請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50150
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賴逸儒 | |
dc.contributor.author | Hsin-Yuan Chen | en |
dc.contributor.author | 陳信元 | zh_TW |
dc.date.accessioned | 2021-06-15T12:30:59Z | - |
dc.date.available | 2018-08-26 | |
dc.date.copyright | 2016-08-26 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-04 | |
dc.identifier.citation | 1. de Groot, H., & Rauen, U. (2007). Ischemia-reperfusion injury: processes in pathogenetic networks: a review. Transplant Proc, 39(2), 481-484. doi:10.1016/j.transproceed.2006.12.012
2. Selzner, N. (2003). Protective strategies against ischemic injury of the liver. Gastroenterology, 125(3), 917-936. doi:10.1016/s0016-5085(03)01048-5 3. Sanada, S., Komuro, I., & Kitakaze, M. (2011). Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. Am J Physiol Heart Circ Physiol, 301(5), H1723-1741. doi:10.1152/ajpheart.00553.2011 4. Schwabe, R. F., & Brenner, D. A. (2006). Mechanisms of Liver Injury. I. TNF-alpha-induced liver injury: role of IKK, JNK, and ROS pathways. Am J Physiol Gastrointest Liver Physiol, 290(4), G583-589. doi:10.1152/ajpgi.00422.2005 5. Muzio, M., Chinnaiyan, A. M., Kischkel, F. C., O'Rourke, K., Shevchenko, A., Ni, J., . . . Gentz, R. (1996). FLICE, a novel FADD-homologous ICE/CED-3–like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell, 85(6), 817-827. 6. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S., & Wang, X. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 91(4), 479-489. 7. Selzner, N., Rudiger, H., Graf, R., & Clavien, P.-A. (2003). Protective strategies against ischemic injury of the liver. Gastroenterology, 125(3), 917-936. 8. Phillips, L., Toledo, A. H., Lopez-Neblina, F., Anaya-Prado, R., & Toledo-Pereyra, L. H. (2009). Nitric oxide mechanism of protection in ischemia and reperfusion injury. J Invest Surg, 22(1), 46-55. doi:10.1080/08941930802709470 9. Montalvo-Jave, E. E., Escalante-Tattersfield, T., Ortega-Salgado, J. A., Pina, E., & Geller, D. A. (2008). Factors in the pathophysiology of the liver ischemia-reperfusion injury. J Surg Res, 147(1), 153-159. doi:10.1016/j.jss.2007.06.015 10. Llacuna, L., Mari, M., Lluis, J. M., Garcia-Ruiz, C., Fernandez-Checa, J. C., & Morales, A. (2009). Reactive oxygen species mediate liver injury through parenchymal nuclear factor-kappaB inactivation in prolonged ischemia/reperfusion. Am J Pathol, 174(5), 1776-1785. doi:10.2353/ajpath.2009.080857 11. Nakano, Y., Kondo, T., Matsuo, R., Hashimoto, I., Kawasaki, T., Kohno, K., . . . Ohkohchi, N. (2008). Platelet dynamics in the early phase of postischemic liver in vivo. J Surg Res, 149(2), 192-198. doi:10.1016/j.jss.2007.09.016 12. Taniai, H., Hines, I. N., Bharwani, S., Maloney, R. E., Nimura, Y., Gao, B., . . . Aw, T. Y. (2004). Susceptibility of murine periportal hepatocytes to hypoxia-reoxygenation: role for NO and Kupffer cell-derived oxidants. Hepatology, 39(6), 1544-1552. doi:10.1002/hep.20217 13. Hanschen, M., Zahler, S., Krombach, F., & Khandoga, A. (2008). Reciprocal activation between CD4+ T cells and Kupffer cells during hepatic ischemia-reperfusion. Transplantation, 86(5), 710-718. doi:10.1097/TP.0b013e3181821aa7 30 14. Kitakaze, M., Asakura, M., Kim, J., Shintani, Y., Asanuma, H., Hamasaki, T., . . . Kitamura, S. (2007). Human atrial natriuretic peptide and nicorandil as adjuncts to reperfusion treatment for acute myocardial infarction (J-WIND): two randomised trials. The Lancet, 370(9597), 1483-1493. doi:10.1016/s0140-6736(07)61634-1 15. Maki, T., Horio, T., Yoshihara, F., Suga, S. i., Takeo, S., Matsuo, H., & Kangawa, K. (2000). Effect of neutral endopeptidase inhibitor on endogenous atrial natriuretic peptide as a paracrine factor in cultured cardiac fibroblasts. British journal of pharmacology, 131(6), 1204-1210. 16. Kiemer, A., & Vollmar, A. (2001). The atrial natriuretic peptide regulates the production of inflammatory mediators in macrophages. Annals of the rheumatic diseases, 60(suppl 3), iii68-iii70. 17. Mewton, N., Croisille, P., Gahide, G., Rioufol, G., Bonnefoy, E., Sanchez, I., . . . Ovize, M. (2010). Effect of cyclosporine on left ventricular remodeling after reperfused myocardial infarction. J Am Coll Cardiol, 55(12), 1200-1205. doi:10.1016/j.jacc.2009.10.052 18. Lonborg, J., Kelbaek, H., Vejlstrup, N., Botker, H. E., Kim, W. Y., Holmvang, L., . . . Engstrom, T. (2012). Exenatide reduces final infarct size in patients with ST-segment-elevation myocardial infarction and short-duration of ischemia. Circ Cardiovasc Interv, 5(2), 288-295. doi:10.1161/CIRCINTERVENTIONS.112.968388 19. Singer, N. G., & Caplan, A. I. (2011). Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol, 6, 457-478. doi:10.1146/annurev-pathol-011110-130230 20. Morigi, M., Rota, C., Montemurro, T., Montelatici, E., Lo Cicero, V., Imberti, B., . . . Lazzari, L. (2010). Life-sparing effect of human cord blood-mesenchymal stem cells in experimental acute kidney injury. Stem Cells, 28(3), 513-522. doi:10.1002/stem.293 21. Kanazawa, H., Fujimoto, Y., Teratani, T., Iwasaki, J., Kasahara, N., Negishi, K., . . . Kobayashi, E. (2011). Bone marrow-derived mesenchymal stem cells ameliorate hepatic ischemia reperfusion injury in a rat model. PLoS One, 6(4), e19195. doi:10.1371/journal.pone.0019195 22. Chen, S., Chen, L., Wu, X., Lin, J., Fang, J., Chen, X., . . . Kang, M. (2012). Ischemia postconditioning and mesenchymal stem cells engraftment synergistically attenuate ischemia reperfusion-induced lung injury in rats. J Surg Res, 178(1), 81-91. doi:10.1016/j.jss.2012.01.039 23. Fang, J., Chen, L., Fan, L., Wu, L., Chen, X., Li, W., . . . Wang, W. (2011). Enhanced therapeutic effects of mesenchymal stem cells on myocardial infarction by ischemic postconditioning through paracrine mechanisms in rats. J Mol Cell Cardiol, 51(5), 839-847. doi:10.1016/j.yjmcc.2011.06.013 24. Yandza, T., Tauc, M., Saint-Paul, M. C., Ouaissi, M., Gugenheim, J., & Hebuterne, X. (2012). The pig as a preclinical model for intestinal ischemia-reperfusion and transplantation studies. J Surg Res, 178(2), 807-819. doi:10.1016/j.jss.2012.07.025 25. McCully, J. D., Cowan, D. B., Pacak, C. A., Toumpoulis, I. K., Dayalan, H., & Levitsky, S. (2009). Injection of isolated mitochondria during early reperfusion for cardioprotection. Am J Physiol Heart Circ Physiol, 296(1), H94-H105. doi:10.1152/ajpheart.00567.2008 26. Lin, H. C., Liu, S. Y., Lai, H. S., & Lai, I. R. (2013). Isolated mitochondria 31 infusion mitigates ischemia-reperfusion injury of the liver in rats. Shock, 39(3), 304-310. doi:10.1097/SHK.0b013e318283035f 27. Murry, C. E., Jennings, R. B., & Reimer, K. A. (1986). Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation, 74(5), 1124-1136. 28. Pang, C. Y., Yang, R. Z., Zhong, A., Xu, N., Boyd, B., & Forrest, C. R. (1995). Acute ischaemic preconditioning protects against skeletal muscle infarction in the pig. Cardiovascular Research, 29(6), 782-788. doi:10.1016/s0008-6363(96)88613-5 29. Glazier, S. S., O'Rourke, D. M., Graham, D. I., & Welsh, F. A. (1994). Induction of ischemic tolerance following brief focal ischemia in rat brain. Journal of Cerebral Blood Flow & Metabolism, 14(4), 545-553. 30. Hotter, G., Closa, D., Prados, M., Fernández-Cruz, L., Prats, N., Gelpı, E., & Roselló-Catafau, J. (1996). Intestinal preconditioning is mediated by a transient increase in nitric oxide. Biochemical and biophysical research communications, 222(1), 27-32. 31. Zager, R. A., Baltes, L. A., Sharma, H. M., & Jurkowitz, M. S. (1984). Responses of the ischemic acute renal failure kidney to additional ischemic events. Kidney international, 26(5), 689-700. 32. Yadav, S. S., Sindram, D., Perry, D. K., & Clavien, P. A. (1999). Ischemic preconditioning protects the mouse liver by inhibition of apoptosis through a caspase‐dependent pathway. Hepatology, 30(5), 1223-1231. 33. Jassem, W., Fuggle, S. V., Cerundolo, L., Heaton, N. D., & Rela, M. (2006). Ischemic preconditioning of cadaver donor livers protects allografts following transplantation. Transplantation, 81(2), 169-174. 34. Yun, Y., Duan, W., Chen, P., Wu, H., Shen, Z., Qian, Z., & Wang, D. (2009). Ischemic postconditioning modified renal oxidative stress and lipid peroxidation caused by ischemic reperfusion injury in rats. Paper presented at the Transplantation proceedings. 35. He, B., Xiao, J., Ren, A.-J., Zhang, Y.-F., Zhang, H., Chen, M., . . . Wang, Y.-W. (2011). Role of miR-1 and miR-133a in myocardial ischemic postconditioning. Journal of biomedical science, 18(1), 1. 36. Lin, H.-C., Lee, T.-K., Tsai, C.-C., Lai, I.-R., & Lu, K.-S. (2012). Ischemic postconditioning protects liver from ischemia-reperfusion injury by modulating mitochondrial permeability transition. Transplantation, 93(3), 265-271. 37. Hausenloy, D. J., Tsang, A., & Yellon, D. M. (2006). Postconditioning does not protect the diabetic heart. Journal of Molecular and Cellular Cardiology, 40(6), 958. 38. Meijer, A. J., & Dubbelhuis, P. F. (2004). Amino acid signalling and the integration of metabolism. Biochemical and biophysical research communications, 313(2), 397-403. 39. Mizushima, N., Levine, B., Cuervo, A. M., & Klionsky, D. J. (2008). Autophagy fights disease through cellular self-digestion. Nature, 451(7182), 1069-1075. 40. Glick, D., Barth, S., & Macleod, K. F. (2010). Autophagy: cellular and molecular mechanisms. The Journal of pathology, 221(1), 3-12. 41. Matsui, Y., Takagi, H., Qu, X., Abdellatif, M., Sakoda, H., Asano, T., . . . Sadoshima, J. (2007). Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res, 100(6), 914-922. 32 doi:10.1161/01.RES.0000261924.76669.36 42. Jiang, M., Liu, K., Luo, J., & Dong, Z. (2010). Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. Am J Pathol, 176(3), 1181-1192. doi:10.2353/ajpath.2010.090594 43. Wen, Y.-D., Sheng, R., Zhang, L.-S., Han, R., Zhang, X., Zhang, X.-D., . . . Qin, Z.-H. (2008). Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy, 4(6), 762-769. 44. Cardinal, J., Pan, P., Dhupar, R., Ross, M., Nakao, A., Lotze, M., . . . Tsung, A. (2009). Cisplatin prevents high mobility group box 1 release and is protective in a murine model of hepatic ischemia/reperfusion injury. Hepatology, 50(2), 565-574. doi:10.1002/hep.23021 45. Shen, M., Lu, J., Dai, W., Wang, F., Xu, L., Chen, K., . . . Guo, C. (2013). Ethyl pyruvate ameliorates hepatic ischemia-reperfusion injury by inhibiting intrinsic pathway of apoptosis and autophagy. Mediators Inflamm, 2013, 461536. doi:10.1155/2013/461536 46. Suzuki, S., Toledo-Pereyra, L., Rodriguez, F., & Cejalvo, D. (1993). Neutrophil infiltration as an important factor in liver ischemia and reperfusion injury. Modulating effects of FK506 and cyclosporine. Transplantation, 55(6), 1265-1272. 47. Lawen, A. (2003). Apoptosis—an introduction. Bioessays, 25(9), 888-896. 48. Liu, X., Kim, C. N., Yang, J., Jemmerson, R., & Wang, X. (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell, 86(1), 147-157. 49. Kalogeris, T., Baines, C. P., Krenz, M., & Korthuis, R. J. (2012). Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol, 298, 229-317. doi:10.1016/B978-0-12-394309-5.00006-7 50. Chunwei, L., Hongliang, C., Xuefang, Y., & Wei, H. (2015). Cardioprotective effects of atorvastatin postconditioning on ischemia-reperfusion injury in isolated rat heart: the role of PI3K-Akt, mito-K ATP channel and mPTP. Tianjin Medical Journal, 43(1). 51. Cheng, C.-H., Lin, H.-C., Lai, I.-R., & Lai, H.-S. (2013). Ischemic postconditioning attenuate reperfusion injury of small intestine: impact of mitochondrial permeability transition. Transplantation, 95(4), 559-565. 52. Gao, L., Jiang, T., Guo, J., Liu, Y., Cui, G., Gu, L., . . . Zhang, Y. (2012). Inhibition of autophagy contributes to ischemic postconditioning-induced neuroprotection against focal cerebral ischemia in rats. PLoS One, 7(9), e46092. doi:10.1371/journal.pone.0046092 53. Dosenko, V., Nagibin, V., Tumanovskaya, L., Moibenko, A., & Vaage, J. (2005). Postconditioning prevents apoptotic necrotic and autophagic cardiomyocyte cell death in culture. Fiziol Zh, 51(3), 12-17. 54. Fang, H., Liu, A., Dahmen, U., & Dirsch, O. (2013). Dual role of chloroquine in liver ischemia reperfusion injury: reduction of liver damage in early phase, but aggravation in late phase. Cell Death Dis, 4, e694. doi:10.1038/cddis.2013.225 55. Abe, Y., Hines, I. N., Zibari, G., Pavlick, K., Gray, L., Kitagawa, Y., & Grisham, M. B. (2009). Mouse model of liver ischemia and reperfusion injury: method for studying reactive oxygen and nitrogen metabolites in vivo. Free Radic Biol Med, 46(1), 1-7. doi:10.1016/j.freeradbiomed.2008.09.029 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50150 | - |
dc.description.abstract | 前言:缺血後制約訓練(ischemic postconditioning, iPoC)是藉由改變缺血後的再灌流(reperfusion)程序而引發保護效應。不同以往以持續、不間斷的方式恢復灌流,缺血後制約訓練(ischemic postconditioning, iPoC)是以間歇、短暫的方式恢復灌流,藉此減少組織所產生的缺血再灌流傷害。本研究用小鼠模式,驗證缺血後制約訓練對肝臟缺血再灌流傷害的保護效果及對於細胞自噬的觀察。
材料與方法:實驗分為三個組別,control 組、IR 組及 iPoC 組。將雄性 C57BL/6小鼠(重約 20g-25g)的肝臟左外側葉及中葉以動脈夾阻斷血流 30 分鐘(缺血期)後,再移除動脈夾以恢復肝臟血液供應 60 分鐘(再灌流期),此為缺血(IR)組。缺血後制約訓練(ischemic postconditioning, iPoC)係在恢復灌流前,給予肝臟 3 個短暫的部分缺血再灌流循環,每循環均包括 30 秒的缺血和 30 秒的再灌流。控制(comtrol)組,則是將小鼠的腹腔打開 30 分鐘,期間不做任何處理,接著將腹腔縫合並同樣給予 60 分鐘的再灌流時間。再灌流 60 分鐘後,收集血液樣本及取下肝臟組織做分析,包括評估血清中 ALT 值、H&E 染色、細胞凋亡評估(TUNEL assay)、細胞凋亡及自噬相關蛋白變化(Western blotting),電子顯微鏡觀察肝臟細胞內細胞自噬的狀態。 結果:與 control 組相比,IR 組血清中ALT有顯著性的上升(51.8±4.59 U/L v.s 520.4±48.42 U/L,p<0.05),而 iPoC 組血清中的 ALT 上升程度比 IR 組低(300.3±28.9 U/L v.s 20.4±48.42 U/L,p<0.05)。H&E染色中,與 control 組相比,IR 組的細胞呈現大量的空泡狀(1.25±0.32 score v.s 2.99±0.45 score,p<0.05)及壞死(1.27±0.16 score v.s 3.09±0.14 score,p<0.05);在 iPoC 組與 IR 組比較,空泡狀(1.86±0.21 score v.s 2.99±0.45 score,p<0.05)及壞死(2.36±0.16 score v.s 3.09±0.14 score,p<0.05)的情況有相對減少。在細胞凋亡分析中,與 control 組相比,IR 組的 TUNEL-positive的細胞所占比例較高(2.6±2.04 % v.s 73.5±0.38 %,p<0.05),但在經過 iPoC 治療後與 IR 組相比,TUNEL-positive 的細胞則有顯著下降(54.4±1.52 % v.s 73.5±0.38 %,p<0.05)。再灌流 60 分鐘後,與 control 組相比,IR 組細胞質中的 cytochrom c 表現有顯著上升(p<0.05),經過 iPoC 治療後(iPoC 組)則有顯著下降(p<0.05),在 cleaved caspase 3 部分,與 control 組比較,IR組有顯著的上升(p<0.05)在經過 iPoC 治療後(iPoC 組)與IR組相較,沒有顯著差異(1.32±0.23 v.s 1.56±0.22,p=0.46)。再灌流60分鐘後,自噬體(autophagosome)蛋白之變化,與 control 組相比,IR 組 LC3-II表現有顯著性的上升(1.0±0.12 v.s 1.59±0.15,p<0.05),在經過iPoC治療後(iPoC組)與IR組相比,沒有顯著差異(1.53±0.2 v.s 1.59±0.15,p=0.59 ),在自噬溶小體(autolysosome)的部分,與 control 組相比,IR 組 p62 表現量有顯著的下降(1.0±0.09 v.s 0.71±0.08,p<0.05),但 iPoC 組的 p62 表現量與 IR 組相比,則有顯著的提高(1.38±0.26 v.s 0.71±0.08,p<0.05)。 結論:後制約訓練可以減少肝臟缺血再灌流所造成的傷害,並會減少自噬溶小體的形成,影響自噬作用的進行。 | zh_TW |
dc.description.abstract | Introduction: Ischemic postconditioning (iPoC), a repetitive, brief ischemia-reperfusion maneuver performed at or before the initiation of tissue reperfusion, has been shown to mitigate reperfusion injury in heart and brain. The aim of this study is to investigate the effects of iPoC on liver ischemia-reperfusion injury.
Methods: Partial liver ischemia-reperfusion injury was induced by clamping the left lateral lobes and median lobes of the liver for 30 minutes on male C57BL/6 mouse (20g-25g). Three cycles of 30 seconds of reperfusion followed by 30 seconds of ischemia was performed just before reperfusion began in iPoC group. Blood and liver samples were harvested at 60 minutes after reperfusion for assessments which include serum ALT, H&E staining, TUNEL staining, western blot, and electron microscopy (EM) study. The results were compared between the control, IR, and iPoC groups. Results: Our data shows that iPoC could reduce the elevation of serum ALT level after reperfusion 60 minutes (300.3±28.9 U/L v.s 520.4±48.42 U/L, p<0.05), and decrease the percentage of apoptotic hepatocytes(54.4±1.52 % v.s 73.5±0.38 %,p<0.05). The H&E staining showed that ischemic postconditioning could reduce necrosis (2.36±0.16 score v.s 3.09±0.14 score, p<0.05) and vacuolization(1.86±0.21 score v.s 2.99±0.45 score, p<0.05). Western blot showed increase cytochrome c, expression after ischemia reperfusion injury of liver, and decrease the expression of cytochrome c after ischemic postconditioning. Expression levels of cleaved caspase3 and LC3-II were increased after IR injury but there were no difference between IR and iPoC group. Expression levels of p62 were decreased after IR injury but increased after ischemic postconditioning. Conclusion: This study shows that ischemic postconditioning can attenuate cell deaths and influence autophagy after reperfusion injury of liver. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T12:30:59Z (GMT). No. of bitstreams: 1 ntu-105-R02446009-1.pdf: 2078203 bytes, checksum: 4e09062c8ac515fab898a702b198e261 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 目錄
口試委員會審定書 .................................................... i 誌謝 ............................................................... ii 目錄 .............................................................. iii 中文摘要 ........................................................... iv 英文摘要 ........................................................... vi 壹、緒論 ............................................................ 1 一、缺血再灌流傷害(ischemia-reperfusion injury, I/R injury) ....... 1 二、缺血再灌流傷害的機制 .......................................... 1 三、減緩缺血再灌流傷害方法 ........................................ 2 四、後制約訓練(Postconditioning) .................................. 3 五、細胞自噬(Autophagy) ........................................... 4 六、研究動機 ...................................................... 4 貳、實驗材料 ........................................................ 5 參、實驗方法 ........................................................ 9 肆、實驗結果 ....................................................... 15 伍、討論 ........................................................... 18 陸、結論 ........................................................... 19 柒、附圖 ........................................................... 20 圖一、肝臟手術示意圖(摘錄自參考資料[55]) ......................... 20 圖二、動物缺血模式時間示意圖 ..................................... 21 圖三、血清中ALT值分析肝臟受傷害程度 ............................. 22 圖四、HE染色觀察探討後制約訓練對於肝臟細胞的影響 ................. 23 圖五、TUNEL assay分析肝臟細胞凋亡的情形 .......................... 25 圖六、肝臟cytochrome c與cleaved-caspase 3的表現,探討肝臟細胞凋亡的情況 ............................................................. 26 圖七、分析肝臟中LC3及p62的表現,觀察肝臟細胞自噬的情形 ......... 27 圖八、以穿透式電子顯微鏡觀察肝臟細胞自噬 ......................... 28 捌、參考資料 ....................................................... 29 | |
dc.language.iso | zh-TW | |
dc.title | 肝臟後制約訓練中對自噬的觀察 | zh_TW |
dc.title | The observation of autophagy in ischemic postconditioning on livers following ischemia reperfusion injury | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王淑慧,楊宏志 | |
dc.subject.keyword | 肝臟,缺血再灌流傷害,後制約訓練,自噬, | zh_TW |
dc.subject.keyword | liver,ischemia reperfusion injury,postconditioning,autophagy, | en |
dc.relation.page | 32 | |
dc.identifier.doi | 10.6342/NTU201601934 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-04 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 解剖學暨細胞生物學研究所 | zh_TW |
顯示於系所單位: | 解剖學暨細胞生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 2.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。