellular mechanisms such as altered DNA repair, altered drug targets, and drug efflux pumps. One of the possibilities that cancer cell becoming drug resistance is the overexpression of P-glycoprotein (P-gp) , which is the plasma membrane protein encode by mdr1 gene and acts as an energy-dependent efflux transporter. It can pump out the antitumor drug to reduce intracellular drug accumulation and cause less drug efficiency. There are many ways to overcome the drug resistance such as combining the drug and siRNA which knock down the mdr1 gene. Among these strategies, nanoparticle is preferably and receiving great attention for treatment of drug resistance cancers. Because the nanoparticles can passive target the tumor site through the enhanced permeability and retention (EPR) effect accumulating the drug to kill them, but it still have some problems to apply it in reality. For example, it absences the selectivity to targeting the tumor and leads low antitumor activity and several side effects. Therefore, using various targeting molecules such as folic acid, biotin, hyaluronic acid to develop the active tumor-targeting delivery system becomes a novel treatment. In previously studies, pointing out hyaluronic acid (HA) can increase the antitumor activity owing to it specifically binds to CD44 receptor which is overexpressed in tumor. The other studies notice that the chondroitin sulfate (CS) also can bind to CD44 receptor and it may inhibit undesirable interactions with plasma proteins while circulating in the body due to its sulfate group. Based on these studies, the purpose of this work is comparing every properties of drug-loaded micelle coated with HA or CS to discover which one has a more potential to overcome the drug resistance in colon cancer. In this work, the colon cancer cell lines CT26/WT and CT26/MDR were used as a model and the amount of mdr1a gene of both cell lines was confirmed by PCR assay. The cholesterol based micelles named GCC was good in carrying poorly water-soluble anticancer agent so we used these micelles as a carrier to overcome drug resistance. Then, the etoposide-loaded GCC micelles coated with CS were analyzed with the zetasizer. After confirming these physical properties, flow cytometry, fluorescence imaging, and cell viability analysis were used to observe the different cell uptake rate, cytotoxicity effect and targeting efficiency between the two of them. These results proved that the CS-coated micelles not only had a smaller size to enhance the EPR effect but also had a higher cytotoxicity to CT26/MDR owing to the binding ability of CD44 receptor. Most important of all, CS-coated micelles could truly decrease the volume of tumor in vivo. In this study, we find that CS-coated micelles can overcome drug resistance caused by drug efflux pumps, P-glycoprotein (P-gp), in cancer cell. Then, we use a lot of experiments to analyze their properties in vitro and in vivo. Eventually, we hope this research can provide new applications of nanomaterial for multiple drug resistance treatment.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:31:02Z (GMT). No. of bitstreams: 1
ntu-105-R03442002-1.pdf: 3345187 bytes, checksum: 87f8138fa7fd757cf7b44209dc01d139 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員審定書 Ⅰ
致謝 Ⅱ
中文摘要 Ⅲ
英文摘要(Abstract) Ⅴ
簡寫對照表 Ⅶ
第一章 緒論
1.1 抗藥性腫瘤 1
1.2 多重藥物輸出幫浦 1
1.3.1 P醣蛋白(P-gp) 2
1.3.2 P醣蛋白(P-gp)治療方法 2
1.4.1奈米藥物遞送系統 4
1.4.2有機奈米粒子遞送系統 4
1.5奈米粒子脂微粒治療抗藥性 6
1.6玻尿酸與CD44蛋白質受體之關係 7
1.7.1硫酸軟骨素 8
1.7.2硫酸軟骨素應用治療 9
1.8 研究目的及動機 10
第二章 實驗材料與方法
2.1 實驗材料 12
2.1.1 細胞株 12
2.1.2 實驗動物 12
2.1.3 脂質 12
2.1.4 化學藥品 12
2.1.5 儀器 13
2.2 實驗方法 14
2.2.1脂微粒之製備 14
2.2.2脂微粒包覆藥物之製備 15
2.2.3硫酸軟骨素修飾脂微粒之製備 15
2.2.4脂微粒粒徑大小、均質度以及表面電荷之分析 15
2.2.5 脂微粒包覆藥物之效率測試 16
2.2.6 細胞株繼代培養 17
2.2.7利用PCR來檢視細胞株mdr1基因表現量 17
2.2.8利用流式細胞儀分析細胞CD44蛋白質受體表現量 18
2.2.9以螢光顯微鏡觀察脂微粒在細胞中不同時間點分布 19
2.2.10藥物細胞毒性測試 ( IC50 ) 19
2.2.11修飾脂微粒對於細胞標靶效果之分析 20
2.2.12以流式細胞儀觀察硫酸軟骨素修飾脂微粒之標靶效果 20
2.2.13修飾過包裹藥物脂微粒對活體治療之分析 21
第三章 實驗結果
3.1脂微粒之粒徑、均質度、表面電荷 22
3.2硫酸軟骨素修飾後脂微粒之粒徑、均質度、表面電荷 23
3.3脂微粒對於Etoposide藥物之包覆率及藥物乘載率 23
3.4比較修飾前後脂微粒包覆藥物之粒徑、表面電荷、包覆率 24
3.5分析 CT-26/WT、CT-26/MDR抗藥性基因及P-gp之表現 24
3.6修飾過包裹依託泊苷脂微粒對細胞毒性之影響 25
3.7各種細胞中CD44蛋白質受體表現量之分析 25
3.8修飾過硫酸軟骨素及玻尿酸脂微粒被細胞吞噬之分析 26
3.9透過細胞活性呈現修飾硫酸軟骨素脂微粒之標靶作用 26
3.10透過流式細胞儀分析硫酸軟骨素之標靶作用 27
3.11活體內測試不同修飾脂微粒包裹依託泊苷抗腫瘤之療效 28
第四章 討論
4.1硫酸軟骨素修飾脂微粒其粒徑大小、均質度及電荷之分析 31
4.2大腸直腸癌細胞株及其抗藥性細胞株之分析 31
4.3硫酸軟骨素修飾脂微粒被細胞攝取效率探討 32
4.4硫酸軟骨素修飾脂微粒包裹依託泊苷對細胞毒性之影響 34
4.5活體內硫酸軟骨素修飾脂微粒包裹依託泊苷抗腫瘤之療效 35
第五章 圖表與說明
表一 不同組成比例硫酸軟骨素脂微粒之物性分析 37
表二 脂微粒包覆藥物之包覆率及藥物乘載率 39
表三 修飾前後脂微粒包覆藥物之物性分析 40
圖一 硫酸軟骨素修飾脂微粒之圖示 41
圖二 CT-26/WT和CT-26/MDR細胞抗藥性之特性分析 42
圖三 修飾後脂微粒包覆依託泊苷對細胞毒性之影響 43
圖四 流式細胞儀分析細胞中CD44蛋白質受體之表現量 44
圖五 螢光顯微鏡影像來分析修飾脂微粒之標靶作用 45
圖六 透過細胞活性呈現修飾後脂微粒之標靶作用 46
圖七 透過流式細胞儀分析硫酸軟骨素之標靶作用 47
圖八 腫瘤之接種時間及化療的流程 48
圖九 活體治療CT-26 /WT及CT-26 /MDR小鼠體重變化 49
圖十 脂微粒包覆藥物修飾前後對活體之治療效果 50
圖十一 修飾脂微粒包覆藥物對活體(CT-26/WT)之治療效果 51
圖十二 修飾脂微粒包覆藥物對活體(CT-26/MDR)之治療效果 52
第六章 參考文獻 53
dc.language.isozh-TW
dc.subject脂微粒zh_TW
dc.subject癌症zh_TW
dc.subject脂微粒zh_TW
dc.subject硫酸軟骨素zh_TW
dc.subject癌症zh_TW
dc.subject硫酸軟骨素zh_TW
dc.subjectmicelleen
dc.subjectchondroitin sulfateen
dc.subjectcanceren
dc.subjectmicelleen
dc.subjectcanceren
dc.subjectchondroitin sulfateen
dc.title硫酸軟骨素修飾包覆依託泊苷之膽固醇脂微粒及其在小鼠大腸直腸癌對抗藥性治療之研究分析zh_TW
dc.titleCholesterol-based micelles coated with chondroitin sulfate for etoposide delivery to overcome drug resistance in a mouse colon cancer modelen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張明富,詹東榮,林文澧
dc.subject.keyword硫酸軟骨素,脂微粒,癌症,zh_TW
dc.subject.keywordchondroitin sulfate,micelle,cancer,en
dc.relation.page60
dc.identifier.doi10.6342/NTU201601923
dc.rights.note有償授權
dc.date.accepted2016-08-04
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
3.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved