請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50020完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐宏民 | |
| dc.contributor.author | Hui-Lan Hsieh | en |
| dc.contributor.author | 謝蕙蘭 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:27:55Z | - |
| dc.date.available | 2017-08-24 | |
| dc.date.copyright | 2016-08-24 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-08 | |
| dc.identifier.citation | [1] T. Ahonen, A. Hadid, and M. Pietikainen. Face description with local binary patterns: Application to face recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 28(12):2037–2041, 2006.
[2] T. Berg and P. Belhumeur. Poof: Part-based one-vs.-one features for fine-grainedcategorization, face verification, and attribute estimation. In Proceedings of the IEEEConference on Computer Vision and Pattern Recognition, pages 955–962, 2013. [3] L. Best-Rowden, H. Han, C. Otto, B. F. Klare, and A. K. Jain. Unconstrained facerecognition: Identifying a person of interest from a media collection. InformationForensics and Security, IEEE Transactions on, 9(12):2144–2157, 2014. [4] L. Bourdev, S. Maji, and J. Malik. Describing people: A poselet-based approachto attribute classification. In Computer Vision (ICCV), 2011 IEEE InternationalConference on, pages 1543–1550. IEEE, 2011. [5] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACMTransactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. [6] B.-C. Chen, Y.-Y. Chen, Y.-H. Kuo, and W. H. Hsu. Scalable face image retrievalusing attribute-enhanced sparse codewords. Multimedia, IEEE Transactions on,15(5):1163–1173, 2013. [7] M. Douze, A. Ramisa, and C. Schmid. Combining attributes and fisher vectors forefficient image retrieval. In Computer Vision and Pattern Recognition (CVPR), 2011IEEE Conference on, pages 745–752. IEEE, 2011. [8] E. Eidinger, R. Enbar, and T. Hassner. Age and gender estimation of unfiltered faces.Information Forensics and Security, IEEE Transactions on, 9(12):2170–2179, 2014. [9] X. Geng, Z.-H. Zhou, and K. Smith-Miles. Automatic age estimation based on facialaging patterns. Pattern Analysis and Machine Intelligence, IEEE Transactions on,29(12):2234–2240, 2007. [10] G. Guo, Y. Fu, C. R. Dyer, and T. S. Huang. Image-based human age estimationby manifold learning and locally adjusted robust regression. Image Processing, IEEETransactions on, 17(7):1178–1188, 2008. [11] H. Han, C. Otto, and A. K. Jain. Age estimation from face images: Human vs.machine performance. In Biometrics (ICB), 2013 International Conference on, pages1–8. IEEE, 2013. [12] T. Hassner, S. Harel, E. Paz, and R. Enbar. Effective face frontalization in unconstrainedimages. In Proceedings of the IEEE Conference on Computer Vision andPattern Recognition, pages 4295–4304, 2015. [13] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the wild:A database for studying face recognition in unconstrained environments. TechnicalReport 07-49, University of Massachusetts, Amherst, October 2007. [14] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. arXivpreprint arXiv:1408.5093, 2014. [15] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deepconvolutional neural networks. In Advances in neural information processing systems,pages 1097–1105, 2012. [16] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar. Attribute and simileclassifiers for face verification. In Computer Vision, 2009 IEEE 12th InternationalConference on, pages 365–372. IEEE, 2009. [17] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar. Describable visual attributesfor face verification and image search. Pattern Analysis and Machine Intelligence,IEEE Transactions on, 33(10):1962–1977, 2011. [18] Y. H. Kwon and N. da Vitoria Lobo. Age classification from facial images. ComputerVision and Image Understanding, 74(1):1–21, 1999. [19] G. B. H. E. Learned-Miller. Labeled faces in the wild: Updates and new reportingprocedures. Technical Report UM-CS-2014-003, University of Massachusetts,Amherst, May 2014. [20] G. Levi and T. Hassner. Age and gender classification using convolutional neuralnetworks. In Proceedings of the IEEE Conference on Computer Vision and PatternRecognition Workshops, pages 34–42, 2015. [21] P. J. Phillips, H. Wechsler, J. Huang, and P. J. Rauss. The feret database andevaluation procedure for face-recognition algorithms. Image and vision computing,16(5):295–306, 1998. [22] W. J. Scheirer, N. Kumar, K. Ricanek, P. N. Belhumeur, and T. E. Boult. Fusingwith context: a bayesian approach to combining descriptive attributes. In Biometrics(IJCB), 2011 International Joint Conference on, pages 1–8. IEEE, 2011. [23] C. Shan. Learning local binary patterns for gender classification on real-world faceimages. Pattern Recognition Letters, 33(4):431–437, 2012. [24] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scaleimage recognition. arXiv preprint arXiv:1409.1556, 2014.BIBLIOGRAPHY 23 [25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,and A. Rabinovich. Going deeper with convolutions. In Proceedings of theIEEE Conference on Computer Vision and Pattern Recognition, pages 1–9, 2015. [26] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the gap tohuman-level performance in face verification. In Proceedings of the IEEE Conferenceon Computer Vision and Pattern Recognition, pages 1701–1708, 2014. [27] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Web-scale training for face identification.In Proceedings of the IEEE Conference on Computer Vision and PatternRecognition, pages 2746–2754, 2015. [28] D. Yi, Z. Lei, S. Liao, and S. Z. Li. Learning face representation from scratch. arXivpreprint arXiv:1411.7923, 2014. [29] Z. Zhang, P. Luo, C. C. Loy, and X. Tang. Facial landmark detection by deep multitasklearning. In Computer Vision–ECCV 2014, pages 94–108. Springer, 2014. [30] X. W. Ziwei Liu, Ping Luo and X. Tang. Deep learning face attributes in the wild.In Proceedings of International Conference on Computer Vision (ICCV), December2015. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50020 | - |
| dc.description.abstract | 近年來,卷積神經網路在人臉表示法的學習中有非常傑出的表現與成果,但大部分的研究專注於利用大量的資料學習人臉表示法而非同時利用人臉最具有語意的特徵如性別、年齡與膚色等來更佳化人臉表示法。在這篇論文中,我們提出使用多工學習的卷積神經網路來加強人臉辨識與特徵偵測。更精確的說,我們專注於同時學習人臉表示法與特徵偵測,並同時解決這兩種問題。在實驗中,使用大量的人臉圖片伴隨身分、性別、年齡等標籤,用設計出的多工卷積神經網路架構學習模型,接著使用LFW以即Adience兩個數據集來評估所學的結果,並且和傳統的局部二值模式(LBP)以即單一學習模型作比較,發現多工學習對於人臉辨識和特徵偵測有所幫助。 | zh_TW |
| dc.description.abstract | Convolution neural network (CNN) has been shown as the state-of-the-art approach for learning face representations in recent years. However, previous works only utilized identity information instead of leveraging human attributes (e.g., gender and age) which contain high-level semantic meanings to learn robuster features. In this work, we aim to learn discriminative features to improve face recognition through multi-task learning with human attributes. Specifically, we focus on simultaneously optimizing face recognition and human attributes estimation. In our experiments, we learn face representation by training the largest publicly face dataset CASIA-WebFace with gender and age label, and then evaluate learned features on widely-used LFW benchmark for face verification and identification. We also compare the effectiveness of different attributes for identification. The results show that the proposed model outperforms hand-crafted feature such as high-dimensional LBP, and human attributes really provide useful semantic cues. We also do experiments on gender and age estimation on Adience benchmark to justify that human attribute prediction can also benefit from rich identity information. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:27:55Z (GMT). No. of bitstreams: 1 ntu-105-R03944004-1.pdf: 2318952 bytes, checksum: e452d0fe66ffb88fdb47d3fbd16e7a0b (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 致謝 i
Abstract ii 摘要 iii List of Figures vi List of Tables vii Chapter 1 Introduction 1 Chapter 2 Related Work 4 Chapter 3 Proposed Method 7 3.0.1 CNN Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.0.2 Multi-Task Learning . . . . . . . . . . . . . . . . . . . . . . . 9 3.0.3 Training and Testing . . . . . . . . . . . . . . . . . . . . . . . 9 Chapter 4 Experiments 13 4.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.1.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.1.2 Results on Face Recognition . . . . . . . . . . . . . . . . . . . 16 4.1.3 Results on Gender and Age Estimation . . . . . . . . . . . . . 17 Chapter 5 Conclusion and Future Work 19 Bibliography 20 | |
| dc.language.iso | en | |
| dc.subject | 多工學習 | zh_TW |
| dc.subject | 卷積神經網路 | zh_TW |
| dc.subject | 人臉辨識 | zh_TW |
| dc.subject | 人臉特徵偵測 | zh_TW |
| dc.subject | CNN | en |
| dc.subject | Multi-task Learning | en |
| dc.subject | Facial attribute estimation | en |
| dc.subject | Face recognition | en |
| dc.title | 利用多工學習加強人臉辨識與特徵偵測 | zh_TW |
| dc.title | Multi-task Learning for Face Recognition and Attribute Estimation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳文進,陳祝嵩,李宏毅,葉梅珍 | |
| dc.subject.keyword | 卷積神經網路,人臉辨識,人臉特徵偵測,多工學習, | zh_TW |
| dc.subject.keyword | CNN,Face recognition,Facial attribute estimation,Multi-task Learning, | en |
| dc.relation.page | 23 | |
| dc.identifier.doi | 10.6342/NTU201602125 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-09 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊網路與多媒體研究所 | zh_TW |
| 顯示於系所單位: | 資訊網路與多媒體研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 2.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
