請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50030
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張耀文 | |
dc.contributor.author | Yu-Hsuan Su | en |
dc.contributor.author | 蘇育萱 | zh_TW |
dc.date.accessioned | 2021-06-15T12:28:09Z | - |
dc.date.available | 2017-08-24 | |
dc.date.copyright | 2016-08-24 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-08 | |
dc.identifier.citation | [1] 2015 international technology roadmap for semiconductors. In http://www.itrs.net/Links/2015ITRS/Summary2015.htm.
[2] Ibm ilog cplex optimizer. In http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/. [3] 2013 cad contest at iccad. In http://cad contest.cs.nctu.edu.tw/CAD-contest-at-ICCAD2013/default.html, 2013. [4] Y. Badr, A. Torres, and P. Gupta. Mask alignment and synthesis of dsa-mp hybrid lithography for sub-7 nmcontacts/vias. In Proceedings of IEEE/ACM Design Automation Conference, pages 70--712, 2015. [5] S. Banerjee, K. B. Agarwal, and M. Orshanksy. Smato: simultaneous mask and target optimization for improving lithographic process window. In Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pages 252--263, 2010. [6] C. Bencher. Multiple patterning for immersion extension and euv insertion. In Proceedings of Advanced Material, pages 59-66, 2013. [7] K. K. Berggren, C. A. Ross, H.-W. Do, J.-B. Chang, , and H.-K. Cho. Cell-based design methods for directed self-assembly. In Proceedings of ACM International Symposium on Physical Design, page 37, 2016. [8] Y. Borodovsky. Complementary lithography at insertion and beyond. In Proceedings of Semicon West, 2012. [9] L. Capodieci. Evolving physical design paradigms in the transition from 20/14 to 10nm process technology nodes. In Proceedings of ACM/IEEE International Conference for Computer-Aided Design, page 573, 2014. [10] J.-B. Chang, H.-K. Choi, A. F. Hannon, A. Alexander-Katz, C. A. Ross, K. K. Berggren, and Y. Ma. Design rules for self-assembled block copolymer patterns using tiled templates. In Proceedings of Nature Communications, volume 5, 2014. [11] H.-Y. Chen, M.-F. Chiang, Y.-W. Chang, L. Chen, and B. Han. Full-chip routing considering double-via insertion. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 27(5):855--857, 2008. [12] H.-Y. Chen, S.-J. Chou, S.-L. Wang, and Y.-W. Chang. A novel wire-density-driven full-chip routing system for cmp variation control. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28(2):193--206, 2009. [13] T.-C. Chen, G.-W. Liao, and Y.-W. Chang. Predictive formulae for opc with applications to lithography-friendly routing. In Proceedings of Transactions on Computer-Aided Design of Integrated Circuits and Systems, volume 29, pages 40--50, 2010. [14] J.-D. Cho, S. Raje, and M. Sarrafzadeh. Fast approximation algorithms on maxcut, k-coloring, and k-color ordering for vlsi applications. IEEE Transactions on Theoretical Computer Science, 47(11):1253--1266, 1998. [15] C. Chu. Flute: fast lookup table based wirelength estimation technique. In Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pages 696{701, 2004. [16] N. Cobb, A. Zakhor, and E. Miloslavsky. Mathematical and cad framework for proximity correction. In Proceedings of International Society for Optics and Photonics, volume 2726, page 208, 1996. [17] X. Ding, C. Chu, and W.-K. Mak. Throughput optimization for sadp and e-beam based manufacturing of 1d layout. In Proceedings of ACM/IEEE Design Automation Conference, pages 59--66, 2014. [18] Y. Du, Z. Xiao, M. D. F. Wong, H.-Yi, and H.-S.-P. Wong. Dsa aware detailed routing for via layer optimization. In Proceedings of International Society for Optics and Photonics, volume 9049, page 90492J, 2014. [19] Y. Du, H. Zhang, M.-D.-F. Wong, and K.-Y. Chao. Hybrid lithography optimization with e-beam and immersion processes for 16nm 1d gridded design. In Proceedings of IEEE/ACM Asia and South Paci c Design Automation Conference, pages 707--712, 2012. [20] H. Duan, D. Winston, J. K. W. Yang, B. M. Cord, V. R. Manfrinato, and K. K. Berggren. Sub-10-nm half-pitch electron-beam lithography by using pmma as a negative resist. In Proceedings of J.-Vac.-Sci.-Technol.-B, volume C6C58, 2010. [21] S.-Y. Fang, Y.-X. Hong, and Y.-Z. Lu. Simultaneous guiding template optimization and redundant via insertion for directed self-assembly. In Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pages 410--417, 2015. [22] J.-R. Gao, B. Yu, and D. Z. Pan. Self-aligned double patterning layout decomposition with complementary e-beam lithography. In Proceedings of IEEE/ACM Asia and South Paci c Design Automation Conference, pages 143--148, 2014. [23] R. S. Ghaida, G. Torres, and P. Gupta. Single-mask double-patterning lithography for reduced cost and improved overlay control. In Proceedings of TSM, volume 24, pages 93{103, 2011. [24] T. Gorisse, L. Dupre, P. Gentile, M. Martin, M. Zelsmann, and D. Buttard. Highly organised and dense vertical silicon nanowire arrays grown in porous alumina template on silicon wafers. In Nanoscale Research Letters, volume 8, pages 287--296, 2013. [25] I. Graur, G. Han, S. M. Mans led, and L.-W. Liebmann. Closed-loop design for manufacturability process. In U.S. Patent, 7 624--369, 2009. [26] R. Gronheid, I. Pollentier, T. Younkin, M. Somervell, K. Nafus, J. Hooge, B. Rathsack, S. Scheer, P. Delgadillo, and P. Nealey. Addressing the challenges of directed self assembly implementation. In Proceedings of IMEC, 2011. [27] A. F. Hannon, Y. Ding, W. Bai, C. A. Ross, and A. Alexander-Katz. Optimizing topographical templates for directed self-assembly of block copolymers via inverse design simulations. In Proceedings of ACS Nano Letters, volume 14, pages 318--325, 2014. [28] A. Hashim. In Fabrication and characterization of copper nanowires, nanowires- implementations and applications, 2011. [29] F.-L. Heng, M. A.Lavin, J.-F. Lee, D. L. Ostapko, A. E. Rosenbluth, and N. Seong. Lithographic process window optimization under complex constraints on edge placement. In U.S. Patent, 7 269 --817, 2007. [30] T.-Y. Ho, Y.-W. Chang, S.-J. Chen, and D.-T. Lee. Crosstalk- and performance-driven multilevel full-chip routing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 24(6):869--878, 2005. [31] M. I. Irshad, F. Ahmad, N. M. Mohamed, and M. Z. Abdullah. Preparation and structural characterization of template assisted electrodeposited copper nanowires. In Proceedings of IJES, pages 2548--2555, 2014. [32] S.-J. Jeong, J. Y. Kim, B. H. Kim, H.-S. Moon, and S. O. Kim. Directed self-assembly of block copolymers for next generation nanolithography. In Proceedings of Materials Today, volume 16, 2013. [33] S.-J. Jeong, H. S. Moon, J. Shin, B.-H. Kim, D. O. Shin, J. Y. Kim, Y. H. Lee, and S. O. Kim. One-dimensional metal nanowire assembly via block copolymer soft graphoepitaxy. In Nano. Lett., volume 10, 2010. [34] R. Kastner, E. Bozorgzadeh, and M. Sarrafzadeh. Pattern routing: use and theory for increasing predictability and avoiding coupling. In Transactions on Computer-Aided Design of Integrated Circuits and Systems, pages 777--790, 2002. [35] J. Kuang, J. Ye, and E. F. Y. Young. Simultaneous template optimization and mask assignment for dsa with multiple patterning. In Proceedings of IEEE/ACM Asia and South Pacc Design Automation Conference, pages 312--318, 2016. [36] T.-H. Lee and T.-C. Wang. Simultaneous antenna avoidance and via optimization in layer assignment of multi-layer global routing. In Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pages 312--318, 2010. [37] Liebmann and Topalogu. Design and techonology co-optimization near single-digit nodes. In Proceedings of IEEE/ACM International Conference on Computer-Aided Design, page 585, 2014. [38] B. J. Lin. Scope and limit of lithography to the end of moore's law. In Proceedings of ACM International Symposium on Physical Design, page Keynote, 2012. [39] Z.-W. Lin and Y.-W. Chang. Cut redistribution with directed self-assembly templates for advanced 1-d gridded layouts. In Proceedings of IEEE/ACM Asia and South Paci c Design Automation Conference, pages 10--18, 2016. [40] Z.-W. Lin and Y.-W. Chang. Double-patterning aware dsa template guided cut redistribution for advanced 1-d gridded designs. In Proceedings of ACM International Symposium on Physical Design, pages 2--9, 2016. [41] Y.-I. Liu, S.-Y. Fang, , and Y.-W. Chang. Overlay-aware detailed routing for sadp using the cut process. In Proceedings of IEEE/ACM Design Automation Conference, pages 1--6, 2014. [42] C. Mack. Fundamental principles of optical lithography: the science of micro-fabrication. In Wiley Publishers, 2008. [43] M. Meyyappan and M. Subkara. In Inorganic nanowires, 2010. [44] M. Mukherjee, S. Mans eld, L. Liebmann, A. Lvov, E. Papadopoulou, M. Lavin, and Z. Zhao. The problem of optimal placement of sub-resolution assist feature(sraf). In Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pages 1417--1429, 2005. [45] M. Mukherjee, D. J. S. Z. Baum, and R. N. Singh. Method for adaptive segmentre nement in optical proximity correction. In U.S. Patent, 7 043 712, 2006. [46] J. Oberschmidt, S. Barai, T. Desouky, O. P. Jaiswal, A. Padmawar, and R. M. Pusuluri. Evaluation of process variations on opc model predictions. In Proceedings of International Society for Optics and Photonics, volume 8081, page 80810O, 2011. [47] J. Ou, B. Yu, J.-R. Gao, A. L. M. P, and D.-Z. Pan. Directed self-assembly based cut mask optimization for unidirectional design. In Proceedings of GVLSI, pages 33-37, 2015. [48] B. Rathsack, M. Somervell, J. Hoose, M. Muramatsu, K. Tanouchi, T. Kitano, E. Nishimura, K. Yatsuda, S. Nagahara, I. Hiroyuki, K. Akai, and T. Hayakawa. Pattern scaling with directed self assembly through lithography and etch pro- cess integraiton. In Proceedings of International Society for Optics and Photonics, page 83230B, 2012. [49] M. C. Smayling, V. Axelradb, K. Tsujitac, H. Yaegashid, R. Nakayamac, K. Oyamad, and Y. Gyodac. Sub-20nm logic lithography optimization with simple opc and multiple pitch division. In Proceedings of International Society for Optics and Photonics, page 76370A, 2010. [50] Y.-H. Su and Y.-W. Chang. Nanowire-aware routing considering high cut mask complexity. In Proceedings of IEEE/ACM Design Automation Conference, pages 138--144, 2015. [51] H. Tsai, J. W. Pitera, H. Miyazoe, S. Bangsaruntip, S. U. Engelmann, C.-C. Liu, J.-Y.Cheng, J. J. Bucchignano, D. P. Klaus, E. A. Joseph, D. P. Sanders, M. E. Colburn, and M. A. Guillorn. Two-dimensional pattern formation using graphoepitaxy of ps-b-pmma block copolymers for advanced nfet device and circuit fabrication. In Proceedings of ACSNano, pages 5227--5232, 2014. [52] C. Vieu, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois. Electron beam lithography: resolution limits and applications. In Proceedings of Applied Surface Science, volume 164, pages 111--117, 2000. [53] A. K. Wong. Addressing the challenges of directed self assembly implementation. In Resolution Enhancement Techniques in Optical Lithography, 2001. [54] Z. Xiao, Y. Du, H. Tian, and M. D. F. Wong. Dsa template mask determination and cut redistribution for advanced 1d gridded design. In Proceedings of International Society for Optics and Photonics, pages 888017-1, 2013. [55] Z. Xiao, C.-X. Lin, M. D. F. Wong, and H. Zhang. Contact layer decomposition to enable dsa with multi-patterning technique for standard cell based layout. In Proceedings of IEEE/ACM Asia and South Paci c Design Automation Conference, pages 95-102, 2016. [56] Y.-Ma, J. A. Torres, G. Fenger, Y. Granik, J. Ryckaert, G. Vanderberghe, J. Bekaert, and J. Word. Challenges and opportunities in applying graphoepitaxy dsa lithography to metal cut and contact/via applications. In Proceedings of International Society for Optics and Photonics, volume 9231049, page 92310T, 2014. [57] H. Yi, X.-Y. Bao, R. Tibertio, , and H.-S. P. Wong. Design strategy of small topographical guiding templates for sub-15 nm integrated circuits contact hole patterns using block copolymer directed self-assembly. In Proceedings of International Society for Optics and Photonics, page 868010, 2013. [58] H. Yi, X.-Y. Bao, J. Zhang, R. Tibertio, J. Conway, L.-E. Chang, S. Mitra, H.-S. P. Wong, T. Kitano, E. Nishimura, K. Yatsuda, S. Nagahara, K. A. I. Hiroyuki, and T. Hayakawa. Contact hole patterning for random logic circuits using block copolymer directed self-assembly. In Proceedings of International Society for Optics and Photonics, page 83230B, 2012. [59] P. Yu, S.-X. Shi, and D.-Z. Pan. Process variation aware opc with variational lithography modeling. In Proceedings of ACM/IEEE Design Automation Conference, pages 522--527, 2006. [60] T. Zavecs. Bossung curves: an old technique with a new twist for sub-90 nm nodes. In Proceedings of International Society for Optics and Photonics, volume 6152, page 61522S, 2005. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50030 | - |
dc.description.abstract | 隨著邁入下世代前瞻積體電路時代,持續縮小的元件尺寸和持續增大規模的元件數量使得晶片設計更為複雜。為因應下世代奈米積體電路設計,本博士論文將考慮先進製程可製造性的嚴峻挑戰。當代先進製程主流有一維佈局(1D layout process),一維引導自我組裝(1D DSA process),以及二維引導自我組裝(2D DSA process)。
然而,各技術皆面臨不同的實體設計困境,並急需解決之道。這些先進製程的挑戰包括一維佈局的嚴格製造規則,一維引導自我組裝的引導孔模板和切割模板,二維引導自我組裝的記號分配和衝突解決,需要新的佈局最佳化方法。而佈局最佳化最根本是要從繞線以及後繞線的方法來考慮這些可製造性挑戰。我們更觀察到這些佈局的共通點,是需要切割光罩來產生圖樣。但是切割光罩很小,又靠很近,數量又很多,使得製程變異很大。而現在業界又希望只用一張光罩把切割光罩做好,因為使用雙圖樣或三圖樣技術來製造切割光罩的成本會太高。所以現今目前有兩種切割光罩製造方法: 一是規則切割光罩製程,另一種是引導自我組裝切割光罩製程。然而這兩種製程都需要193奈米波長浸潤式顯影技術,因此需要針對切割光罩在繞線以及光學校正階段做切割光罩最佳化,在繞線階段,可以對切割光罩違規,切割光罩數量,以及線端延伸做最小化,光罩製造階段可以考慮製程變異,因此此博士論文針對可製造性繞線考慮先進製程以及切割光罩最佳化,更針對切割光罩做製程變異的最佳化,使光罩的微影結果能符合當代先進製程的需求。 | zh_TW |
dc.description.abstract | As process technologies continuously advance, the shrinking device dimensions and increasing device counts make chip designs much more complicated. To handle the advanced circuit designs, this dissertation considers crucial challenges in advanced technologies for circuit designs: (1) full-chip routing considering restricted design rules for one-dimensional (1D) layouts, (2) full-chip routing considering 1D directed self-assembly (DSA) via and cut templates, (3) full-chip routing considering double-post assignments and confict resolving for two-dimensional (2D) DSA process, and (4) cut mask optimization considering process variation.
1D nanowires are one of the most promising next-generation lithography technologies for 7 nm process node and beyond. The 1D nanowire process constructs a 1D nanoarray through template synthesis followed by line-end cutting with additional cut masks. To achieve better yield and manufacturability, the cut patterns shall satisfy speci ed restricted design rules, and thus it is desirable to develop a novel routing methodology to better address the challenges arising from cut patterns. In this dissertation, we propose the nanowire-aware routing system, called NWR, considering high cut-mask complexity based on a two-pass, bottom-up multilevel routing framework. Experimental results show that our nanowire-aware router can reduce cut numbers, cut spacing violations, and line-end extension length. The DSA technology for next-generation lithography has been shown its great potential for fabricating highly dense via patterns and cut masks in the sub-5 nm technology node and beyond. However, DSA via and cut optimizations were performed independently, which may induce infeasible via and cut templates and spacing violations. It is thus desirable to develop a new routing system to better address the co-optimization challenges for DSA via and cut templates. In this dissertation, we propose the simultaneous DSA via- and cut-template-aware routing system, named VCR, to practically consider both via and cut templates during routing and post-routing based on a two-pass, bottom-up multilevel routing framework. Experimental results show that VCR can reduce via- and cut-template spacing violations. 2D DSA is also an emerging lithography for the sub-5 nm process node and beyond that can substantially increase design exibility in critical routing layers and reduce the number of cuts for better yield. The state-of-the-art 2D DSA process manipulates the orientation of double posts inside guiding templates to guide block copolymers (BCPs) to form 2D patterns. However, a key challenge arises on how to correctly assign double post orientations and place cut patterns to make desired net connections for a given routing instance. In this dissertation, we propose a novel 2D DSA-compliant routing framework, named 2D-DCR, to systematically derive feasible orientation assignments for double posts to maximize routability. Specically, 2D-DCR features a complete set of new routing rules which transform the underlying physical BCP growth principles for large-scale routing, adopts a network-flow-based double-post assignment routing algorithm, and leverages a 2D DSA line-end creation property to maximally reduce line-end cuts. Experimental results show that our 2D-DCR can generate a 2D DSA-compliant routing solution with zero double post conficts, maximized routability, and minimized the number of cuts. The advanced nanometer technology imposes severe challenges on cut pattern manufacturing. A modern design may have a large number of cut patterns, and these cut patterns have small size and are usually closely positioned. The conventional OPC (Optical Proximity Correction) that minimizes the EPE (Edge Placement Error) of cut patterns at the nominal process condition alone often leads to poor process windows. To improve the cut mask printability across various process corners, process-window OPC optimizes EPE for multiple process corners, but often su ers long runtime, due to repeated lithographic simulations. This dissertation presents a general process-variation-aware mask optimization framework, namely PVOPC (Process-Variation OPC), to simultaneously minimize EPE and PV (Process-Variation) band with fast convergence. The PVOPC framework includes EPE-sensitivity-driven dynamic fragmentation, process-variation-aware EPE modeling, and correction with three new EPE-converging techniques and a systematic sub-resolution assisted feature insertion algorithm. Experimental results show that our approach achieves high-quality EPE and PV band results, which can enhance the cut pattern manufacturability. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T12:28:09Z (GMT). No. of bitstreams: 1 ntu-105-D98943034-1.pdf: 4364751 bytes, checksum: f61fbefbaaf72d90f5c3852dcf2c3dc4 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | Acknowledgements vii
Abstract (Chinese) ix Abstract xi List of Tables xix List of Figures xxi Chapter 1. Introduction 1 1.1 Introduction to Advanced Lithography Technologies . . . . . . . . . . . . 2 1.1.1 1D Layout Techniques for Nanowire Process . . . . . . . . . . . . . 2 1.1.2 One-dimensional Directed Self-assembly (1D DSA) Process . . . . 6 1.1.3 Two-dimensional Directed Self-assembly (2D DSA) Process . . . . 7 1.2 Design Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.1 Full-chip Routing Considering Restricted Design Rules for 1D Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.2 Full-chip Routing Considering 1D DSA Via and Cut Templates . . 12 1.2.3 Full-chip Routing Considering Double-Post Assignments and Con- ict Resolving for 2D DSA Process . . . . . . . . . . . . . . . . . . 15 1.2.4 Cut Mask Optimization Considering Process Variation . . . . . . . 16 1.3 Overview of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.3.1 Nanowire-aware Routing Considering Restricted Design Rules for Cut Masks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.3.2 Simultaneous Via-template and Cut-template-aware Routing for Directed Self-Assembly Technology . . . . . . . . . . . . . . . . . . 19 1.3.3 Directed Self-Assembly Compliant Routing for Two-dimension Pat- terns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.3.4 Fast Lithographic Cut Mask Optimization Considering Process Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.4 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . 20 Chapter 2. Nanowire-aware Routing Considering Restricted Design Rules for Cut Masks 21 2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.1.1 Restricted Cut Design Rules . . . . . . . . . . . . . . . . . . . . . 29 2.1.2 Multilevel Routing Framework . . . . . . . . . . . . . . . . . . . . 29 2.1.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2 Nanowire-aware Routing System . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.1 Line-end Location Analysis Prerouting . . . . . . . . . . . . . . . . 31 2.2.2 Line-end-aware Global Routing . . . . . . . . . . . . . . . . . . . . 34 2.2.3 Force-balancing-driven Layer and Track Assignment . . . . . . . . 37 2.2.4 Cut-aware Detailed Routing . . . . . . . . . . . . . . . . . . . . . . 45 2.2.5 Post-routing Cut Reallocation for Minimizing Line-end Extension . 47 2.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Chapter 3. Simultaneous Via-template and Cut-template-aware Routing for Directed Self-Assembly Technology 53 3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.1.1 Feasible DSA Templates . . . . . . . . . . . . . . . . . . . . . . . . 58 3.1.2 DSA Via Template Rules . . . . . . . . . . . . . . . . . . . . . . . 60 3.1.3 DSA Cut Template Rules . . . . . . . . . . . . . . . . . . . . . . . 61 3.1.4 Pin Access Connection for Dierent Layers . . . . . . . . . . . . . 62 3.1.5 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.2 VCR: Simultaneous Via- and Cut-template-aware Routing System for DSA 63 3.2.1 Via-density-aware Tree Construction . . . . . . . . . . . . . . . . . 64 3.2.2 Prerouting with Via Density Prediction . . . . . . . . . . . . . . . 67 3.2.3 Via-density-driven Global Routing . . . . . . . . . . . . . . . . . . 67 3.2.4 Simultaneous Via- and Cut-template-aware Detailed Routing . . . 68 3.2.5 Graph-based Post-routing with Via and Cut Reallocation . . . . . 74 3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Chapter 4. Directed Self-assembly Compliant Routing Considering Two-dimensional Patterns 81 4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.2 2D DSA Transparent Routing Rules . . . . . . . . . . . . . . . . . . . . . 88 4.2.1 2D DSA Transparent Routing Rules Development . . . . . . . . . 88 4.2.2 2D DSA-compliant Path Examples . . . . . . . . . . . . . . . . . . 91 4.3 2D DSA-compliant Routing Framework . . . . . . . . . . . . . . . . . . . 92 4.3.1 2D DSA-rule Pin Access Point Selection . . . . . . . . . . . . . . . 94 4.3.2 DSA-compliant Path Construction . . . . . . . . . . . . . . . . . . 97 4.3.3 Simultaneous Double Post Assignment and Detailed Routing Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.3.4 Routability-driven Rerouting . . . . . . . . . . . . . . . . . . . . . 106 4.3.5 Post-routing Line-end Cut Planning for Cut Minimization . . . . . 106 4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Chapter 5. Fast Lithographic Mask Optimization Considering Process Variation 111 5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.1.1 Edge Placement Error (EPE) . . . . . . . . . . . . . . . . . . . . 117 5.1.2 Process-variation Band (PV Band) . . . . . . . . . . . . . . . . . 117 5.1.3 Lithographic Model . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5.1.4 Problem Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.2 PVOPC: Process-variation-Aware Mask Optimization Framework . . . . 120 5.2.1 Representative Process Corner Determination . . . . . . . . . . . . 121 5.2.2 Dynamic Fragmentation Methodology . . . . . . . . . . . . . . . . 123 5.2.3 Process-variation-aware EPE Modeling . . . . . . . . . . . . . . . . 126 5.2.4 Correction Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.2.5 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Chapter 6. Concluding Remarks and Future Work 145 6.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Bibliography 153 Vita 161 Publication List 163 | |
dc.language.iso | en | |
dc.title | 可製造性導向繞線考慮先進製程和切割光罩最佳化 | zh_TW |
dc.title | Manufacturing-driven Routing and Cut Mask Optimization for Advanced Technology | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 王廷基,江介宏,江蕙如,黃俊郎,方劭云 | |
dc.subject.keyword | 實體設計,製造可行性設計,先進製程,下世代微影技術,一維佈局,奈米線,引導自我組裝,切割光罩,光罩最佳化,光學校正,製程變異, | zh_TW |
dc.subject.keyword | physical design,design for manufacturability,emerging lithography,next generation lithography,1D layout,nanowires,directed self-assembly,cut mask,mask optimization,optical proximity correction,process variation,process window, | en |
dc.relation.page | 164 | |
dc.identifier.doi | 10.6342/NTU201602045 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-09 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 4.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。