Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50118
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor闕志鴻(Tzi-Hong Chiueh)
dc.contributor.authorSut-Ieng Tamen
dc.contributor.author譚雪瑩zh_TW
dc.date.accessioned2021-06-15T12:30:08Z-
dc.date.available2016-08-24
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-08-04
dc.identifier.citation[1] S. Adhikari, C. Y. R. Chue, and N. Dalal. Three-point galaxy-galaxy lensing as a probe of dark matter halo shapes. J. Cosmology Astropart. Phys., 1:009, Jan. 2015.
[2] J. Bailin, C. Power, P. Norberg, D. Zaritsky, and B. K. Gibson. The anisotropic distribution of satellite galaxies. MNRAS, 390:1133–1156, Nov. 2008.
[3] J. Bailin and M. Steinmetz. Internal and External Alignment of the Shapes and Angular Momenta of ΛCDM Halos. ApJ, 627:647–665, July 2005.
[4] J. D. Barrow, S. P. Bhavsar, and D. H. Sonoda. A bootstrap resampling analysis of galaxy clustering. MNRAS, 210:19P–23P, Sept. 1984.
[5] M. Bartelmann and P. Schneider. Weak gravitational lensing. Phys. Rep., 340:291–472, Jan. 2001.
[6] T. Broadhurst, M. Takada, K. Umetsu, X. Kong, N. Arimoto, M. Chiba, and T. Futamase. The Surprisingly Steep Mass Profile of A1689, from a Lensing Analysis of Subaru Images. ApJ, 619:L143–L146, Feb. 2005.
[7] J. Clampitt and B. Jain. Lensing measurements of the ellipticity of luminous red galaxies dark matter haloes. MNRAS, 457:4135–4146, Apr. 2016.
[8] D. Clowe, M. Bradaˇc, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones, and D. Zaritsky. A Direct Empirical Proof of the Existence of Dark Matter. ApJ, 648:L109–L113, Sept. 2006.
[9] G. Despali, C. Giocoli, M. Bonamigo, M. Limousin, and G. Tormen. A look to the inside of haloes: a characterisation of the halo shape as a function of overdensity in the Planck cosmology. ArXiv e-prints, May 2016.
[10] M. Donahue, T. Connor, K. Fogarty, Y. Li, G. M. Voit, M. Postman, A. Koekemoer, J. Moustakas, L. Bradley, and H. Ford. Ultraviolet Morphology and Unobscured UV Star Formation Rates of CLASH Brightest Cluster Galaxies. ApJ, 805:177, June 2015.
[11] M. Donahue, S. Ettori, E. Rasia, J. Sayers, A. Zitrin, M. Meneghetti, G. M. Voit, S. Golwala, N. Czakon, G. Yepes, A. Baldi, A. Koekemoer, and M. Postman. The Morphologies and Alignments of Gas, Mass, and the Central Galaxies of CLASH Clusters of Galaxies. ApJ, 819:36, Mar. 2016.
[12] A. K. D. Evans and S. Bridle. A Detection of Dark Matter Halo Ellipticity using Galaxy Cluster Lensing in the SDSS. ApJ, 695:1446–1456, Apr. 2009.
[13] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman. emcee: The MCMC Hammer. PASP, 125:306–312, Mar. 2013.
[14] T. Hamana, S. Miyazaki, K. Shimasaku, H. Furusawa, M. Doi, M. Hamabe, K. Imi, M. Kimura, Y. Komiyama, F. Nakata, N. Okada, S. Okamura, M. Ouchi, M. Sekiguchi, M. Yagi, and N. Yasuda. Cosmic Shear Statistics in the Suprime-Cam 2.1 Square Degree Field: Constraints on Ωm and σ8. ApJ, 597:98–110, Nov. 2003.
[15] P. F. Hopkins, N. A. Bahcall, and P. Bode. Cluster Alignments and Ellipticities in ΛCDM Cosmology. ApJ, 618:1–15, Jan. 2005.
[16] Y. P. Jing and Y. Suto. Triaxial Modeling of Halo Density Profiles with High- Resolution N-Body Simulations. ApJ, 574:538–553, Aug. 2002.
[17] N. Kaiser. Nonlinear cluster lens reconstruction. ApJ, 439:L1–L3, Jan. 1995.
[18] N. Kaiser and G. Squires. Mapping the dark matter with weak gravitational lensing. ApJ, 404:441–450, Feb. 1993.
[19] C. R. Keeton. A Catalog of Mass Models for Gravitational Lensing. ArXiv Astro- physics e-prints, Feb. 2001.
[20] M. Limousin, A. Morandi, M. Sereno, M. Meneghetti, S. Ettori, M. Bartelmann, and T. Verdugo. The Three-Dimensional Shapes of Galaxy Clusters. Space Sci. Rev., 177:155–194, Aug. 2013.
[21] R. Mandelbaum, C. M. Hirata, T. Broderick, U. Seljak, and J. Brinkmann. Ellipticity of dark matter haloes with galaxy-galaxy weak lensing. MNRAS, 370:1008–1024, Aug. 2006.
[22] E. Medezinski, T. Broadhurst, K. Umetsu, M. Oguri, Y. Rephaeli, and N. Ben ́ıtez. Detailed cluster mass and light profiles of A1703, A370 and RXJ1347-11 from deep Subaru imaging. MNRAS, 405:257–273, June 2010.
[23] M. Meneghetti, E. Rasia, J. Vega, J. Merten, M. Postman, G. Yepes, F. Sem- bolini, M. Donahue, S. Ettori, K. Umetsu, I. Balestra, M. Bartelmann, N. Ben ́ıtez, A. Biviano, R. Bouwens, L. Bradley, T. Broadhurst, D. Coe, N. Czakon, M. De Petris, H. Ford, C. Giocoli, S. Gottl ̈ober, C. Grillo, L. Infante, S. Jouvel, D. Kel- son, A. Koekemoer, O. Lahav, D. Lemze, E. Medezinski, P. Melchior, A. Mercurio, A. Molino, L. Moscardini, A. Monna, J. Moustakas, L. A. Moustakas, M. Nonino, J. Rhodes, P. Rosati, J. Sayers, S. Seitz, W. Zheng, and A. Zitrin. The MUSIC of CLASH: Predictions on the Concentration-Mass Relation. ApJ, 797:34, Dec. 2014.
[24] P. Natarajan and A. Refregier. Two-Dimensional Galaxy-Galaxy Lensing: A Direct Measure of the Flattening and Alignment of Light and Mass in Galaxies. ApJ, 538:L113–L116, Aug. 2000.
[25] J. F. Navarro, C. S. Frenk, and S. D. M. White. The Structure of Cold Dark Matter Halos. ApJ, 462:563, May 1996.
[26] J. F. Navarro, C. S. Frenk, and S. D. M. White. A Universal Density Profile from Hierarchical Clustering. ApJ, 490:493–508, Dec. 1997.
[27] M. Oguri, M. Takada, N. Okabe, and G. P. Smith. Direct measurement of dark matter halo ellipticity from two-dimensional lensing shear maps of 25 massive clusters. MNRAS, 405:2215–2230, July 2010.
[28] N. Okabe, M. Takada, K. Umetsu, T. Futamase, and G. P. Smith. LoCuSS: Subaru Weak Lensing Study of 30 Galaxy Clusters. PASJ, 62:811–870, June 2010.
[29] T.Okumura,Y.P.Jing,and C.Li.Intrinsic Ellipticity Correlation of SDSS Luminous Red Galaxies and Misalignment with Their Host Dark Matter Halos. ApJ, 694:214– 221, Mar. 2009.
[30] R. P. Olling and M. R. Merrifield. Luminous and dark matter in the Milky Way. MNRAS, 326:164–180, Sept. 2001.
[31] A.H.G.Peter, M.Rocha, J.S.Bullock, and M.Kaplinghat. Cosmological simulations with self-interacting dark matter - II. Halo shapes versus observations. MNRAS, 430:105–120, Mar. 2013.
[32] M. Postman, D. Coe, N. Ben ́ıtez, L. Bradley, T. Broadhurst, M. Donahue, H. Ford, O. Graur, G. Graves, S. Jouvel, A. Koekemoer, D. Lemze, E. Medezinski, A. Molino, L. Moustakas, S. Ogaz, A. Riess, S. Rodney, P. Rosati, K. Umetsu, W. Zheng, A. Zitrin, M. Bartelmann, R. Bouwens, N. Czakon, S. Golwala, O. Host, L. Infante, S. Jha, Y. Jimenez-Teja, D. Kelson, O. Lahav, R. Lazkoz, D. Maoz, C. McCully, P. Melchior, M. Meneghetti, J. Merten, J. Moustakas, M. Nonino, B. Patel, E. Reg ̈os, J. Sayers, S. Seitz, and A. Van der Wel. The Cluster Lensing and Supernova Survey with Hubble: An Overview. ApJS, 199:25, Apr. 2012.
[33] P. Rosati, I. Balestra, C. Grillo, A. Mercurio, M. Nonino, A. Biviano, M. Girardi, E. Vanzella, and Clash-VLT Team. CLASH-VLT: A VIMOS Large Programme to Map the Dark Matter Mass Distribution in Galaxy Clusters and Probe Distant Lensed Galaxies. The Messenger, 158:48–53, Dec. 2014.
[34] T. Schramm. Realistic elliptical potential wells for gravitational lens models. A&A, 231:19–24, May 1990.
[35] D. N. Spergel and P. J. Steinhardt. Observational Evidence for Self-Interacting Cold Dark Matter. Physical Review Letters, 84:3760–3763, Apr. 2000.
[36] A. Tenneti, R. Mandelbaum, T. Di Matteo, Y. Feng, and N. Khandai. Galaxy shapes and intrinsic alignments in the MassiveBlack-II simulation. MNRAS, 441:470–485, June 2014.
[37] K. Umetsu. Cluster Weak Gravitational Lensing. ArXiv e-prints, Feb. 2010.
[38] K. Umetsu, E. Medezinski, M. Nonino, J. Merten, M. Postman, M. Meneghetti, M. Donahue, N. Czakon, A. Molino, S. Seitz, D. Gruen, D. Lemze, I. Balestra, N. Ben ́ıtez, A. Biviano, T. Broadhurst, H. Ford, C. Grillo, A. Koekemoer, P. Melchior, A. Mercurio, J. Moustakas, P. Rosati, and A. Zitrin. CLASH: Weak-lensing Shear- and-magnification Analysis of 20 Galaxy Clusters. ApJ, 795:163, Nov. 2014.
[39] K. Umetsu, E. Medezinski, M. Nonino, J. Merten, A. Zitrin, A. Molino, C. Grillo, M. Carrasco, M. Donahue, A. Mahdavi, D. Coe, M. Postman, A. Koekemoer, N. Cza- kon, J. Sayers, T. Mroczkowski, S. Golwala, P. M. Koch, K.-Y. Lin, S. M. Mol- nar, P. Rosati, I. Balestra, A. Mercurio, M. Scodeggio, A. Biviano, T. Anguita, L. Infante, G. Seidel, I. Sendra, S. Jouvel, O. Host, D. Lemze, T. Broadhurst, M. Meneghetti, L. Moustakas, M. Bartelmann, N. Ben ́ıtez, R. Bouwens, L. Bradley, H. Ford, Y. Jim ́enez-Teja, D. Kelson, O. Lahav, P. Melchior, J. Moustakas, S. Ogaz, S. Seitz, and W. Zheng. CLASH: Mass Distribution in and around MACS J1206.2-0847 from a Full Cluster Lensing Analysis. ApJ, 755:56, Aug. 2012.
[40] K. Umetsu, M. Sereno, E. Medezinski, M. Nonino, T. Mroczkowski, J. M. Diego, S. Ettori, N. Okabe, T. Broadhurst, and D. Lemze. Three-dimensional Multi-probe Analysis of the Galaxy Cluster A1689. ApJ, 806:207, June 2015.
[41] K. Umetsu, A. Zitrin, D. Gruen, J. Merten, M. Donahue, and M. Postman. CLASH: Joint Analysis of Strong-lensing, Weak-lensing Shear, and Magnification Data for 20 Galaxy Clusters. ApJ, 821:116, Apr. 2016.
[42] E. van Uitert, H. Hoekstra, T. Schrabback, D. G. Gilbank, M. D. Gladders, and H. K. C. Yee. Constraints on the shapes of galaxy dark matter haloes from weak gravitational lensing. A&A, 545:A71, Sept. 2012.
[43] C. O. Wright and T. G. Brainerd. Gravitational Lensing by NFW Halos. ApJ,534:34–40, May 2000.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50118-
dc.description.abstractCosmological N-body simulations of Λ cold dark matter (ΛCDM) predicted the shape of DM halos to be triaxial, reflecting the collisionless nature of DM, and to be elongated in the preferential infall direction of materials. The predicted halo ellipticity is about 0.4(Jing & Suto (2002) [16]). Here we test this well-defined pre- dictions of the standard ΛCDM paradigm using wide-field weak shear lensing data of Umetsu et al.(2016) [41] obtained for a sample of 16 galaxy clusters targeted in the CLASH survey. We examine the mean halo ellipticity (projected halo aspheric- ity) in our cluster sample by measuring the quadrupole weak-lensing signal for each cluster, following the method of Clampitt & Jain(2015) [7]. First we assume the DM halos align with the BCGs. Our best-fit value for the ellipticity of an ensemble of CLASH clusters in this measurement is 0.26±0.07 corresponding to axis-ratio of 0.73±0.07. We also use the position angle of X-ray gas, assuming the dark matter halos align with the X-ray gas halo. In this measurement, we get the mean ellip- ticity is 0.29 ± 0.09 corresponding to axis-ratio of 0.71±0.10. The different between there two measurement is not significant but this give us a hint that the DM halo may be more likely align with X-ray gas. We will also discuss the estimates of the misalignment between central galaxies and halos from simulations and apply this correction to our result.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:30:08Z (GMT). No. of bitstreams: 1
ntu-105-R03222023-1.pdf: 6596313 bytes, checksum: 79e496ca26dc67242d91c1a7f7baa334 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsContents
Abstract i
List of Figures vii
List of Tables xiv
Chapter 1 Introduction 1
Chapter 2 Cosmological Background 5
2.1 FRW Model................................ 5
2.2 Friedmann’s Equation .......................... 6
2.3 Cosmological Distance .......................... 7
Chapter 3 Weak Gravitational Lensing 10
3.1 Introduction................................ 10
3.2 GravitationalLensingTheory ...................... 11
3.2.1 Lens Equation........................... 12
3.2.2 Lensing Jacobian Matrix..................... 15
3.2.3 Lensing Covergence and Shear.................. 17
3.2.4 Magnification Effect ....................... 18
3.3 Weak Gravitational Lensing ....................... 18
3.3.1 Weak Lensing Distortion Observables . . . . . . . . . . . . . . 19
3.3.2 Mass Reconstruction ....................... 20
3.4 Quadrupole Weak Lensing Signal .................... 21
3.4.1 Elliptical Clusters Lensing Effect ................ 21
3.4.2 Using Multipole Expansion.................... 22
3.5 Elliptical NFW Model .......................... 27
3.5.1 Spherical NFW Model ...................... 27
3.5.2 Elliptical NFW Model ...................... 29
3.5.3 Notation.............................. 31
Chapter 4 Methodology 32
4.1 Quadrupole Signal Measurement..................... 32
4.1.1 Measurement with Cartesian Components . . . . . . . . . . . 33
4.1.2 Measurement with Tangential Components . . . . . . . . . . . 34
4.2 Stacked Measurement........................... 34
4.3 Error Estimation ............................. 35
4.4 Simulation Test.............................. 37
4.5 MCMC Fitting .............................. 38
4.6 Systematic Tests ............................. 40
4.6.1 Measurement Based on eNFWmodel.............. 40
4.6.2 Comparison Between Two Models................ 41
Chapter 5 Applications to the Superlens Cluster A1689 45
5.1 ClusterA1689............................... 45
5.2 Results and Constraints on Halo Ellipticity. . . . . . . . . . . . . . . 46
5.3 Discussion................................. 51
Chapter 6 Applications to the CLASH Lensing Data 52
6.1 Data:CLASH Samples.......................... 53
6.2 Sample Selection ............................. 54
6.3 Measurement with CLASH sample ................... 58
6.3.1 Measured Quadrupole Signal................... 58
6.3.2 Constraints on halo ellipticity .................. 61
6.4 Measurement with X-ray Position Angle ................ 66
Chapter 7 Discussion and Conclusion 72
7.1 Comparison Between Different Measurements . . . . . . . . . . . . . 72
7.2 Comparison Between Measurement with BCG and X-ray PA . . . . . 73
7.3 MisalignmentCorrection......................... 74
7.4 Comparison with Earlier Studies and ΛCDM Predicition . . . . . . . 78
7.5 Conclusion................................. 80
Acknowledgments 82
Bibliography 83
dc.language.isoen
dc.subject弱重力透鏡zh_TW
dc.subject宇宙學zh_TW
dc.subject星系團zh_TW
dc.subject弱重力透鏡zh_TW
dc.subject宇宙學zh_TW
dc.subject星系團zh_TW
dc.subjectweak gravitataional lensingen
dc.subjectcosmologyen
dc.subjectweak gravitataional lensingen
dc.subjectgalaxy clusteren
dc.subjectcosmologyen
dc.subjectgalaxy clusteren
dc.title利用弱重力透鏡效應探測星系團暗物質暈的橢圓率zh_TW
dc.titleTesting LCDM Predictions for the Dark-Matter Halo Asphericity Using Cluster Weak Lensingen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.coadvisor梅津敬一(Keiichi Umetsu)
dc.contributor.oralexamcommittee林彥廷(Yen-Ting Lin)
dc.subject.keyword宇宙學,星系團,弱重力透鏡,zh_TW
dc.subject.keywordcosmology,galaxy cluster,weak gravitataional lensing,en
dc.relation.page88
dc.identifier.doi10.6342/NTU201601915
dc.rights.note有償授權
dc.date.accepted2016-08-05
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
6.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved