Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50061
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李明學(Ming-Shyue Lee)
dc.contributor.authorHsin-Fang Tuen
dc.contributor.author涂馨方zh_TW
dc.date.accessioned2021-06-15T12:28:50Z-
dc.date.available2026-12-31
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-08
dc.identifier.citationReferences:
[1] Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA: Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 2008, 83:584-94.
[2] Paz-Ares L, Soulieres D, Melezinek I, Moecks J, Keil L, Mok T, Rosell R, Klughammer B: Clinical outcomes in non-small-cell lung cancer patients with EGFR mutations: pooled analysis. J Cell Mol Med 2010, 14:51-69.
[3] Wang BY, Huang JY, Cheng CY, Lin CH, Ko J, Liaw YP: Lung cancer and prognosis in taiwan: a population-based cancer registry. J Thorac Oncol 2013, 8:1128-35.
[4] Francis H, Solomon B: The current status of targeted therapy for non-small cell lung cancer. Intern Med J 2010, 40:611-8.
[5] Jemal A, Siegel R, Xu J, Ward E: Cancer statistics, 2010. CA Cancer J Clin 2010, 60:277-300.
[6] Stratton MR, Campbell PJ, Futreal PA: The cancer genome. Nature 2009, 458:719-24.
[7] Kohno T, Nakaoku T, Tsuta K, Tsuchihara K, Matsumoto S, Yoh K, Goto K: Beyond ALK-RET, ROS1 and other oncogene fusions in lung cancer. Transl Lung Cancer Res 2015, 4:156-64.
[8] Pao W, Girard N: New driver mutations in non-small-cell lung cancer. Lancet Oncol 2011, 12:175-80.
[9] Oxnard GR, Binder A, Janne PA: New targetable oncogenes in non-small-cell lung cancer. J Clin Oncol 2013, 31:1097-104.
[10] Tao RH, Maruyama IN: All EGF(ErbB) receptors have preformed homo- and heterodimeric structures in living cells. J Cell Sci 2008, 121:3207-17.
[11] Mendelsohn J, Baselga J: The EGF receptor family as targets for cancer therapy. Oncogene 2000, 19:6550-65.
[12] Barf T, Kaptein A: Irreversible protein kinase inhibitors: balancing the benefits and risks. J Med Chem 2012, 55:6243-62.
[13] Hirsh V: Afatinib (BIBW 2992) development in non-small-cell lung cancer. Future Oncol 2011, 7:817-25.
[14] Li D, Ambrogio L, Shimamura T, Kubo S, Takahashi M, Chirieac LR, Padera RF, Shapiro GI, Baum A, Himmelsbach F, Rettig WJ, Meyerson M, Solca F, Greulich H, Wong KK: BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 2008, 27:4702-11.
[15] Solca F, Dahl G, Zoephel A, Bader G, Sanderson M, Klein C, Kraemer O, Himmelsbach F, Haaksma E, Adolf GR: Target binding properties and cellular activity of afatinib (BIBW 2992), an irreversible ErbB family blocker. J Pharmacol Exp Ther
62
2012, 343:342-50.
[16] Sequist LV, Yang JC, Yamamoto N, O'Byrne K, Hirsh V, Mok T, Geater SL, Orlov S, Tsai CM, Boyer M, Su WC, Bennouna J, Kato T, Gorbunova V, Lee KH, Shah R, Massey D, Zazulina V, Shahidi M, Schuler M: Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol 2013, 31:3327-34.
[17] Harbeck N, Solca F, Gauler TC: Preclinical and clinical development of afatinib: a focus on breast cancer and squamous cell carcinoma of the head and neck. Future Oncol 2014, 10:21-40.
[18] Hurvitz SA, Shatsky R, Harbeck N: Afatinib in the treatment of breast cancer. Expert Opin Investig Drugs 2014, 23:1039-47.
[19] Zhang X, Munster PN: New protein kinase inhibitors in breast cancer: afatinib and neratinib. Expert Opin Pharmacother 2014, 15:1277-88.
[20] Gomez SL, Quach T, Horn-Ross PL, Pham JT, Cockburn M, Chang ET, Keegan TH, Glaser SL, Clarke CA: Hidden breast cancer disparities in Asian women: disaggregating incidence rates by ethnicity and migrant status. Am J Public Health 2010, 100 Suppl 1:S125-31.
[21] Chen ST, Lai HW, Tseng HS, Chen LS, Kuo SJ, Chen DR: Correlation of histologic grade with other clinicopathological parameters, intrinsic subtype, and patients' clinical outcome in Taiwanese women. Jpn J Clin Oncol 2011, 41:1327-35.
[22] Cheang MC, Voduc D, Bajdik C, Leung S, McKinney S, Chia SK, Perou CM, Nielsen TO: Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res 2008, 14:1368-76.
[23] Lin C, Chien SY, Chen LS, Kuo SJ, Chang TW, Chen DR: Triple negative breast carcinoma is a prognostic factor in Taiwanese women. BMC Cancer 2009, 9:192.
[24] Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL: Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987, 235:177-82.
[25] Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001, 344:783-92.
[26] Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE, Jr., Davidson NE, Tan-Chiu E, Martino S, Paik S, Kaufman PA, Swain SM, Pisansky TM, Fehrenbacher L, Kutteh LA, Vogel VG, Visscher DW, Yothers G, Jenkins RB, Brown AM, Dakhil SR, Mamounas EP, Lingle WL, Klein PM, Ingle JN, Wolmark N: Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 2005, 353:1673-84.
[27] Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, Mackey J,
63
Glaspy J, Chan A, Pawlicki M, Pinter T, Valero V, Liu MC, Sauter G, von Minckwitz G, Visco F, Bee V, Buyse M, Bendahmane B, Tabah-Fisch I, Lindsay MA, Riva A, Crown J, Breast Cancer International Research G: Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med 2011, 365:1273-83.
[28] Vu T, Claret FX: Trastuzumab: updated mechanisms of action and resistance in breast cancer. Front Oncol 2012, 2:62.
[29] Sangwan V, Park M: Receptor tyrosine kinases: role in cancer progression. Curr Oncol 2006, 13:191-3.
[30] Hojjat-Farsangi M: Small-molecule inhibitors of the receptor tyrosine kinases: promising tools for targeted cancer therapies. Int J Mol Sci 2014, 15:13768-801.
[31] Weinstein IB, Begemann M, Zhou P, Han EK, Sgambato A, Doki Y, Arber N, Ciaparrone M, Yamamoto H: Disorders in cell circuitry associated with multistage carcinogenesis: exploitable targets for cancer prevention and therapy. Clin Cancer Res 1997, 3:2696-702.
[32] Krause DS, Van Etten RA: Tyrosine kinases as targets for cancer therapy. N Engl J Med 2005, 353:172-87.
[33] Minkovsky N, Berezov A: BIBW-2992, a dual receptor tyrosine kinase inhibitor for the treatment of solid tumors. Curr Opin Investig Drugs 2008, 9:1336-46.
[34] Modjtahedi H, Cho BC, Michel MC, Solca F: A comprehensive review of the preclinical efficacy profile of the ErbB family blocker afatinib in cancer. Naunyn Schmiedebergs Arch Pharmacol 2014, 387:505-21.
[35] Huang M, Graves LM: De novo synthesis of pyrimidine nucleotides; emerging interfaces with signal transduction pathways. Cell Mol Life Sci 2003, 60:321-36.
[36] Fairbanks LD, Bofill M, Ruckemann K, Simmonds HA: Importance of ribonucleotide availability to proliferating T-lymphocytes from healthy humans. Disproportionate expansion of pyrimidine pools and contrasting effects of de novo synthesis inhibitors. J Biol Chem 1995, 270:29682-9.
[37] Evans DR, Guy HI: Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway. J Biol Chem 2004, 279:33035-8.
[38] Tlsty TD, Margolin BH, Lum K: Differences in the rates of gene amplification in nontumorigenic and tumorigenic cell lines as measured by Luria-Delbruck fluctuation analysis. Proc Natl Acad Sci U S A 1989, 86:9441-5.
[39] Reardon MA, Weber G: Increased carbamoyl-phosphate synthetase II concentration in rat hepatomas: immunological evidence. Cancer Res 1985, 45:4412-5.
[40] Aoki T, Weber G: Carbamoyl phosphate synthetase (glutamine-hydrolyzing): increased activity in cancer cells. Science 1981, 212:463-5.
[41] Jones ME: Pyrimidine nucleotide biosynthesis in animals: genes, enzymes, and
64
regulation of UMP biosynthesis. Annu Rev Biochem 1980, 49:253-79.
[42] Sigoillot FD, Sigoillot SM, Guy HI: Breakdown of the regulatory control of pyrimidine biosynthesis in human breast cancer cells. Int J Cancer 2004, 109:491-8.
[43] Khan S, Abdelrahim M, Samudio I, Safe S: Estrogen receptor/Sp1 complexes are required for induction of cad gene expression by 17beta-estradiol in breast cancer cells. Endocrinology 2003, 144:2325-35.
[44] Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, Campos D, Maoleekoonpiroj S, Smylie M, Martins R, van Kooten M, Dediu M, Findlay B, Tu D, Johnston D, Bezjak A, Clark G, Santabarbara P, Seymour L, National Cancer Institute of Canada Clinical Trials G: Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 2005, 353:123-32.
[45] Tsao MS, Sakurada A, Cutz JC, Zhu CQ, Kamel-Reid S, Squire J, Lorimer I, Zhang T, Liu N, Daneshmand M, Marrano P, da Cunha Santos G, Lagarde A, Richardson F, Seymour L, Whitehead M, Ding K, Pater J, Shepherd FA: Erlotinib in lung cancer - molecular and clinical predictors of outcome. N Engl J Med 2005, 353:133-44.
[46] Van Schaeybroeck S, Kyula J, Kelly DM, Karaiskou-McCaul A, Stokesberry SA, Van Cutsem E, Longley DB, Johnston PG: Chemotherapy-induced epidermal growth factor receptor activation determines response to combined gefitinib/chemotherapy treatment in non-small cell lung cancer cells. Mol Cancer Ther 2006, 5:1154-65.
[47] Chu YW, Yang PC, Yang SC, Shyu YC, Hendrix MJ, Wu R, Wu CW: Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol 1997, 17:353-60.
[48] Gene Ontology C: The Gene Ontology project in 2008. Nucleic Acids Res 2008, 36:D440-4.
[49] Arora A, Scholar EM: Role of tyrosine kinase inhibitors in cancer therapy. J Pharmacol Exp Ther 2005, 315:971-9.
[50] Mestres J, Gregori-Puigjane E, Valverde S, Sole RV: Data completeness--the Achilles heel of drug-target networks. Nat Biotechnol 2008, 26:983-4.
[51] Widakowich C, de Castro G, Jr., de Azambuja E, Dinh P, Awada A: Review: side effects of approved molecular targeted therapies in solid cancers. Oncologist 2007, 12:1443-55.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50061-
dc.description.abstract先前的研究指出表皮生長因子受體(Epidermal Growth Factor Receptor)基因的異常表現,在許多的癌症發展及惡化過程中扮演著重要的角色,其中包含肺癌、大腸直腸癌等。在臨床治療上,酪胺酸激酶抑制劑(Tyrosine Kinase Inhibitor, TKI),如Iressa (艾瑞莎)及Tarceva (得舒緩),已被廣泛地運用於治療表皮生長因子突變的癌症患者;然而,許多的臨床數據顯示,大部分患者在使用此類藥物後,最終都會產生抗藥性,使得病情急速惡化,終究無法逃脫癌症復發對生命產生的威脅。引發抗藥性的機制,其中以表皮生長因子產生突變最為常見,此突變會大幅降低藥物與作用標的間的親和性,使得藥物失去作用而無法有效抑制腫瘤的生長與存活。為了克服這樣的問題,發展出第二代酪胺酸激酶抑制劑,Afatinib (妥復克),此藥物適用於治療因上皮生長因子受體(EGFR)突變之非小細胞肺癌(NSCLC)。相較於前一代抗EGFR藥物,妥復克可以透過與酪胺酸激酶反應產生不可逆的化學共價鍵結,以達到抑制腫瘤生長與延長病人存活的效果。在此研究中,發現妥復克亦可抑制EGFR低表現的乳癌及肺癌細胞株(MCF7, MDA-MB-231, CL 1-0)生長與存活,暗示此藥物在細胞中可作用其他的標的蛋白質,以抑制癌細胞的生存。為了鑑尋這些重要的標的蛋白質,我們利用能專一辨識妥復克的抗體,結合蛋白質免疫共沉澱的技術,發現在MDA-MB-231乳癌細胞中, 有183個特異性蛋白質可與妥復克結合,其中分數最高的是一個可與妥復克結合蛋白(ABP)。利用免疫共沉澱法證實妥復克可與ABP於細胞內產生共價鍵結合。進一步地,從代謝體實驗結果顯示妥復克可以干擾ABP調控參與的嘧啶新生相關的代謝途徑,進而影響中間產物的變化。最後,我們利用Kaplan-Meier plotter與乳癌的組織切片分析,探討ABP與乳癌發展的關聯性。從結果中顯示,ABP的表現量與乳癌的惡化存在著正向的關係。未來,我們將更進一步探討妥復克是否可用於治療因ABP過度表達所引發的癌症或ABP是否可作為未來發展藥物的治療標的物。zh_TW
dc.description.abstractEpidermal growth factor receptor (EGFR) has shown to play an important role in cancer development and progression, including lung and colorectal cancer. In clinic, tyrosine kinase inhibitors (TKIs, e.g., Iressa and Tarceva) against EGFR are commonly used for the cancer treatment. However, many cancer patients eventually acquire resistance to the anti-EGFR treatment and the etiology for the drug resistance is frequently due to EGFR mutations that reduce the drug binding affinity. To solve these problems, a second-generation TKI, afatinib (Gilotrif), has been developed and used as a covalent, irreversible inhibitor to treat those patients who fail the first-line treatment. Unexpectedly, I found that afatinib also could inhibit the growth of breast cancer MCF7, MDA-MB-231 and non-small cell lung carcinoma CL 1-0 cells which have low EGFR expression. The results suggest that afatinib may inhibit other
important targets in addition to EGFR. To isolate an important target of afatinib, we used an anti-afatinib antibody to pull down afatinib-targeted proteins in MDA-MB-231 cells. The results from LC-MS/MS analysis showed that 183 proteins
were identified. Among them, a novel enzyme (Afatinib-binding protein, ABP) received our most attention as one of the potential afatinib targets due to its highest score. Moreover, the co-immunoprecipitation results showed that afatinib could
covalently interact with ABP in human cancer cells. In addition, the metabolomics analysis showed that afatinib could interrupt the catalytic reaction of ABP, leading to altering the levels of its intermediates. Finally, we employed Kaplan–Meier analysis and breast tissue microarray to link the expression of ABP with breast cancer progression. The results showed that ABP levels were correlated with poor prognosis
and up-regulated in advanced breast tumour tissue. The future works we will further address are to examine whether afatinib can reduce ABP-induced cancer cell proliferation and progression.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:28:50Z (GMT). No. of bitstreams: 1
ntu-105-R03442004-1.pdf: 2323501 bytes, checksum: 6e25a5b2b60c99ee4f8e2433cb48fd19 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsCONTENTS
致謝 I
摘要 II
Abstract III
List of Abbreviations V
Chapter 1. Introductions 1
1.1 Lung cacer 2
1.1 EGFR in Lung cancer 3
1.2 Breast cancer 4
1.2.1 HER2 (ErbB2) in breast cancer 5
1.3 Tyrosine Kinase Inhibitors (TKI) in cancer treatment 6
1.4 Afatinib 7
1.5 De novo pyrimidine biosynthesis 8
1.6 Research motivation 11
Chapter 2. Materials and Method 12
2.1 Materials 13
2.2 Methods 15
Chapter 3. Results 25
3.1 Effects of afatinib on the cell viability of different cancer cells 26
3.2 Specificity of anti-afatinib antibody against afatinib-targeting proteins 28
3.3 Identification of afatinib-targeted proteins 29
3.4 CAD as a novel target protein of afatinib in MDA-MB-231 cells 30
3.5 Effects of afatinib and CAD silencing on breast cancer cell growth 30
3.6 Effect of Afatinib in the de novo pyrimidine synthesis pathway 31
3.7 CAD mRNA expression and patient outcome 32
3.8 CAD protein levels were up-regulated in advanced breast tumor tissues 32
3.9 Summary 33
Chapter 4. Discussion 35
Chapter 5. Figures 40
Chapter 6. References 59
dc.language.isoen
dc.subject妥復克zh_TW
dc.subject酪胺酸激?抑制劑zh_TW
dc.subject妥復克zh_TW
dc.subject酪胺酸激?抑制劑zh_TW
dc.subjectTyrosine kinase inhibitoren
dc.subjectTyrosine kinase inhibitoren
dc.subjectafatiniben
dc.subjectafatiniben
dc.title尋找第二代EGFR抑制劑的新作用標的與其作用機制之探討zh_TW
dc.titleIdentifying novel drug targets of an irreversible EGFR inhibitoren
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee符文美(Wen-Mei Fu),顧記華(Jih-Hwa Guh),張震東(Geen-Dong Chang)
dc.subject.keyword酪胺酸激?抑制劑,妥復克,zh_TW
dc.subject.keywordTyrosine kinase inhibitor,afatinib,en
dc.relation.page63
dc.identifier.doi10.6342/NTU201602057
dc.rights.note有償授權
dc.date.accepted2016-08-08
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
2.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved