Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49980
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林致廷(Chih-Ting Lin)
dc.contributor.authorYu-Cheng Suen
dc.contributor.author蘇育程zh_TW
dc.date.accessioned2021-06-15T12:27:09Z-
dc.date.available2018-10-14
dc.date.copyright2016-10-14
dc.date.issued2016
dc.date.submitted2016-08-09
dc.identifier.citation[1] https://en.wikipedia.org/wiki/Carbon_dioxide retrieved at 2016/07/14
[2] Wolfgang Bihlmayr, “CO2 sensor Design concept for solar-powered CO2 sensor”, APPLICATION NOTE 313 (2011), 1-2
[3] Mark Stucky, Senior Content Developer & LEED Green Associate, KMC Controls, (2016, January 19) “DemandControl Ventilation Benefits for Your Building”
[4] Wittwer, S.H. ”Carbon dioxide and crop productivity,” New Scientist 95 (1982): 233-234.
[5] Alan T. Hagan, “Carbon Dioxide and Nitrogen”, Captain Dave, Inc.. retrieved from http://captaindaves.com/foodfaq/the-food-storage-faq-version-4-0/chapter-3-food-storage-containers/carbon-dioxide-and-nitrogen/
[6] Neethirajan, S., et al. 'Carbon Dioxide (CO2) Sensors for the Agri-food Industry—A Review.' Food and Bioprocess Technology 2(2) (2008): 115-121.
[7] http://www.burntec.com/extech-co220-co2-air-quality-monitor retrieved at 2016/07/13
[8] https://zh.wikipedia.org/wiki/%E7%89%A9%E8%81%94%E7%BD%91 retrieved at 2016/07/13
[9] https://www.facebook.com/IEIIntegration/app/115462065200508/ retrieved at 2016/07/14
[10] 勞工作業場所容許暴露標準, 2014
[11] Liu, X., S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning. 'A Survey on Gas Sensing Technology.' Sensors (Basel) 12, no. 7 (2012): 9635-65.
[12] http://www.co2meter.com/collections/co2-sensors/products/cozir-0-2-co2-sensor retrieved at 2016/07/07
[13] https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwj88MaRheHNAhUMG5QKHU2cDdMQFggcMAA&url=http%3A%2F%2Fsandboxelectronics.com%2Ffiles%2FSEN-000007%2FMG811.pdf&usg=AFQjCNHf5wF4RTW8_Iztkfri7WZy4akLCQ retrieved at 2016/07/07
[14] Wang, Xiaofeng, Hongwei Qin, Lihui Sun, and Jifan Hu. 'Co2 Sensing Properties and Mechanism of Nanocrystalline Lafeo3 Sensor.' Sensors and Actuators B: Chemical 188 (2013): 965-71.
[15] Lorenc, Piotr, Anna Strzelczyk, Bogdan Chachulski, and Grzegorz Jasinski. 'Properties of Nasicon-Based Co2 Sensors with Bi8nb2o17 Reference Electrode.' Solid State Ionics 271 (2015): 48-55.
[16] Chiang, Chi-Ju, Kang-Ting Tsai, Yi-Huan Lee, Hung-Wei Lin, Yi-Lung Yang, Chien-Chung Shih, Chia-Yu Lin, et al. 'In Situ Fabrication of Conducting Polymer Composite Film as a Chemical Resistive Co2 Gas Sensor.' Microelectronic Engineering 111 (2013): 409-15.
[17] Stegmeier, S., M. Fleischer, A. Tawil, P. Hauptmann, K. Egly, and K. Rose. 'Mechanism of the Interaction of Co2 and Humidity with Primary Amino Group Systems for Room Temperature Co2 Sensors.' Procedia Chemistry 1, no. 1 (2009): 236-39.
[18] Hyodo, Takeo, Choei Ishibashi, Katsuhide Matsuo, Kazunari Kaneyasu, Hiroyuki Yanagi, and Yasuhiro Shimizu. 'Co and Co2 Sensing Properties of Electrochemical Gas Sensors Using an Anion-Conducting Polymer as an Electrolyte.' Electrochimica Acta 82 (2012): 19-25.
[19] Tsuyoshi TONOSAKI, Takahiro OHO, Hiroshi SHIIGI, Kazutoshi ISOMURA, and Kotaro OGURA. 'Highly Sensitive CO2Sensor with Polymer Composites Operating at Room Temperature. 'ANALYTICAL SCIENCES 17 (2001): 249-52
[20] Shyam Sivaramakrishnan, 'Carbon Nanotube Based Carbon Dioxide Gas Sensors for Respiratory Monitoring.' THE UNIVERSITY OF MINNESOTA (2009)
[21] Muhammad Hafiz, Syed, Richard Ritikos, Thomas James Whitcher, Nadia Md. Razib, Daniel Chia Sheng Bien, Narong Chanlek, Hideki Nakajima, et al. 'A Practical Carbon Dioxide Gas Sensor Using Room-Temperature Hydrogen Plasma Reduced Graphene Oxide.' Sensors and Actuators B: Chemical 193 (2014): 692-700.
[22] Yasuhiro Shimizu, K. K., and Makoto Egashira (1989). 'Carbon Dioxide Sensor Consisting of K2CO3-Polyethylene Glycol Solution Supported on Porous Ceramics.' J. Electrochem. Soc. 136(8): 2256-2260.
[23] Andò, B., et al. (2015). 'An Inkjet Printed CO2 Gas Sensor.' Procedia Engineering 120: 628-631.
[24] Waghuley, S. A., et al. (2008). 'Application of chemically synthesized conducting polymer-polypyrrole as a carbon dioxide gas sensor.' Sensors and Actuators B: Chemical 128(2): 366-373.
[25] K. Ogura, H. S. (1999). 'A CO2 Sensing Composite Film Consisting of Base-Type Polyaniline and Poly(vinyl alcohol).' Electrochemical and Solid-State Letters, 2-9: 478-480.
[26] Arabloo, F., et al. (2015). 'The interaction of carbon monoxide to Fe(III)(salen)-PEDOT:PSS composite as a gas sensor.' Synthetic Metals 209: 192-199.
[27] 王煒, '噴墨式二氧化氮感測材料之研發', 國立臺灣大學碩士論文, 2015.
[28] Grimes, K. G. O. a. C. A. (2001). 'A Carbon Nanotube-based Sensor for CO2 Monitoring.' Sensors 1: 193-205.
[29] Muhammad Hafiz, S., et al. (2014). 'A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide.' Sensors and Actuators B: Chemical 193: 692-700.
[30] MACDIARMID, J.-C. C. a. A. G. (1986). 'POLYANILINE-PROTONIC ACID DOPING OF THE EMERALDINE FORM TO THE METALLIC REGIME.' Synthetic Metals 13: 193-205.
[31] Yue, J., et al. (1990). 'Sulfonic Acid Ring-Substituted Polyaniline, A Self-Doped Conducting Polymer.' Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics 189(1): 255-261.
[32] X.-L. Wei, Y. Z. W., S. M. Long, C. Bobeczko, A. J. Epstein (1996). 'Synthesis and Physical Properties of Highly Sulfonated Polyaniline.' chemisty society 118: 2545-2555.
[33] Irimia-Vladu, M. and J. W. Fergus (2006). 'Suitability of emeraldine base polyaniline-PVA composite film for carbon dioxide sensing.' Synthetic Metals 156(21-24): 1401-1407.
[34] Chen, X., et al. (2012). 'Impact of the functional group on the working range of polyaniline as carbon dioxide sensors.' Sensors and Actuators B: Chemical 175: 15-21.
[35] Doan, T. C. D., et al. (2012). 'Carbon dioxide sensing with sulfonated polyaniline.' Sensors and Actuators B: Chemical 168: 123-130.
[36] 莊芠羽,'噴印式感測材料於氣體檢測之研發',國立臺灣大學博士論文, 2016.
[37] Dimitriev, O. P. (2011). 'Cooperative doping in polyaniline-poly(ethylene-3,4-dioxythiophene): poly(styrenesulfonic acid) composite system.' Journal of Polymer Research 18(6): 2435-2440.
[38] Stegmeier, S., et al. (2011). 'Sensing mechanism of room temperature CO2 sensors based on primary amino groups.' Sensors and Actuators B: Chemical 154(2): 270-276.
[39] Crowley, K., et al. (2010). 'Fabrication of Polyaniline-Based Gas Sensors Using Piezoelectric Inkjet and Screen Printing for the Detection of Hydrogen Sulfide.' IEEE Sensors Journal 10(9): 1419-1426.
[40] Skorenko, K. H., et al. (2015). 'Vapor phase polymerization and mechanical testing of highly electrically conductive poly(3,4-ethylenedioxythiophene) for flexible devices.' Synthetic Metals 209: 297-303.
[41] L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus (2009), “Raman spectroscopy in grapheme”, Physics Reports, vol. 473, Issues 5–6, 51–87.
[42] Raman: Theory, Retrieved July 8, 2016, from http://chemwiki.ucdavis.edu/Physical_Chemistry/Spectroscopy/Vibrational_Spectroscopy/Raman_Spectroscopy/Raman%3A_Theory.
[43] Da Silva, J. P., et al. (1999). 'Raman characterization of polyaniline induced conformational changes.' Synthetic Metals 101(1): 834-835.
[44] Sheng Hsiung, C., et al. (2014). 'Unraveling the Enhanced Electrical Conductivity of PEDOT:PSS Thin Films for ITO-Free Organic Photovoltaics.' IEEE Photonics Journal 6(4): 1-7.
[45] http://www.cwb.gov.tw/V7/climate/climate_info/statistics/pdf/other.pdf retrieved at 2016/07/08
[46] 行政院環境保護署環署空字第 1010106229 號令,2012年11月23日
[47] Occupational Safety and Health Administration(OSHA),”OSHA Fact Sheer: Carbon monoxide poisoning”,2002 苗栗縣政府消防局,http://www.mlfd.gov.tw/goods/dg02.aspx?inf=4 retrieved at 2016/07/08
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49980-
dc.description.abstract為了解決現有的二氧化碳感測器所面對的問題,包含金屬氧化物的高功耗問題、以及高分子材料的複雜製程和濕度敏感問題,我們使用聚苯胺(Emeraldine base –polyaniline)以及聚二氧乙基噻吩聚苯乙烯磺酸(poly(3,4-ethylenedioxythiophene) polystyrene sulfonate)混和而成的材料製作可室溫操作的二氧化碳感測器元件。此元件可以在二氧化碳濃度為1000-20000ppm之間有著線性的電阻變化,變化量約在0.98%~3.83%之間。這樣的感測範圍適合用在一般室內的空氣品質檢測,以警示二氧化碳濃度過高的狀況。除此之外,此元件在相對濕度為50~85%之間時,對濕度有著相當低的敏感度,使得在一般檢測環境下不會受到濕度變化的影響,在室內空氣品質檢測的應用上,是相當大的優勢。zh_TW
dc.description.abstractTo resolve the high power consumption and complex polymerization process of most CO2 sensors, a room temperature operation CO2 sensor based on Emeraldine base –polyaniline (EB-PANI) blended with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) was developed. In this work, the sensor performed linear response to CO2 in working range of 1000-20000 ppm with the response from 0.98% to 3.83%. This detection range is low enough for environmental detection. On the other hand, compared to the response to CO2, this sensor has extremely lower response to humidity from 50 % to 85 % RH. Hence, in ambient environment, this CO2 sensor can ignore humidity effect to detect CO2 concentration.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:27:09Z (GMT). No. of bitstreams: 1
ntu-105-R03943066-1.pdf: 4910168 bytes, checksum: 5acf7c8b72077aed7855b10adf1dc24d (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES xi
Chapter 1 緒論 1
1.1 二氧化碳氣體檢測在生活中的重要性 1
1.2 物聯網(Internet of Things)簡介 3
1.3 論文架構 5
Chapter 2 元件特性與材料介紹 6
2.1 感測器特性 6
2.2 各種類二氧化碳氣體感測器優缺點分析 7
2.3 感測材料文獻探討 8
2.3.1 各種類聚合物材料 9
2.3.2 奈米碳管 (Carbon Nanotube, CNT)及石墨烯 (Graphene) 12
2.3.3 EB-PANI 使用及改質 15
2.3.4 PEDOT混合EB-PANI之討論與使用 21
Chapter 3 二氧化碳感測器製備 23
3.1 電極製備過程 23
3.1.1 清洗晶圓 23
3.1.2 曝光顯影 24
3.1.3 蒸鍍電極 25
3.1.4 Lift-off 26
3.1.5 切割晶圓 26
3.2 感測材料薄膜製備 27
3.3 量測系統介紹 29
3.3.1 量測系統架設 29
3.3.2 氣體感測器量測流程 34
Chapter 4 量測結果 36
4.1 感測機制推測與探討 36
4.2 材料分析 38
4.2.1 光學顯微鏡表面分析 38
4.2.2 紫外線分光光譜儀(UV-vis) 39
4.2.3 拉曼光譜儀(Raman) 42
4.3 乾空氣下感測效果 46
4.4 濕空氣下感測效果 48
4.4.1 純濕度量測 48
4.4.2 同濕度重複量測 53
4.5 二氧化碳感測效果 54
4.5.1 各二氧化碳感測結果 55
4.5.2 二氧化碳感測結果圖表 58
4.6 環境濕度影響 59
4.6.1 不同濕度下二氧化碳感測結果 59
4.7 二氧化碳感測器生命週期探討 61
4.7.1 首次濕空氣下量測 61
4.7.2 電阻隨時間增大之效應 63
4.7.3 反應量隨時間減少之效應 64
4.8 對其他氣體之選擇性 65
4.8.1 對一氧化碳(CO)之選擇性 65
4.8.2 對二氧化氮(NO2)之選擇性 67
4.9 改變EB-PANI/PEDOT:PSS比例之嘗試 68
4.10 二氧化碳感測元件對比整理 70
Chapter 5 結論 72
REFERENCE 73
dc.language.isozh-TW
dc.subject有機氣體感測元件zh_TW
dc.subject二氧化碳zh_TW
dc.subject聚苯胺zh_TW
dc.subject聚二氧乙基?吩聚苯乙烯磺酸zh_TW
dc.subjectPEDOT:PSS.en
dc.subjectCO2 sensoren
dc.subjectpolyanilineen
dc.title低功耗有機二氧化碳感測器zh_TW
dc.titleA Low Power Consumption Organic Carbon Dioxide Sensoren
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.coadvisor吳文中(Wen-Jong Wu)
dc.contributor.oralexamcommittee李世光(Chih-Kung Lee),許聿翔(Yu-Hsiang Hsu)
dc.subject.keyword二氧化碳,有機氣體感測元件,聚苯胺,聚二氧乙基?吩聚苯乙烯磺酸,zh_TW
dc.subject.keywordCO2 sensor,polyaniline,PEDOT:PSS.,en
dc.relation.page77
dc.identifier.doi10.6342/NTU201602120
dc.rights.note有償授權
dc.date.accepted2016-08-09
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
4.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved