請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50126完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳光禎(Kwang-Cheng Chen) | |
| dc.contributor.author | Wen-Yung Lee | en |
| dc.contributor.author | 李文詠 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:30:21Z | - |
| dc.date.available | 2016-08-24 | |
| dc.date.copyright | 2016-08-24 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-05 | |
| dc.identifier.citation | [1] R. Stacey et al., Proposed TGax Draft Specification. IEEE 802.11-16/0024r1, P802.11ax Task Group Press Release, 2016.
[2] E. Perahia and R. Stacey, Next Generation Wireless LANS: 802.11 n and 802.11 ac. Cambridge university press, 2013. [3] M. S. Gast, 802.11 ac: a Survival Guide. ” O’Reilly Media, Inc.”, 2013. [4] D.-J. Deng, K.-C. Chen, and R.-S. Cheng, “QoS Provisions in Next Generation WLAN MAC,” Proceeding of International conference on selected topics in Mobile and Wireless Networking (MoWNet 2016),Cairo, Egypt, pp. 11–13, 2016. [5] H. Tan and H. Wang, “Performance of Multiple Parallel Slotted Aloha Channels,” in Proc. INFOCOM, vol. 87, pp. 931–940, 1987. [6] M. A. Marsan and M. Bruscagin, “Multichannel Aloha Networks with Reduced Connections,” in IEEE INFOCOM, vol. 87, pp. 268–275, 1987. [7] Z. Zhang and Y.-J. Liu, “Multichannel Aloha Data Networks for Personal Communications Services (PCS),” in Global Telecommunications Conference, 1992. Conference Record., GLOBECOM’92. Communication for Global Users., IEEE, pp. 21–25, IEEE, 1992. [8] Y.-J. Choi, S. Park, and S. Bahk, “Multichannel Random Access in OFDMA Wireless Networks,” Selected Areas in Communications, IEEE Journal on, vol. 24, no. 3, pp. 603–613, 2006. [9] H. Kwon, H. Seo, S. Kim, and G. Lee, Byeong, “Generalized CSMA/CA Protocol for OFDMA Systems,” in Global Telecommunications Conference, 2008. IEEE GLOBECOM 2008. IEEE, pp. 1–6, IEEE, 2008. [10] H. Kwon, H. Seo, S. Kim, and B. G. Lee, “Generalized CSMA/CA for OFDMA Systems: Protocol Design, Throughput Analysis, and Implementation Issues,” Wireless Communications, IEEE Transactions on, vol. 8, no. 8, pp. 4176–4187, 2009. [11] G. Haile and J. Lim, “C-OFDMA: Improved Throughput for Next Generation WLAN Systems Based on OFDMA and CSMA/CA,” in Intelligent Systems Modelling & Simulation (ISMS), 2013 4th International Conference on, pp. 497–502, IEEE, 2013. [12] R. Ratasuk, N. Mangalvedhe, and A. Ghosh, “LTE in Unlicensed Spectrum Using Licensed-assisted Access,” in Globecom Workshops (GC Wkshps), 2014, pp. 746– 751, IEEE, 2014. [13] H. Zhang, X. Chu, W. Guo, and S. Wang, “Coexistence of Wi-Fi and Heterogeneous Small Cell Networks Sharing Unlicensed spectrum,” Communications Magazine, IEEE, vol. 53, no. 3, pp. 158–164, 2015. [14] A. Babaei, J. Andreoli-Fang, Y. Pang, and B. Hamzeh, “On The Impact of LTEU on Wi-Fi Performance,” International Journal of Wireless Information Networks, vol. 22, no. 4, pp. 336–344, 2015. [15] A. M. Cavalcante, E. Almeida, R. D. Vieira, F. Chaves, R. C. Paiva, F. Abinader, S. Choudhury, E. Tuomaala, and K. Doppler, “Performance Evaluation of LTE and Wi-Fi Coexistence in Unlicensed Bands,” in Vehicular Technology Conference (VTC Spring), 2013 IEEE 77th, pp. 1–6, IEEE, 2013. [16] R. G. Gallager, “A Perspective on Multiaccess Channels,” tech. rep., DTIC Document, 1985. [17] D. X. Yang et al., Cascading Structure. IEEE 802.11-15/0841r1, P802.11ax Task Group Press Release, 2015. [18] J. Ahn et al., Trigger Frame Channel Access. IEEE 802.11-15/1116r1, P802.11ax Task Group Press Release, 2015. [19] C. Ghosh et al., Random Access with Trigger Frames Using OFDMA. IEEE 802.11-15/0875r1, P802.11ax Task Group Press Release, 2015. [20] L. Chu et al., Multi-TID A-MPDU in MU Transmission. IEEE 802.11-16/0069r0, P802.11ax Task Group Press Release, 2016. [21] H. Kwon, Y et al., SIG Field Design Principle for 11ax. IEEE 802.11-15/0344r2, P802.11ax Task Group Press Release, 2015. [22] J. Kim et al., HE-SIG-B Structure. IEEE 802.11-15/0821r2, P802.11ax Task Group Press Release, 2015. [23] J. Zhang et al., HE-SIGA Transmission for Range Extension. IEEE 802.11-15/0826r2, P802.11ax Task Group Press Release, 2015. [24] R. Stacey, Specification Framework for TGax. IEEE 802.11-15/0132r15, P802.11ax Task Group Press Release, 2016. [25] C. Ghosh et al., Power Save with Random Access. IEEE 802.11-15/1107r0, P802.11ax Task Group Press Release, 2015. [26] W. Ahn et al., Random Access Based Buffer Status Report. IEEE 802.11-15/1369r1, P802.11ax Task Group Press Release, 2015. [27] C. Ghosh et al., UL OFDMA-based Random Access Procedure. IEEE 802.11- 15/1105r1, P802.11ax Task Group Press Release, 2015. [28] R. L. Rivest, “Network Control by Bayesian Broadcast,” Information Theory, IEEE Transactions on, vol. 33, no. 3, pp. 323–328, 1987. [29] D.-J. Deng, C.-C. Lin, T.-H. Huang, and H.-C. Yen, “On Number of Tags Estimation in RFID Systems,” IEEE Systems Journal, pp. 1–8, 2015. [30] D. P. Bertsekas, R. G. Gallager, and P. Humblet, Data Networks, vol. 2. Prentice-Hall International New Jersey, 1992. [31] M. Benveniste, “Wireless LANs and Neighborhood Capture,” Oct. 9 2007. US Patent 7,280,517. [32] K. Maraslis, P. Chatzimisios, and A. Boucouvalas, “IEEE 802.11 aa: Improvements on Video Transmission over WLANs,” in 2012 IEEE International Conference on Communications (ICC), pp. 115–119, IEEE, 2012. [33] M. Li and B. Yang, “A Survey on Topology Issues in Wireless Sensor Network.,” in ICWN, p. 503, 2006. [34] P. Galinier and A. Hertz, “A Survey of Local Search Methods for Graph Coloring,”Computers & Operations Research, vol. 33, no. 9, pp. 2547–2562, 2006. [35] M. R. Garey, D. S. Johnson, and L. Stockmeyer, “Some Simplified NP-complete Problems,” in Proceedings of the sixth annual ACM symposium on Theory of computing,pp. 47–63, ACM, 1974. [36] L. Kučera, “The Greedy Coloring is a Bad Probabilistic Algorithm,” Journal of Algorithms,vol. 12, no. 4, pp. 674–684, 1991. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50126 | - |
| dc.description.abstract | 為了能夠從基礎上提高無線區域網路(WLAN) 之802.11 的效能,IEEE 802.11ax 已經被提出來實現下一代無線區域網路。針對裝置密度高及壅塞的網路環境,802.11ax 要能夠提供有效率的通道共用機制來達到應用層所需要提供良好服務品質的服務質量(QoS) 和使用者經驗。因此媒體存取控制層的協定扮演很重要的角色。不同於過去的單一使用者傳輸,新的實體層(PHY layer) 能夠支援多個使用者同時傳輸,所以媒體存取控制層的協定就要重新的規劃。在這篇論文中,我們指出了一些802.11ax 媒體存取控制層協定的設計議題,接著根據現有的標準,我們針對隨機擷取、優先權的支援及重疊的基本服務單元(OBSS)等議題,提出研究動機、研究困難及設計的原則。接著最後,為了減緩LTE-LAA 對802.11ax 服務質量的影響,我們提出解決方案。 | zh_TW |
| dc.description.abstract | To seek for fundamental improvement of 802.11, a new effort knownas IEEE 802.11ax has been approved to deliver next generation wireless localarea networks (WLAN) technologies in dense environments. In WLAN,to enable efficient channel sharing while providing quality of service (QoS)and high user experience for multimedia applications, medium access control(MAC) protocol is the crucial component.To catch up with the new physicallayer, featuring simultaneous multi-user transmission, new MAC functionsneed proposing. In this thesis, we point out several design issues for MACprotocol. Based on the draft recently issued, we present and discuss some issues,e.g., the design principles of random access, priority support, and overlappingbasic service set (OBSS) management. Furthermore, to relieve theimpact LTE Licensed-Assisted Access (LTE-LAA) brought on QoS provisioningin IEEE 802.11ax, the coexistent problem is addressed in the end ofthis thesis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:30:21Z (GMT). No. of bitstreams: 1 ntu-105-R03942108-1.pdf: 1825736 bytes, checksum: bee37804aa914d304e7e703c59f5be7b (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 誌謝i
中文摘要ii Abstract iii Contents iv List of Figures vi 1 Introduction 1 1.1 The Past 20 Years of WiFi . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Major Challenges for the Next Generation of IEEE 802.11 . . . . . . . . 2 1.3 Motivation for Some Design Issues of MAC Proposal . . . . . . . . . . . 3 1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 IEEE 802.11ax MAC 6 2.1 MAC Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Trigger Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 MU RTS/CTS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 Random access for IEEE 802.11ax 13 3.1 Random Access Protocol and its Efficiency Analysis . . . . . . . . . . . 14 3.1.1 Transmission Probability of Bandwidth Request . . . . . . . . . . 14 3.1.2 System Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.3 Optimal Contention Window Size . . . . . . . . . . . . . . . . . 19 3.2 Ghosh’s Contention Resolution Algorithm . . . . . . . . . . . . . . . . . 21 3.3 OFDMA-based Hybrid Channel Access . . . . . . . . . . . . . . . . . . 23 3.3.1 Collision Resolution Algorithm . . . . . . . . . . . . . . . . . . 23 3.3.2 Estimating Number of Active Stations in AP’s Side . . . . . . . . 27 3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4.1 System efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4.2 Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4 Priority support for 802.11ax random access 36 4.1 Access Category of Bandwidth Request . . . . . . . . . . . . . . . . . . 38 4.2 Cabin Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2.1 Idealized Model for Non-predictable Request . . . . . . . . . . . 40 4.2.2 The Procedure of Cabin Method . . . . . . . . . . . . . . . . . . 45 4.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5 Future work 50 5.1 OBSS Management for IEEE 802.11ax . . . . . . . . . . . . . . . . . . 50 5.1.1 Resource Allocation of Intra-BSS . . . . . . . . . . . . . . . . . 52 5.1.2 Time Domain Negotiation of Inter-BSS . . . . . . . . . . . . . . 55 5.2 Coexistence with LAA . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.2.1 Downlink Channel Access procedure of LAA . . . . . . . . . . . 61 5.2.2 Enhanced Clear Channel Access . . . . . . . . . . . . . . . . . . 63 6 Conclusion 65 References 67 | |
| dc.language.iso | en | |
| dc.subject | 隨機擷取 | zh_TW |
| dc.subject | 媒體存取控制層 | zh_TW |
| dc.subject | 正交頻分多址 | zh_TW |
| dc.subject | 無線區域網路 | zh_TW |
| dc.subject | IEEE 802.11ax | zh_TW |
| dc.subject | LAA | zh_TW |
| dc.subject | OBSS | zh_TW |
| dc.subject | LAA | en |
| dc.subject | random access | en |
| dc.subject | MAC | en |
| dc.subject | OFDMA | en |
| dc.subject | WLAN | en |
| dc.subject | IEEE 802.11ax | en |
| dc.subject | OBSS | en |
| dc.title | IEEE 802.11ax 媒體存取控制層協定之設計 | zh_TW |
| dc.title | Design issues of IEEE 802.11ax protocol | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄧德雋(Der-Jiunn Deng),連紹宇(Shao-Yu Lien),曾志成(Chih-Cheng Tseng),林嘉慶(Jia-Chin Lㄙㄛ) | |
| dc.subject.keyword | IEEE 802.11ax,無線區域網路,正交頻分多址,媒體存取控制層,隨機擷取,LAA,OBSS, | zh_TW |
| dc.subject.keyword | IEEE 802.11ax,WLAN,OFDMA,MAC,random access,LAA,OBSS, | en |
| dc.relation.page | 70 | |
| dc.identifier.doi | 10.6342/NTU201601856 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-05 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 1.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
