Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50146
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈弘俊(Horn-Jinn Sheen)
dc.contributor.authorGuo-Han Leeen
dc.contributor.author李國翰zh_TW
dc.date.accessioned2021-06-15T12:30:53Z-
dc.date.available2021-08-24
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-08-04
dc.identifier.citation[1] ZEON. ZEP520A Data Sheet. 2010; Available from: https://www.zeonchemicals.com/pdfs/ZEP520A.pdf.
[2] A. Hoos and C. Cordon-Cardo, Tissue microarray profiling of cancer specimens and cell lines: opportunities and limitations. Laboratory investigation, 2001. 81(10): p. 1331-1338.
[3] J.C. Mills, K.A. Roth, R.L. Cagan, and J.I. Gordon, DNA microarrays and beyond: completing the journey from tissue to cell. Nature Cell Biology, 2001. 3(8): p. E175-E178.
[4] A. Sassolas, B.D. Leca-Bouvier, and L.J. Blum, DNA biosensors and microarrays. Chemical reviews, 2008. 108(1): p. 109-139.
[5] K.-I. Chen, B.-R. Li, and Y.-T. Chen, Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today, 2011. 6(2): p. 131-154.
[6] M.L. Kovarik, D.M. Ornoff, A.T. Melvin, N.C. Dobes, Y. Wang, A.J. Dickinson, P.C. Gach, P.K. Shah, and N.L. Allbritton, Micro total analysis systems: fundamental advances and applications in the laboratory, clinic, and field. Analytical chemistry, 2012. 85(2): p. 451-472.
[7] A. Manz, N. Graber, and H.á. Widmer, Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors and actuators B: Chemical, 1990. 1(1): p. 244-248.
[8] A.R. Grayson, R.S. Shawgo, A.M. Johnson, N.T. Flynn, Y. Li, M.J. Cima, and R. Langer, A BioMEMS review: MEMS technology for physiologically integrated devices. Proceedings of the IEEE, 2004. 92(1): p. 6-21.
[9] S. Trietsch, T. Hankemeier, and H. Van der Linden, Lab-on-a-chip technologies for massive parallel data generation in the life sciences: A review. Chemometrics and Intelligent Laboratory Systems, 2011. 108(1): p. 64-75.
[10] K.N. Han, C.A. Li, and G.H. Seong, Microfluidic chips for immunoassays. Annual review of analytical chemistry, 2013. 6: p. 119-141.
[11] D. Dey and T. Goswami, Optical biosensors: a revolution towards quantum nanoscale electronics device fabrication. BioMed Research International, 2011. 2011.
[12] D. Grieshaber, R. MacKenzie, J. Voeroes, and E. Reimhult, Electrochemical biosensors-sensor principles and architectures. Sensors, 2008. 8(3): p. 1400-1458.
[13] G. Marrazza, Piezoelectric biosensors for organophosphate and carbamate pesticides: a review. Biosensors, 2014. 4(3): p. 301-317.
[14] D.R. Shankaran, K.V. Gobi, and N. Miura, Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensors and Actuators B: Chemical, 2007. 121(1): p. 158-177.
[15] J. Homola, S.S. Yee, and G. Gauglitz, Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical, 1999. 54(1): p. 3-15.
[16] W. Tan, Y. Huang, T. Nan, C. Xue, Z. Li, Q. Zhang, and B. Wang, Development of protein A functionalized microcantilever immunosensors for the analyses of small molecules at parts per trillion levels. Analytical chemistry, 2009. 82(2): p. 615-620.
[17] R. Vaughan, C. O’sullivan, and G. Guilbault, Development of a quartz crystal microbalance (QCM) immunosensor for the detection of Listeria monocytogenes. Enzyme and Microbial Technology, 2001. 29(10): p. 635-638.
[18] R. Wood, XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1902. 4(21): p. 396-402.
[19] U. Fano, The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). JOSA, 1941. 31(3): p. 213-222.
[20] A. Hessel and A. Oliner, A new theory of Wood’s anomalies on optical gratings. Applied Optics, 1965. 4(10): p. 1275-1297.
[21] R. Ritchie, Plasma losses by fast electrons in thin films. Physical Review, 1957. 106(5): p. 874.
[22] E. Kretschmann and H. Raether, Notizen: radiative decay of non radiative surface plasmons excited by light. Zeitschrift für Naturforschung A, 1968. 23(12): p. 2135-2136.
[23] A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik, 1968. 216(4): p. 398-410.
[24] K.L. Lee and P.K. Wei, Enhancing surface plasmon detection using ultrasmall nanoslits and a multispectral integration method. Small, 2010. 6(17): p. 1900-1907.
[25] C.L. Wong and M. Olivo, Surface plasmon resonance imaging sensors: a review. Plasmonics, 2014. 9(4): p. 809-824.
[26] B. Liedberg, C. Nylander, and I. Lunström, Surface plasmon resonance for gas detection and biosensing. Sensors and actuators, 1983. 4: p. 299-304.
[27] J. Homola, Present and future of surface plasmon resonance biosensors. Analytical and bioanalytical chemistry, 2003. 377(3): p. 528-539.
[28] T.W. Ebbesen, H.J. Lezec, H. Ghaemi, T. Thio, and P. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 1998. 391(6668): p. 667-669.
[29] W.L. Barnes, A. Dereux, and T.W. Ebbesen, Surface plasmon subwavelength optics. Nature, 2003. 424(6950): p. 824-830.
[30] A.G. Brolo, R. Gordon, B. Leathem, and K.L. Kavanagh, Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir, 2004. 20(12): p. 4813-4815.
[31] P.-S. Chung, Y.-J. Fan, H.-J. Sheen, and W.-C. Tian, Real-time dual-loop electric current measurement for label-free nanofluidic preconcentration chip. Lab on a Chip, 2015. 15(1): p. 319-330.
[32] Y.-C. Wang, A.L. Stevens, and J. Han, Million-fold preconcentration of proteins and peptides by nanofluidic filter. Analytical chemistry, 2005. 77(14): p. 4293-4299.
[33] Q. Pu, J. Yun, H. Temkin, and S. Liu, Ion-enrichment and ion-depletion effect of nanochannel structures. Nano letters, 2004. 4(6): p. 1099-1103.
[34] J.H. Lee, Y.-A. Song, and J. Han, Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane. Lab on a Chip, 2008. 8(4): p. 596-601.
[35] P.S. Dittrich, K. Tachikawa, and A. Manz, Micro total analysis systems. Latest advancements and trends. Analytical chemistry, 2006. 78(12): p. 3887-3908.
[36] H. Becker and U. Heim, Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sensors and Actuators A: Physical, 2000. 83(1): p. 130-135.
[37] 張哲豪, 流體微熱壓製程開發研究. 臺灣大學機械工程學研究所學位論文, 2004: p. 1-113.
[38] S.Y. Chou, P.R. Krauss, and P.J. Renstrom, Nanoimprint lithography. Journal of Vacuum Science & Technology B, 1996. 14(6): p. 4129-4133.
[39] H. Tan, A. Gilbertson, and S.Y. Chou, Roller nanoimprint lithography. Journal of Vacuum Science & Technology B, 1998. 16(6): p. 3926-3928.
[40] J. Haisma, M. Verheijen, K. Van Den Heuvel, and J. Van Den Berg, Mold‐assisted nanolithography: A process for reliable pattern replication. Journal of Vacuum Science & Technology B, 1996. 14(6): p. 4124-4128.
[41] J. Narasimhan and I. Papautsky, Polymer embossing tools for rapid prototyping of plastic microfluidic devices. Journal of Micromechanics and Microengineering, 2003. 14(1): p. 96.
[42] J.-H. Chang and S.-Y. Yang, Gas pressurized hot embossing for transcription of micro-features. Microsystem Technologies, 2003. 10(1): p. 76-80.
[43] N. Mishchuk and P. Takhistov, Electroosmosis of the second kind. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995. 95(2): p. 119-131.
[44] E. Gongadze, U. Rienen, and A. Iglič, Generalized stern models of the electric double layer considering the spatial variation of permittvity and finite size of ions in saturation regime. Cellular and Molecular Biology Letters, 2011. 16(4): p. 576-594.
[45] A. Plecis, R.B. Schoch, and P. Renaud, Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano letters, 2005. 5(6): p. 1147-1155.
[46] F.C. Leinweber and U. Tallarek, Nonequilibrium electrokinetic effects in beds of ion-permselective particles. Langmuir, 2004. 20(26): p. 11637-11648.
[47] S.S. Dukhin, Electrokinetic phenomena of the second kind and their applications. Advances in colloid and interface science, 1991. 35: p. 173-196.
[48] F.-C. Chien, C.-Y. Lin, J.-N. Yih, K.-L. Lee, C.-W. Chang, P.-K. Wei, C.-C. Sun, and S.-J. Chen, Coupled waveguide–surface plasmon resonance biosensor with subwavelength grating. Biosensors and Bioelectronics, 2007. 22(11): p. 2737-2742.
[49] J. Homola and M. Piliarik, Surface plasmon resonance (SPR) sensors, in Surface plasmon resonance based sensors. 2006, Springer. p. 45-67.
[50] G. Tristram, D. Stites, A. Terr, and J. Imboden, Medical immunology. Appleton &, 2001: p. 148-167.
[51] V.M. Mirsky, M. Riepl, and O.S. Wolfbeis, Capacitive monitoring of protein immobilization and antigen–antibody reactions on monomolecular alkylthiol films on gold electrodes. Biosensors and Bioelectronics, 1997. 12(9–10): p. 977-989.
[52] K.-L. Lee, S.-H. Wu, C.-W. Lee, and P.-K. Wei, Sensitive biosensors using Fano resonance in single gold nanoslit with periodic grooves. Optics express, 2011. 19(24): p. 24530-24539.
[53] K.-L. Lee, J.-B. Huang, J.-W. Chang, S.-H. Wu, and P.-K. Wei, Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays. Scientific reports, 2015. 5.
[54] M.-Y. Pan, K.-L. Lee, W.-S. Tsai, L. Wang, and P.-K. Wei, Determination of the effective index and thickness of biomolecular layer by Fano resonances in gold nanogrid array. Optics express, 2015. 23(17): p. 21596-21606.
[55] 李瑋航, 開發奈米預濃縮與週期性奈米金屬閘表面電漿共振感測器結合於免標定光學免疫分析平台. 臺灣大學生醫電子與資訊學研究所學位論文, 2016: p. 1-81.
[56] MicroChem. SU-8 Data Sheet. Available from: http://microchem.com/pdf/SU-82000DataSheet2025thru2075Ver4.pdf.
[57] V. Sunkara, D.-K. Park, H. Hwang, R. Chantiwas, S.A. Soper, and Y.-K. Cho, Simple room temperature bonding of thermoplastics and poly (dimethylsiloxane). Lab on a Chip, 2011. 11(5): p. 962-965.
[58] K.S. Lee and R.J. Ram, Plastic–PDMS bonding for high pressure hydrolytically stable active microfluidics. Lab on a Chip, 2009. 9(11): p. 1618-1624.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50146-
dc.description.abstract本研究成功開發一新型檢測平台,藉由奈米壓印技術(Nanoimprint Lithography)整合奈米流體預濃縮機制(Nanofluidic Preconcentration Mechanism)與週期性奈米金屬表面電漿共振(Periodic Metallic Surface Plasmon Resonance)感測器。藉由使用微奈米流體預濃縮法將待測活性物質進行濃縮,再以電位差控制將濃縮區塊限制在表面電漿共振感測晶片上,藉由光譜訊號紅移(Red-shift)進行免疫分析。
首先,用電子束微影(E-beam Lithography)製程和反應離子蝕刻(Reactive Ion Etching)技術在矽晶圓基材上定義週期性奈米狹縫結構。以環烯烴類聚合物(Cyclic Olefin Polymer, COP)作為實驗室晶片的基板材料,與矽晶圓母模進行奈米熱壓印將奈米結構轉印至高分子聚合物上,經由遮罩以濺鍍機完成局部鍍金製程,再使用奈米多孔性材料Nafion作為奈米流道並對準於聚合物基板上的表面電漿共振晶片之間,確立奈米流體預濃縮的結構。再藉由傳統黃光微影製程和軟微影(Soft Lithography)製程製作以聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)為材料的微流道。最後經由化學表面修飾後以氧電漿結合高分子聚合物基板和微流道,以完成可預濃縮免標定免疫分析晶片。
我們所使用之生物檢測樣本為牛血清(Bovine Serum Albumin, BSA)蛋白,其所帶有的雙硫鍵可以直接與金進行共價鍵結。通入20 ng/mL的牛血清抗體進入濃縮流道內,藉由操控電壓使濃縮發生在表面電漿共振晶片上,接者比對實驗控制組與對照組的穿透特性光譜,經由紅移(Red Shift)量的差異和牛血清抗體濃度參考曲線,我們發現濃縮將20 ng/mL抗體濃度提升到大約200 µg/mL,濃縮倍率達到10,000倍,藉此可以推論最低檢測極限約為2 pg/mL。
綜觀而論,奈米壓印技術成功達到量產(Mass Production)、低材料成本(Low-cost)和低時間成本的快速製程,且奈米流體預濃縮降低了檢測下限,加上表面電漿共振具有高靈敏度(High Sensitivity)、即時(Real-time)檢測和免標定(Label-free)的優勢,我們藉由簡便的量測系統完成了一個免標定、微量的超低濃度檢測平台。
zh_TW
dc.description.abstractIn this study, a high sensitivity biosensing platform by integrating nanofluidic preconcentrator with periodic metallic surface plasmon resonance sensor has been developed. The target protein, was concentrated to enhance sensitivity of immunoassay. Firstly, the concentrated protein plug was trap in the sensing area of slit-based Surface Plasmon Resonance (SPR) in a microfluidic channel by electrical potential difference. The antibody-antigen interaction on periodic metallic slits resulted in, a red-shift of the resonant spectrum signals which is corresponding to the numbers of the antibody-antigen conjugation.
The periodic nano-grating structure were clarified and fabricated on a silicon wafer as a mold by E-beam lithography and reactive ion etching. The nanostructure was transferred onto a cyclic olefin polymer (COP) by nanoimprint lithography. The gold was deposited on the grating structure of COP by sputter. A porous material, Nafion, was used as the ion-selective channel and, was aligned to the metallic grating structure on COP. Microchannels were made by polydimethylsiloxane (PDMS) using soft lithography process. After the chemically modified surface treatment, the COP can be bond with PDMS by oxygen plasma. The metallic SPR sensor was located in one of parallel microfluidic channels, which were located cross over the Nafion channel.
In this study, bovine serum albumin (BSA) and anti-BSA were used as the testing samples. The disulfide bonds on it would form covalent bonds with Au and is able to be detected by spectrometer. Thereafter, 20 ng/mL of BSA antibodies was introduced into the concentration channel. Then, by adjusting electrical potential, the antibodies were condensed on the surface plasmon resonance chip. The concentrated magnification can be sufficiently derived by the red-shifted value deference and the reference curves of BSA antibody concentration. In summary, the concentration fold can be raised up to approximately 10,000 folds as the 20 ng/mL of antibodies was condensed to 200 µg/mL. Thus, we can conclude that the minimal detectable limit is about 2 pg/mL.
In conclusion, the nanoimprint lithography has several advantages, such as, mass production, low cost, and time saving. Furthermore, the preconcentrator has significantly broken through regarding the detectable limit and SPR has the advantages of high sensitivity, real-time detection, and label-free features. By integrating these two techniques, we can have a label-free, micro-concentration detectable platform by using simple measurement system.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:30:53Z (GMT). No. of bitstreams: 1
ntu-105-R03543035-1.pdf: 4767628 bytes, checksum: a39c0f0bcc758e1e7a1885c9e47f2aeb (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
摘要 ii
ABSTRACT iii
目錄 v
圖目錄 viii
表格目錄 xii
符號目錄 xiii
第1章 導論 1
1.1 研究目的與動機 1
1.2 生物晶片簡介……….... 1
1.2.1微全程分析系統技術(Micro Total Analysis System) 2
1.2.2免疫分析法 3
1.2.3免疫分析方法之優劣 4
1.3 表面電漿共振之發展背景 5
1.4 預濃縮技術之發展背景 8
1.4.1電驅動微奈米流體預濃縮晶片之發展 9
1.4.2微奈米流體預濃縮晶片用於免疫分析 11
1.5 奈米壓印技術 12
第2章 微奈米預濃縮晶片之原理與系統架設 16
2.1 電驅動微奈米預濃縮機制之原理 16
2.1.1電驅動微奈米流體預濃縮法 16
2.1.2電雙層效應 17
2.1.3離子空乏區生成與預濃縮現象 20
2.1.4預濃縮機制 23
2.2 電驅動微奈米預濃縮之系統架設 24
2.2.1倒立式螢光顯微鏡觀測系統 24
2.2.2電壓控制與預濃縮檢測 25
第3章 表面電漿共振用於免疫分析晶片之原理與系統架設 26
3.1 表面電漿共振簡介 26
3.1.1金屬表面電漿子共振 26
3.1.2表面電漿共振激發 30
3.1.3奈米金屬狹縫表面電漿耦合共振模態 31
3.2 週期性奈米金屬表面電漿共振用於免疫分析之原理 32
3.2.1週期性奈米金屬表面折射率與蛋白質之關係 32
3.2.2免疫分析之金表面處理方法 34
3.3 週期性奈米金屬表面電漿共振用於免疫分析之系統架設 37
第4章 整合奈米預濃縮機制與週期性奈米金屬表面電漿共振感測器之製程結果……… 38
4.1 週期性奈米金屬結構之設計 38
4.2 微奈米預濃縮晶片設計 40
4.3 可預濃縮的免標定免疫分析晶片製程結果 41
4.3.1週期性奈米金屬結構製程 41
4.3.2以壓印技術製作奈米週期性金屬結構製程 45
4.3.3週期性奈米結構之局部對位鍍金製程 46
4.3.4 Nafion 奈米流道製程 49
4.3.5 PDMS 微米流道製程 51
4.3.6 PDMS與COP接合製程 54
第5章 可預濃縮的免標定免疫分析晶片之量測結果與討論 57
5.1 預濃縮機制的量測結果 57
5.1.1螢光顆粒用於預濃縮機制之實驗方法 57
5.1.2螢光顆粒用於微流道中之濃縮現象 58
5.2 表面電漿共振感測器之靈敏度量測結果 59
5.3 可預濃縮的免標定免疫分析晶片之免疫分析量測結果 61
5.3.1牛血清蛋白用於免標定免疫分析晶片之實驗方法 61
5.3.2牛血清蛋白用於免標定免疫分析晶片之量測結果 63
第6章 總結 67
6.1 結論 67
6.2 未來展望 68
參考文獻 69
dc.language.isozh-TW
dc.title利用奈米壓印技術整合奈米預濃縮機制與週期性奈米狹縫表面電漿共振感測器於免標定免疫分析平台zh_TW
dc.titlePreconcentrator Integrated a Periodic Metallic Nanoslit-based Surface Plasmon Resonance (SPR) Sensor Using Nanoimprinting Lithography for Immunoassayen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃榮山(Long-Sun Huang),魏培坤(Pei-Kuen Wei)
dc.subject.keyword奈米壓印技術,電驅動奈米流體預濃縮,週期性奈米金屬表面電漿共振,生物感測器,免標定免疫分析,實驗室晶片,zh_TW
dc.subject.keywordNanoimprint Lithography (NIL),Electrokinetic-based Nanofluidic Preconcentration,Periodic Metallic Nanoslit-based Surface Plasmon Resonance (SPR),Biosensor,Label-free Immunoassay,Lab on a chip,en
dc.relation.page73
dc.identifier.doi10.6342/NTU201601954
dc.rights.note有償授權
dc.date.accepted2016-08-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
4.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved