Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50101
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹魁元(Kuei-Yuan Chan)
dc.contributor.authorPo-Shen Linen
dc.contributor.author林柏伸zh_TW
dc.date.accessioned2021-06-15T12:29:44Z-
dc.date.available2016-08-24
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-08-05
dc.identifier.citation[1] 經濟部能源局. ” 能源統計年報”. http://web3.moeaboe.gov.tw, 存取時間:2016-05- 30.
[2] 經濟部能源局. ”97 年各類發電單位成本表”. http://web3.moeaboe.gov.tw, 存取時間: 2016-05-30.
[3] 經濟部能源局. ” 能源安全度”. http://web3.moeaboe.gov.tw, 存取時間:2016-05-30.
[4] 台灣電力公司. http://www.taipower.com.tw.
[5] Utilities Danish Ministry of Energy and Climate. http://www.efkm.dk, 存取時間: 2016-05-30.
[6] BundesministeriumfurWirtschaftundEnergie.http://www.bmwi-energiewende.de, 存取時間:2016-05-30.
[7] 中國國家能源局. http://www.nea.gov.cn, 存取時間:2016-05-30.
[8] 千架海陸風力機. http://www.twtpo.org.tw, 存取時間:2016-06-01.
[9] 經濟部能源局. ” 焦點新聞”. http://web3.moeaboe.gov.tw, 存取時間:2016-07-01.
[10] 財團法人國家政策研究基金會. http://www.npf.org.tw, 存取時間:2016-07-01.
[11] N. Jensen. A note of wind generator interaction. Technical Report RISO-M-2411, Riso National Laboratory, November 1983.
[12] F.G. Longatt, P. Wall, and V. Terzija. Wake effect in wind farm performance: Steady- state and dynamic behavior. Renewable Energy, 39(1):329 – 338, 2012.
[13] F.P. Agel, Y.T. Wu, H. Lu, and R.J. Conzemius. Large-eddy simulation of atmo- spheric boundary layer flow through wind turbines and wind farms. Journal of Wind Engineering and Industrial Aerodynamics, 99(4):154 – 168, 2011. The Fifth Inter- national Symposium on Computational Wind Engineering.
[14] G. Mosetti, C. Poloni, and B. Diviacco. Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm. Journal of Wind Engineering and Industrial Aerodynamics, 51:105–116, 1994.
[15] S. Grady, M. Hussainia, and M. Abdullah. Placement of wind turbines using genetic algorithms. Renewable Energy, 30:259–270, 2005.
[16] J.S. Gonzalez, A.G. Rodriguez, J.C. Mora, J.R. Santos, and M.B. Payan. Optimiza- tion of wind farm turbines layout using an evolutive algorithm. Renewable Energy, 35(8):1671 – 1681, 2010.
[17] P. Sorensen and T. Nielsen. Recalibrating wind turbine wake model parameters - validating the wake model performance for large offshore wind farms. In European wind energy Conference and Exhibition, Athens, Greece, 2006.
[18] R. Mikkelsen, J.N. Sorensen, S. Oye, and N. Troldborg. Analysis of power enhance- ment for a row of wind turbines using the actuator line technique. Journal of Physics: Conference Series, 75(1):012044, 2007.
[19] S. Chowdhury, J. Zhang, A. Messac, and L. Castillo. Optimizing the arrangement and the selection of turbines for wind farms subject to varying wind conditions. Renewable Energy, 52:273–282, 2013.
[20] J.N. Pinder. Mechanical noise from wind turbines. Wind Enginneering, 16(3):158 – 168, 1992.
[21] W. Zhu, N. Heilskov, W. Shen, and J. Norkar. Modeling of aerodynamically gen- erated noise from wind turbines. Journal of Solar Energy Engineering, 127(4):517– 528, 2005.
[22] T. Brooks, D. Pope, and M. Marcolini. Airfoil Self-Noise and Prediction. NASA Reference Publication 1218, July 1989.
[23] H. Moller and C. Pedersen. Low-frequency noise from large wind turbines. The Journal of the Acoustival Society of America, 129(6):3727–44, 2011.
[24] L. Vargas, J. Oliveira, and F. Lau. Development of a wind turbine noise prediction model. In 7th EUROMECH Solid Mechanics Conference, Lisbon, Portugal, 2009.
[25] G. Henderson. Development of noise reduction technology for a 500 kw prototype wind turbine. In First International Meeting on Wind Turbine Noise: Perspectives for Control., Berlin, Germany, 2005.
[26] C.Arce.ModelingofSerratedTrailingEdgestoReduceAerodynamicNoiseinWind Turbines Using Computational Fluid Dynamics. Reprocentralen ITC, 2010.
[27] A. Tadamasa and M. Zangeneh. Numerical prediction of wind turbine noise. Renewable Energy, 36(7):1902 – 1912, 2011.
[28] P. Moriarty and P. Migliore. Semi-empirical aeroacoustic noise prediction code for wind turbines. Technical Report NREL/TP-500-34478, National Renewable Energy Laboratory, 2003.
[29] B. Hahn, M. Durstewitz, and K. Rohrig. Reliability of wind turbines experiences of 15 years with 1,500w. Wind Energy, pages 329–32, 2007.
[30] Caithness Windfarm information Forum 2005. 2005 wind turbine accident data to december 31st 2005. http:/www.caithnesswindfarms.co.uk, 2005.
[31] C.C. Ciang, J.R. Lee, and H.J. Bang. Structural health monitoring for a wind turbine system: a review of damage detection methods. Measurement Science and Technol- ogy, 19(12):122001, 2008.
[32] C. Kong, J. Bang, and Y. Sugiyama. Structural investigation of composite wind tur- bine blade considering various load cases and fatigue life. Energy, 30(11-12 SPEC. ISS.):2101–2114, 2005.
[33] A.G. Fallis. Effect of mean stress on the damage of wind turbine blades. Journal of Chemical Information and Modeling, 53(9):1689–1699, 2013.
[34] M.E. Bechly and P.D. Clausen. Structural design of a composite wind turbine blade using finite element analysis. Computers & Structures, 63(3):639–646, 1997.
[35] S. Ahmad and D.I. Haq. Wind blade material optimization. Applied Mechanics and Materials, 66-68(4):1199–1206, 2011.
[36] M. Blanco. The economics of wind energy. Renewable and Sustainable Energy Reviews, 13(6-7):1372–1382, 2008.
[37] C.T. Kiranoudis, N.G. Voros, and Z.B. Maroulis. Short-cut design of wind farms. Energy Policy, 29(7):567 – 578, 2001.
[38] J. Zhang, S. Chowdhury, A. Messac, L. Castillo, and J. Lebron. Response surface based cost model for onshore wind farms using extended radial basis functions. In ASME 2010 International Design Engineering Technical Conferences and Comput- ers and Information in Engineering Conference, pages 729–744, Montreal, Quebec, Canada, 2010.
[39] J.K. Kaldellis and T.J. Gavras. The economic viability of commercial wind plants in greece a complete sensitivity analysis. Energy Policy, 28(8):509 – 517, 2000.
[40] L. Fingersh, M. Hand, and A. Laxson. Wind turbine design cost and scaling model. Technical Report NREL/TP-500-40566, Anational laboratory of the U.S. Department of EnergyOffice of Energy Efficiency & Renewable Energy, December 2006.
[41] W. Kwong, P. Zhang, D. Romero, J. Moran, M. Morgenroth, and C. Amon. Wind farm layout optimization considering energy generation and noise propagation. In Proceedings of the ASME 2012 International Design Engineering Technical Confer- ences Computers and Information in Engineering Conference, Chicago, IL, USA, 2012.
[42] Y.J. Kuo, I.A. Wong, D.A. Romero, J.C. Beck, and C.H. Amo. Wind farm layout op- timization in complex terrains using computational fluid dynamics. In ASME 2015 International Design Engineering Technical Conferences and Computers and Infor- mation in Engineering Conference, Boston, Massachusetts, USA, 2015.
[43] S. Chowdhury, J. Zhang, A. Messac, and L. Castillo. Unrestricted wind farm layout optimization: Investigating key factors the maximum power generation. Renewable Energy, 38(1):16–30, 2012.
[44] S. Chowdhury, J. Zhang, A. Messac, and L. Castillo. Modeling the influence of land-shape on the energy production potential of a wind farm site. Journal of Energy Resources Technology, 136(1):011203–011203–10, 2014.
[45] M. Lowson. Assessment and prediction of wind turbine noise. Technical Report ETSU W/13/00284/REP, Desember 1992.
[46] R. Amiet. Acoustic radiation from an airfoil in a turbine stream. Journal of Sound and Vibration, 41(4):407–420, 1975.
[47] P.FuglsangandC.Bak.Developmentoftherisowindturbineairfoils.WindEnergy, 7(2):145–162, 2004.
[48] Environmental protection administration, 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50101-
dc.description.abstract本研究欲提出整合性的風力發電場規劃流程,並且以台灣實際風力發電場案例做比較,探討不同風力發電機葉片選擇下對於整體風場之發電量、成本及噪音之影響。本研究風場規劃過程中,設計變數分別為風力發電機的位置以及每一臺風力發電機的葉片長度、各截面的翼型弦長及攻角,再藉由數學公式以及模擬軟體分別推導計算出風場的總發電量、總成本、噪音和葉片的結構受力。由於不同風場具有相異的環境狀況,而這些環境狀況左右著風場的規劃,因此將當地的風速和風向資料,以及當地的土地形狀範圍也一併列入規劃的過程。
在風力發電場規劃的過程中,葉片較大的風力發電機可以擷取更多的發電效益,但是同時也需要花費更多的成本、造成更大的噪音、葉片也需要承受更多的風壓,而小風機雖然成本低、噪音少,但是所能產生的電量卻不及大型風力發電機。本研究利用不同的案例探討,分析風場規劃中兩者的取捨與分配。另一方面,傳統的風力發電場大部分皆為同質風力發電場,亦即整個風力發電場內的風力發電機種類皆相同,本研究亦利用不同的案例嘗試探討異質風場的可能性,以及同質風場和異質風場的比較。藉由以上分析的結果,最後結合了台中梧棲及大甲風力發電場的規劃以比較目前風場性能的表現,相較於目前的風場,新的風場規劃結果於梧棲沒有明顯的增加,但是於大甲風場提高了約7.8%的總發電量。
zh_TW
dc.description.abstractThe present work proposes a design procedure for wind farm planning considering location and design of turbines. Our models include power gen- erations, cost, noise generation and the stress applied on blades. Varied en- vironment conditions and local geographic constraints are all integrated in a design optimization formulation.
While larger wind turbines generate more electricity, smaller wind tur- bines are cheaper, less noisy and have better stress advantage. Traditional wind farms are homogeneous with identical wind turbines, the formulation in this thesis enables heterogeneity in wind farm design.
Results show that using our multi-criteria design framework, local envi- ronment conditions can be used to tailor a more suitable wind farm. For the case of Dajia wind farm, a 7.8% wind energy can be obtained as compared to homogeneous one.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:29:44Z (GMT). No. of bitstreams: 1
ntu-105-R03522622-1.pdf: 8173690 bytes, checksum: f8521615872c9d442c87a740348cd1bc (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝 ii
中文摘要 iii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xi
符號列表 xii
第一章 緒論 1
1.1 前言 1
1.2 風能發展政策 2
1.3 研究動機與目的 2
1.4 本文架構 4
第二章 研究背景與文獻回顧 6
2.1 風場設計考量 6
2.2 風場設計最佳化 8
2.3 噪音音量評估 8
2.4 葉片結構分析 10
2.5 風場成本計算 11
2.6 小結 12
第三章 文獻之數學模型 14
3.1 尾流效應模型 14
3.2 發電效率模型 15
3.2.1 未考慮尾流之一維動量理論 15
3.2.2 考慮尾流之一維動量理論 19
3.3 噪音評估模型 21
3.3.1 紊流與葉片前緣形成的噪音 21
3.3.2 氣流於葉片後緣產生的噪音 23
3.4 成本計算模型 25
第四章 研究方法 28
4.1 研究方法模型概述 28
4.2 風場設計變數概述 29
4.3 當地環境資訊處理 32
4.3.1 處理風能資源數據 32
4.3.2 限制土地面積範圍 35
4.4 葉片受力狀況分析 36
4.4.1 MATLAB 和 ANSYS Workbench 間的連結 37
4.4.2 MATLAB 和 ANSYS APDL 間的連結 38
4.4.3 其他的連結方法 39
第五章 案例分析 – 以台灣風場為例 42
5.1 台中梧棲風力發電場 42
5.2 台中大甲風力發電場 46
5.3 結果與討論 50
第六章 結論與未來展望 51
6.1 研究假設 51
6.2 結論 52
6.3 未來研究方向 53
參考文獻 56
dc.language.isozh-TW
dc.title考量葉片幾何形狀之風場設計自動化zh_TW
dc.titleDesign Automation of Wind Farm Planning with Turbine Blade Geometryen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鍾添東(Tien-Tung Chung),吳文方(Wen-Fang Wu)
dc.subject.keyword永續能源發展,風力發電,風力發電場規劃,風力發電機葉片設計,風力發電機位置設計,最佳化設計,zh_TW
dc.subject.keywordenergy sustainability,wind energy,wind farm analytics,wind turbine blade design,wind farm layout optimization,en
dc.relation.page60
dc.identifier.doi10.6342/NTU201601931
dc.rights.note有償授權
dc.date.accepted2016-08-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
7.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved