Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49995
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂東武
dc.contributor.authorTing-Han Chenen
dc.contributor.author陳亭翰zh_TW
dc.date.accessioned2021-06-15T12:27:26Z-
dc.date.available2019-08-24
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-08-09
dc.identifier.citation[1] Lu T, O'Connor J. Lines of action and moment arms of the major force-bearing structures crossing the human knee joint: Comparison between theory and experiment. Journal of anatomy. 1996;189:575.
[2] Majewski M, Susanne H, Klaus S. Epidemiology of athletic knee injuries: A 10-year study. The knee. 2006;13:184-8.
[3] Lu T-W, Tsai T-Y, Kuo M-Y, Hsu H-C, Chen H-L. In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy. Medical engineering & physics. 2008;30:1004-12.
[4] Lin Y-T. In Vivo Stress Distribution of the Knee Ligaments During Functional Activities. Thesis: National Taiwan University; 2008.
[5] Guo J-A. In Vivo Three-Dimensional Finite Element Simulation and Analyses of the Knee Ligaments During Functional Activites. Master Thesis: National Taiwan University; 2010.
[6] Keng C-W. Three-Dimensional Finite Element Analysis of the Knee-Joint Ligament During Sit-to-Stand. Master Thesis: National Taiwan University; 2013.
[7] Lin C-L. Finite Element Analysis of the Knee Ligaments During Sit-to-Stand in Normal and Total Knee Replacement. Master Thesis: National Taiwan University; 2013.
[8] Lin T-C. Three-Dimensional Finite Element Analysis of the Knee Ligaments During Cycling in Normal Young Subjects. Master Thesis: National Taiwan University; 2014.
[9] Takahashi M, Doi M, Abe M, Suzuki D, Nagano A. Anatomical study of the femoral and tibial insertions of the anteromedial and posterolateral bundles of human anterior cruciate ligament. The American journal of sports medicine. 2006;34:787-92.
[10] Papannagari R, DeFrate LE, Nha KW, Moses JM, Moussa M, Gill TJ, et al. Function of posterior cruciate ligament bundles during in vivo knee flexion. The American journal of sports medicine. 2007;35:1507-12.
[11] Nordin M, Frankel VH. Basic biomechanics of the musculoskeletal system: Lippincott Williams & Wilkins; 2001.
[12] Wilson D, Feikes J, O’connor J. Ligaments and articular contact guide passive knee flexion. Journal of biomechanics. 1998;31:1127-36.
[13] Wilson D, Feikes J, Zavatsky A, O'connor J. The components of passive knee movement are coupled to flexion angle. Journal of Biomechanics. 2000;33:465-73.
[14] Aigner T, Stove J. Collagens - major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair. Advanced Drug Delivery Reviews. 2003;55:1569-93.
[15] Mow VC, Kuei SC, Lai WM, Armstrong CG. Biphasic creep and stress-relaxation of articular-cartilage in compression - theory and experiments. Journal of Biomechanical Engineering-Transactions of the Asme. 1980;102:73-84.
[16] Beynnon BD, Fleming BC, Johnson RJ, Nichols CE, Renström PA, Pope MH. Anterior cruciate ligament strain behavior during rehabilitation exercises in vivo. The American Journal of Sports Medicine. 1995;23:24-34.
[17] Fujie H, Livesay GA, Fujita M, Woo SL. Forces and moments in six-dof at the human knee joint: Mathematical description for control. Journal of biomechanics. 1996;29:1577-85.
[18] Matsumoto H, Seedhom BB, Suda Y, Otani T, Fujikawa K. Axis location of tibial rotation and its change with flexion angle. Clinical orthopaedics and related research. 2000;371:178-82.
[19] Markolf KL, Gorek JF, Kabo JM, Shapiro MS. Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique. The Journal of Bone & Joint Surgery. 1990;72:557-67.
[20] Fujie H, Mabuchi K, Woo SL-Y, Arai S, Tsukamoto Y, Livesay GA. The use of robotics technology to study human joint kinematics: A new methodology. Journal of biomechanical engineering. 1993;115:211-7.
[21] Markolf K, Wascher D, Finerman G. Direct in vitro measurement of forces in the cruciate ligaments. Part ii: The effect of section of the posterolateral structures. The Journal of Bone & Joint Surgery. 1993;75:387-94.
[22] Rudy T, Livesay G, Woo S-Y, Fu F. A combined robotic/universal force sensor approach to determine in situ forces of knee ligaments. Journal of biomechanics. 1996;29:1357-60.
[23] Kanamori A, Woo SL, Ma CB, Zeminski J, Rudy TW, Li G, et al. The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: A human cadaveric study using robotic technology. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2000;16:633-9.
[24] Kadaba MP, Ramakrishnan H, Wootten M. Measurement of lower extremity kinematics during level walking. Journal of Orthopaedic Research. 1990;8:383-92.
[25] Lafortune M, Cavanagh P, Sommer Iii H, Kalenak A. Three-dimensional kinematics of the human knee during walking. Journal of Biomechanics. 1992;25:347-57.
[26] Lu T-W, O’connor J. Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. Journal of biomechanics. 1999;32:129-34.
[27] Strasser H. Lehrbuch der muskel-und gelenkmechanik. Bd. 1: Allgem. Teil., bd. 4: Spez. Teil, die obere extremitat. Springer, Berlin; 1917.
[28] O'connor J, Shercliff T, Biden E, Goodfellow J. The geometry of the knee in the sagittal plane. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 1989;203:223-33.
[29] Zavatsky A, O'Connor J. A model of human knee ligaments in the sagittal plane: Part 1: Response to passive flexion. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 1992;206:125-34.
[30] Zavatsky A, O'Connor J. A model of human knee ligaments in the sagittal plane: Part 2: Fibre recruitment under load. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 1992;206:135-45.
[31] Wismans J, Veldpaus F, Janssen J, Huson A, Struben P. A three-dimensional mathematical model of the knee-joint. Journal of Biomechanics. 1980;13:677-85.
[32] Song Y, Debski RE, Musahl V, Thomas M, Woo SL-Y. A three-dimensional finite element model of the human anterior cruciate ligament: A computational analysis with experimental validation. Journal of biomechanics. 2004;37:383-90.
[33] Pena E, Calvo B, Martinez M, Doblare M. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. Journal of Biomechanics. 2006;39:1686-701.
[34] Limbert G, Taylor M, Middleton J. Three-dimensional finite element modelling of the human acl: Simulation of passive knee flexion with a stressed and stress-free acl. Journal of biomechanics. 2004;37:1723-31.
[35] Limbert G, Middleton J, Taylor M. Finite element analysis of the human acl subjected to passive anterior tibial loads. Computer methods in biomechanics and biomedical engineering. 2004;7:1-8.
[36] Blankevoort L, Kuiper J, Huiskes R, Grootenboer H. Articular contact in a three-dimensional model of the knee. Journal of biomechanics. 1991;24:1019-31.
[37] Bendjaballah MZ, Shirazi-Adl A, Zukor DJ. Biomechanical response of the passive human knee joint under anterior-posterior forces. Clinical Biomechanics. 1998;13:625-33.
[38] Bendjaballah MZ, Shirazi-Adl A, Zukor D. Biomechanics of the human knee joint in compression: Reconstruction, mesh generation and finite element analysis. The knee. 1995;2:69-79.
[39] Cohen ZA, McCarthy DM, Kwak SD, Legrand P, Fogarasi F, Ciaccio EJ, et al. Knee cartilage topography, thickness, and contact areas from mri: In-vitro calibration and in-vivo measurements. Osteoarthritis and Cartilage. 1999;7:95-109.
[40] Li G, Gil J, Kanamori A, Woo SLY. A validated three-dimensional computational model of a human knee joint. Journal of Biomechanical Engineering-Transactions of the Asme. 1999;121:657-62.
[41] Li G, Lopez O, Rubash H. Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis. Journal of biomechanical engineering. 2001;123:341-6.
[42] Dill J, Carr T. Bicycle commuting and facilities in major US cities: if you build them, commuters will use them. Transportation Research Record: Journal of the Transportation Research Board. 2003;1828:116-23.
[43] Saelens BE, Sallis JF, Frank LD. Environmental correlates of walking and cycling: findings from the transportation, urban design, and planning literatures. Annals of behavioral medicine. 2003;25:80-91.
[44] Dill J. Bicycling for transportation and health: the role of infrastructure. Journal of Public Health Policy. 2009:S95-S110.
[45] Holmes J, Pruitt A, Whalen N. Lower extremity overuse in bicycling. Clinics in sports medicine. 1994;13:187.
[46] Dannenberg AL, Needle S, Mullady D, Kolodner KB. Predictors of injury among 1638 riders in a recreational long-distance bicycle tour: Cycle Across Maryland. The American journal of sports medicine. 1996;24:747-53.
[47] Newmiller J, Hull M, Zajac F. A mechanically decoupled two force component bicycle pedal dynamometer. Journal of Biomechanics. 1988;21:375-86.
[48] Bini RR, Diefenthaeler F, Mota CB. Fatigue effects on the coordinative pattern during cycling: Kinetics and kinematics evaluation. Journal of Electromyography and Kinesiology. 2010;20:102-7.
[49] Fleming BC, Beynnon BD, Renstrom PA, Peura GD, Nichols CE, Johnson RJ. The strain behavior of the anterior cruciate ligament during bicycling an in vivo study. The American journal of sports medicine. 1998;26:109-18.
[50] Kutzner I, Heinlein B, Graichen F, Rohlmann A, Halder AM, Beier A, et al. Loading of the knee joint during ergometer cycling: telemetric in vivo data. journal of orthopaedic & sports physical therapy. 2012;42:1032-8.
[51] Race A, Amis AA. Loading of the two bundles of the posterior cruciate ligament: an analysis of bundle function in AP drawer. Journal of biomechanics. 1996;29:873-9.
[52] Liu W, Maitland ME, Bell GD. A modeling study of partial ACL injury: simulated KT-2000 arthrometer tests. Journal of biomechanical engineering. 2002;124:294-301.
[53] Ericson MO, Nisell R. Tibiofemoral joint forces during ergometer cycling. The American journal of sports medicine. 1986;14:285-90.
[54] Taylor WR, Heller MO, Bergmann G, Duda GN. Tibio‐femoral loading during human gait and stair climbing. Journal of Orthopaedic Research. 2004;22:625-32.
[55] Dahlkvist N, Mayo P, Seedhom B. Forces during squatting and rising from a deep squat. Engineering in medicine. 1982;11:69-76.
[56] Nagura T, Matsumoto H, Kiriyama Y, Chaudhari A, Andriacchi TP. Tibiofemoral joint contact force in deep knee flexion and its consideration in knee osteoarthritis and joint replacement. Journal of applied biomechanics. 2006;22:305.
[57] Zhao D, Banks SA, D'Lima DD, Colwell CW, Fregly BJ. In vivo medial and lateral tibial loads during dynamic and high flexion activities. Journal of Orthopaedic Research. 2007;25:593-602.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49995-
dc.description.abstract自行車除了具有交通運輸、休閒以及運動健身等功能,更被廣泛應用於下肢傷害的復健,而復健療程依據踩踏方向可分為前踩式和後踩式運動。膝關節是下肢運動使用率最高的關節,除了肌肉自主收縮的控制外,韌帶與軟骨在不同運動狀態中各是扮演對關節穩定性的重要角色,因此關節軟組織的傷害是相當常見的,特別是膝關節十字韌帶損傷。
由於電腦技術的快速發展,考量侵入式量測的諸多限制,有限元素法被大量應用在實現非侵入式量測活體膝關節軟組織力學的研究。有限元素分析的建構分別以幾何模型、材料參數、邊界條件為三大主軸。客製化活體膝關節的幾何模型來自電腦斷層掃描和核磁共振造影的三維影像重建,韌帶與軟骨的材料參數分別參照KT-2000膝關節穩定器量測實驗和文獻的結果,邊界條件為動態X光量測之膝關節骨頭相對的運動學資訊。改良驗證過的有限元素分析流程,運用在活體自行車運動實驗下,探討前後踩踏方向下膝關節韌帶與軟骨之負荷情形,並提供未來膝關節複雜軟組織力學分析基礎之應用。
根據本研究分析結果,在自行車運動中,軟組織主要負荷代表為後十字韌帶與內側軟骨面。韌帶負荷的分佈在膝關節伸直期遞減,膝關節彎曲期遞增;軟骨面負荷的分佈有三個負荷峰值發生(曲柄角度45度、135度和280度),最大接觸負荷為體重的2 ~ 4倍。前後踩踏方向對韌帶負荷值影響有限;對軟骨面負荷值的影響為後踩踏在膝關節伸直期需要較多軟骨面之貢獻,而彎曲期不如前踩踏需要軟骨面之貢獻。由臨床角度來看,建議前十字韌帶損傷患者早期先以後踩踏方式進行復健;建議軟骨面損傷患者早期先以後踩踏方式進行復健;另外,不建議後十字韌帶損傷患者使用自行車運動作為復健療程。
zh_TW
dc.description.abstractCycling has many functionality in our daily life. It is also widely applied to the rehabilitation of the lower extremities, and it can be classified according to the pedaling direction as forward pedaling and backward pedaling. The knee ligaments and articular cartilages has a great influence on the knee joint stability. Because of the highest utilization rate, knee injuries with soft tissues is common, especially cruciate ligament injuries.
Finite element method is used to study in vivo joint soft tissue mechanics in the non-invasive measurement. The geometry model is from the three-dimensional reconstruction of the computer tomography and magnetic resonance imaging scan. Material parameters of soft tissues referred the KT-2000 arthrometer and literatures. Boundary condition is acquired from the dynamic fluoroscopy system. The objective of this study was to analysis the loading of the in vivo knee ligaments and articular cartilages in forward and backward pedaling with validated finite element analysis procedure. It will provide a mechanical analysis basis of knee complicated soft tissues in the future.
According to the finite element analysis results in cycling, the main representative of the loads in soft tissues were PCL and the medial cartilage. The ligament loads decline in the knee extension and increase in the knee flexion. The articular surface loads show three peak loads (crank angle of 45°, 135° and 280°) and the maximum contact load is 2 ~ 4 times body weight. The effect on pedaling direction is less on the ligament loading. In backward pedaling, it needs more articular surface loading in knee extension and less in knee flexion. In early rehabilitation treatment, the patients with ACL injury and the patients with cartilage damage are suitable for backward pedaling. Cycling is not appropriate for PCL injury patients.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:27:26Z (GMT). No. of bitstreams: 1
ntu-105-R03548015-1.pdf: 9164592 bytes, checksum: 6370bc211f804208922fc3e8eacb4447 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract III
目錄 V
圖目錄 VII
表目錄 XII
第一章 緒論 1
第一節 研究背景 1
第二節 膝關節之解剖學 3
第三節 膝關節之運動學 6
第四節 膝關節韌帶之組成與力學性質 7
第五節 膝關節軟骨之組成與力學性質 9
第六節 文獻回顧 11
一、 膝關節動力學之研究 11
二、 膝關節數學分析模型 15
三、 膝關節之自行車運動 20
第七節 研究目的 23
第二章 材料與方法 24
第一節 試體膝關節驗證實驗 24
一、 實驗對象與儀器設備 25
二、 實驗流程 27
三、 試體驗證流程 28
第二節 活體膝關節自行車運動實驗 30
一、 實驗對象與儀器設備 30
二、 活體膝關節穩定度測試實驗 33
三、 活體膝關節三維運動學資訊比對流程 34
第三節 膝關節有限元素分析 36
一、 膝關節之三維幾何模型 36
二、 膝關節骨頭與軟組織之材料性質 43
三、 膝關節骨頭邊界條件 46
第三章 研究結果 49
第一節 活體膝關節韌帶材料參數測試結果 49
第三節 自行車運動過程中膝關節軟骨之有限元素分析結果 65
第四章 討論 72
第一節 活體膝關節之韌帶材料參數 72
第二節 自行車運動過程中膝關節軟組織之負荷情形 73
一、 膝關節韌帶在踩踏過程中之負荷 73
二、 膝關節軟骨面在踩踏過程中之負荷 74
第五章 總結 78
第一節 結論 78
第二節 誤差來源與未來展望 79
參考文獻 80
dc.language.isozh-TW
dc.title自行車踩踏方向對膝關節韌帶與關節面負荷之影響zh_TW
dc.titleEffects of Pedaling Direction on Knee Ligament and Articular Surface Loading During Cyclingen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭美英,許維君,徐慶琪,郭建忠
dc.subject.keyword有限元素法,自行車運動,前後踩踏,膝關節韌帶,膝關節軟骨,zh_TW
dc.subject.keywordFinite element method,Cycling,Forward and backward pedaling,In vivo knee ligament,In vivo knee articular cartilage,en
dc.relation.page84
dc.identifier.doi10.6342/NTU201601854
dc.rights.note有償授權
dc.date.accepted2016-08-09
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
8.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved