Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50051
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李佳翰
dc.contributor.authorMeng-Shen Sungen
dc.contributor.author宋孟昇zh_TW
dc.date.accessioned2021-06-15T12:28:37Z-
dc.date.available2016-08-24
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-08-08
dc.identifier.citation[1] J. Pitarke, V. Silkin, E. Chulkov, and P. Echenique, 'Theory of surface plasmons and surface-plasmon polaritons,' Reports on progress in physics, vol. 70, p. 1, 2006.
[2] D. Y. Fedyanin and A. V. Arsenin, 'Stored light in a plasmonic nanocavity based on extremely-small-energy-velocity modes,' Photonics and Nanostructures-Fundamentals and Applications, vol. 8, pp. 264-272, 2010.
[3] B. H. Cheng, K. J. Chang, Y.-C. Lan, and D. P. Tsai, 'Achieving planar plasmonic subwavelength resolution using alternately arranged insulator-metal and insulator-insulator-metal composite structures,' Scientific reports, vol. 5, 2015.
[4] I. M. Mandel, I. Bendoym, Y. U. Jung, A. B. Golovin, and D. T. Crouse, 'Dispersion engineering of surface plasmons,' Optics express, vol. 21, pp. 31883-31893, 2013.
[5] P. Debackere, S. Scheerlinck, P. Bienstman, and R. Baets, 'Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor,' Optics Express, vol. 14, pp. 7063-7072, 2006.
[6] T.-H. Weng, 'Multiple Narrow-Band Coupling of Surface Plasmons in Quasi-periodic Remote-grating System,' 國立臺灣大學碩士論文, 2012.
[7] 'Lumerical Solutions, Inc..' https://www.lumerical.com/
[8] J. Zenneck, 'Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie,' Annalen der Physik, vol. 328, pp. 846-866, 1907.
[9] S. K. Gray, 'Theory and modeling of plasmonic structures,' The Journal of Physical Chemistry C, vol. 117, pp. 1983-1994, 2012.
[10] W. L. Barnes, 'Surface plasmon–polariton length scales: a route to sub-wavelength optics,' Journal of optics A: pure and applied optics, vol. 8, p. S87, 2006.
[11] T.-W. Lee and S. Gray, 'Subwavelength light bending by metal slit structures,' Optics express, vol. 13, pp. 9652-9659, 2005.
[12] D. Y. Fedyanin, A. Arsenin, V. Leiman, and A. Gladun, 'Backward waves in planar insulator–metal–insulator waveguide structures,' Journal of Optics, vol. 12, p. 015002, 2009.
[13] E. Ozbay, 'Plasmonics: merging photonics and electronics at nanoscale dimensions,' science, vol. 311, pp. 189-193, 2006.
[14] Y.-H. Chen, J. Li, M.-L. Ren, B.-L. Wang, J.-X. Fu, S.-Y. Liu, et al., 'Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/dielectric interfaces,' Applied Physics Letters, vol. 98, p. 261912, 2011.
[15] W. L. Barnes, A. Dereux, and T. W. Ebbesen, 'Surface plasmon subwavelength optics,' Nature, vol. 424, pp. 824-830, 2003.
[16] R. Oulton, G. Bartal, D. Pile, and X. Zhang, 'Confinement and propagation characteristics of subwavelength plasmonic modes,' New Journal of Physics, vol. 10, p. 105018, 2008.
[17] H. A. Atwater, 'The promise of plasmonics,' Scientific American, vol. 296, pp. 56-62, 2007.
[18] P. Berini and I. De Leon, 'Surface plasmon-polariton amplifiers and lasers,' Nature Photonics, vol. 6, pp. 16-24, 2012.
[19] D. K. Gramotnev, S. J. Tan, and M. L. Kurth, 'Plasmon nanofocusing with negative refraction in a high-index dielectric wedge,' Plasmonics, vol. 9, pp. 175-184, 2014.
[20] B. Wang and G. P. Wang, 'Planar metal heterostructures for nanoplasmonic waveguides,' Applied physics letters, vol. 90, p. 013114, 2007.
[21] M. Faryad, A. S. Hall, G. D. Barber, T. E. Mallouk, and A. Lakhtakia, 'Excitation of multiple surface-plasmon-polariton waves guided by the periodically corrugated interface of a metal and a periodic multilayered isotropic dielectric material,' JOSA B, vol. 29, pp. 704-713, 2012.
[22] R. Ritchie, 'Plasma losses by fast electrons in thin films,' Physical Review, vol. 106, p. 874, 1957.
[23] D. Pines, 'Collective energy losses in solids,' Reviews of Modern Physics, vol. 28, p. 184, 1956.
[24] E. Kretschmann and H. Raether, 'Notizen: radiative decay of non radiative surface plasmons excited by light,' Zeitschrift für Naturforschung A, vol. 23, pp. 2135-2136, 1968.
[25] E. Kretschmann, 'Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen,' Zeitschrift für Physik, vol. 241, pp. 313-324, 1971.
[26] A. Otto, 'Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,' Zeitschrift für Physik, vol. 216, pp. 398-410, 1968.
[27] K. Berthold, W. Beinstingl, R. Berger, and E. Gornik, 'Surface plasmon enhanced quantum efficiency of metal‐insulator‐semiconductor junctions in the visible,' Applied physics letters, vol. 48, pp. 526-528, 1986.
[28] E. Economou, 'Surface plasmons in thin films,' Physical review, vol. 182, p. 539, 1969.
[29] K. J. Willis, J. B. Schneider, and S. C. Hagness, 'Amplified total internal reflection: theory, analysis, and demonstration of existence via FDTD,' Optics express, vol. 16, pp. 1903-1914, 2008.
[30] R. Adato and J. Guo, 'Modification of dispersion, localization, and attenuation of thin metal stripe symmetric surface plasmon-polariton modes by thin dielectric layers,' Journal of Applied Physics, vol. 105, p. 034306, 2009.
[31] F. I. Fedorov, 'To the theory of total reflectionFedorov F I 1955 To the theory of total reflection Doklady Akademii Nauk SSSR, 105,# 3, 465–8; received 9 December 1949. Presented by academician Lebedev AA on 27 May 1955. Translated by DI Pustakhod 2012,' Journal of Optics, vol. 15, p. 014002, 2013.
[32] S.-F. Wang, 'A small-displacement sensor using total internal reflection theory and surface plasmon resonance technology for heterodyne interferometry,' Sensors, vol. 9, pp. 2498-2510, 2009.
[33] W. M. Ash III, L. Krzewina, and M. K. Kim, 'Quantitative imaging of cellular adhesion by total internal reflection holographic microscopy,' Applied optics, vol. 48, pp. H144-H152, 2009.
[34] W. M. Ash and M. K. Kim, 'Digital holography of total internal reflection,' Optics express, vol. 16, pp. 9811-9820, 2008.
[35] W. M. Ash III and M. K. Kim, 'Cellular imagery with total internal reflection holographic microscopy,' in SPIE BiOS: Biomedical Optics, 2009, pp. 71820A-71820A-8.
[36] A. Noual, A. Akjouj, Y. Pennec, J. Gillet, and B. Djafari-Rouhani, 'Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,' New Journal of Physics, vol. 11, p. 103020, 2009.
[37] Y. Bian, Z. Zheng, X. Zhao, L. Liu, Y. Su, J. Xiao, et al., 'Dielectrics covered metal nanowires and nanotubes for low-loss guiding of subwavelength plasmonic modes,' Journal of Lightwave Technology, vol. 31, pp. 1973-1979, 2013.
[38] T.-W. Lee and S. K. Gray, 'Remote grating-assisted excitation of narrow-band surface plasmons,' Optics express, vol. 18, pp. 23857-23864, 2010.
[39] T.-W. Lee and S. K. Gray, 'Regenerated surface plasmon polaritons,' Applied Physics Letters, vol. 86, p. 141105, 2005.
[40] J. M. Montgomery and S. K. Gray, 'Enhancing surface plasmon polariton propagation lengths via coupling to asymmetric waveguide structures,' Physical Review B, vol. 77, p. 125407, 2008.
[41] I. Dolev, M. Volodarsky, G. Porat, and A. Arie, 'Multiple coupling of surface plasmons in quasiperiodic gratings,' Optics letters, vol. 36, pp. 1584-1586, 2011.
[42] J. Homola, S. S. Yee, and G. Gauglitz, 'Surface plasmon resonance sensors: review,' Sensors and Actuators B: Chemical, vol. 54, pp. 3-15, 1999.
[43] K. Lin, Y. Lu, J. Chen, R. Zheng, P. Wang, and H. Ming, 'Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity,' Optics express, vol. 16, pp. 18599-18604, 2008.
[44] S. Yushanov, L. Gritter, J. Crompton, and K. Koppenhoefer, 'Surface plasmon resonance,' in COMSOL Conference, 2012.
[45] F. Bahrami, J. S. Aitchison, and M. Mojahedi, 'Multimode spectroscopy using dielectric grating coupled to a surface plasmon resonance sensor,' Optics letters, vol. 39, pp. 3946-3949, 2014.
[46] H. Li, C. E. Baum, J. Sun, and B. M. Cullum, 'Multilayer enhanced SERS active materials: fabrication, characterization, and application to trace chemical detection,' in Defense and Security Symposium, 2006, pp. 621804-621804-11.
[47] C. K. Klutse, A. Mayer, J. Wittkamper, and B. M. Cullum, 'Applications of self-assembled monolayers in surface-enhanced Raman scattering,' Journal of Nanotechnology, vol. 2012, 2012.
[48] M. I. Stockman, 'Slow propagation, anomalous absorption, and total external reflection of surface plasmon polaritons in nanolayer systems,' Nano letters, vol. 6, pp. 2604-2608, 2006.
[49] M. I. Stockman, 'Criterion for negative refraction with low optical losses from a fundamental principle of causality,' Physical Review Letters, vol. 98, p. 177404, 2007.
[50] D. Y. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, 'Surface plasmon-polaritons with negative and zero group velocities propagating in thin metal films,' Quantum Electronics, vol. 39, pp. 745-750, 2009.
[51] E. Fitrakis, T. Kamalakis, and T. Sphicopoulos, 'Slow-light dark solitons in insulator–insulator–metal plasmonic waveguides,' JOSA B, vol. 27, pp. 1701-1706, 2010.
[52] T. Davis, 'Surface plasmon modes in multi-layer thin-films,' Optics Communications, vol. 282, pp. 135-140, 2009.
[53] A. Karalis, E. Lidorikis, M. Ibanescu, J. Joannopoulos, and M. Soljačić, 'Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,' Physical review letters, vol. 95, p. 063901, 2005.
[54] H. T. Baltar, E. M. Goldys, and K. Drozdowicz-Tomsia, Propagating surface plasmons and dispersion relations for nanoscale multilayer metallic-dielectric films: INTECH Open Access Publisher, 2012.
[55] S. A. Maier, Plasmonics: fundamentals and applications: Springer Science & Business Media, 2007.
[56] P. B. Johnson and R.-W. Christy, 'Optical constants of the noble metals,' Physical review B, vol. 6, p. 4370, 1972.
[57] E. D. Palik, Handbook of optical constants of solids vol. 3: Academic press, 1998.
[58] D. J. Bergman, 'The dielectric constant of a composite material—a problem in classical physics,' Physics Reports, vol. 43, pp. 377-407, 1978.
[59] Y. J. Yoon and B. Kim, 'A new formula for effective dielectric constant in multi-dielectric layer microstrip structure,' in Electrical Performance of Electronic Packaging, 2000, IEEE Conference on., 2000, pp. 163-167.
[60] M. A. Ordal, R. J. Bell, R. Alexander, L. Long, and M. Querry, 'Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,' Applied optics, vol. 24, pp. 4493-4499, 1985.
[61] S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, 'Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,' Optics letters, vol. 28, pp. 1870-1872, 2003.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50051-
dc.description.abstract近年來,光通訊傳遞波導管與生物感測器的開發、設計成為關注的議題。我們利用有限時域差分法模擬並設計多層膜之遠離式光柵結構,能量可以藉由全反射共振有效地被激發到兩層介電質間,以達到表面電漿多重窄頻寬共振之效應。使其能擁有多重波長感測器的功效,以及在介電質表面能有效的傳遞表面電漿子,希望這些好處未來能被應到相關領域。我們所提出的結構,藉此探討不同類週期排列與不同介電質膜厚對遠離式光柵的場強效果,且最佳化結構得到最大場強,並探討增強的原因與物理機制。藉由模擬數據分析,我們發現不同介電質膜厚以及不同類週期遠離式光柵的排列為影響共振耦合頻率的兩項重要因素。zh_TW
dc.description.abstractCurrently, the plasmonic waveguides are able to transmit or to control the optical or electronic signals; the plasmonic device can be used as bio-sensors, both of which have become popular issue. In this research, I simulate and design multilayer remote-grating system by using finite-difference time-domain method. The power flow can perfectly be excited to interface between two dielectric materials by total reflection. Then, it can reach multiple narrow band coupling of surface plasmons, which obtain the functionality of multiple wavelength sensor. SPPs have ability to transmit on the surface of dielectric material with low loss. Hence, I hope that these advantages can be applied to related field in the near future. First, I discuss the relationship between different quasi period arrangements and different thickness of dielectric layer toward the intensity effect of electric field of remote grating system. Afterward, we can get the maxima enhancement by optimizing the parameters as well as investigate the physical mechanism and the reason why I can enhance the electric field intensity. From our simulation analysis, there are two important reason of influencing on coupling frequency that I find different thickness of dielectric layer and different quasi period remote grating arrangements.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:28:37Z (GMT). No. of bitstreams: 1
ntu-105-R03525033-1.pdf: 35424135 bytes, checksum: 56af7048c5346cce9b9c4839055b2f58 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 i
中文摘要 ii
ABSTRACT iii
STATEMENT OF CONTRIBUTION iv
CONTENTS v
LIST OF FIGURES vii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Review 3
1.3 Framework of This Thesis 7
Chapter 2 Research Method 8
2.1 Surface Plasmon Polaritons at the Interface of Dielectric and Metal 8
2.2 Multilayer Systems 13
2.3 Simulation Conditions 16
Chapter 3 Simulation Results of Multilayer Quasi-Periodic Remote-grating System 21
3.1 Multilayer Quasi-Periodic of Remote-Grating System with Change of thickness of the top layer and Bar Sizes 21
3.2 Discuss Coupling Position and Different Dielectric Materials 26
3.3 Analysis and Discussion of the Cycle Phenomenon 27
3.4 Different Grating Height and Transmission with Different thickness of the top layer 28
3.5 Analysis and Discussion the Dispersion relation 30
Chapter 4 Conclusions and Future Works 55
4.1 Conclusions 55
4.2 Future Works 56
Appendix 57
REFERENCE 61
VITA 69
dc.language.isoen
dc.title多層膜遠離式光柵系統之表面電漿耦合zh_TW
dc.titleSurface Plasmons Coupling in Multilayer Remote-grating Systemen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林俊宏,陳詩雯,薛承輝,許文翰
dc.subject.keyword表面電漿子,遠離式光柵,多層膜,波導管,感測器,zh_TW
dc.subject.keywordplasmonics,remote grating,multilayer,total reflection,waveguide,sensor,en
dc.relation.page69
dc.identifier.doi10.6342/NTU201602032
dc.rights.note有償授權
dc.date.accepted2016-08-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
34.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved