Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49951
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃鵬鵬
dc.contributor.authorYi-Fang Wangen
dc.contributor.author王怡方zh_TW
dc.date.accessioned2021-06-15T12:26:41Z-
dc.date.available2021-08-30
dc.date.copyright2016-08-30
dc.date.issued2016
dc.date.submitted2016-08-10
dc.identifier.citationBackground references
Abdallah, J.G., Schrier, R.W., Edelstein, C., Jennings, S.D., Wyse, B., Ellison, D.H., 2001. Loop diuretic infusion increases thiazide-sensitive Na+/Cl--cotransporter abundance: role of aldosterone. J Am Soc Nephrol 12, 1335-1341.
Arroyo, J.P., Lagnaz, D., Ronzaud, C., Vazquez, N., Ko, B.S., Moddes, L., Ruffieux-Daidie, D., Hausel, P., Koesters, R., Yang, B., Stokes, J.B., Hoover, R.S., Gamba, G., Staub, O., 2011. Nedd4-2 modulates renal Na+-Cl- cotransporter via the aldosterone-SGK1-Nedd4-2 pathway. J Am Soc Nephrol 22, 1707-1719.
Bayaa, M., Vulesevic, B., Esbaugh, A., Braun, M., Ekker, M.E., Grosell, M., Perry, S.F., 2009. The involvement of SLC26 anion transporters in chloride uptake in zebrafish (Danio rerio) larvae. J Exp Biol 212, 3283-3295.
Breves, J.P., Serizier, S.B., Goffin, V., McCormick, S.D., Karlstrom, R.O., 2013. Prolactin regulates transcription of the ion uptake Na+/Cl- cotransporter (ncc) gene in zebrafish gill. Molecular and Cellular Endocrinology 369, 98-106.
Chiga, M., Rai, T., Yang, S.S., Ohta, A., Takizawa, T., Sasaki, S., Uchida, S., 2008. Dietary salt regulates the phosphorylation of OSR1/SPAK kinases and the sodium chloride cotransporter through aldosterone. Kidney Int 74, 1403-1409.
Chou, M.Y., Hung, J.C., Wu, L.C., Hwang, S.P.L., Hwang, P.P., 2011. Isotocin controls ion regulation through regulating ionocyte progenitor differentiation and proliferation. Cellular and Molecular Life Sciences 68, 2797-2809.
Costanzo, L.S., 1985. Localization of diuretic action in microperfused rat distal tubules: Ca and Na transport. Am J Physiol 248, F527-535.
Evans, D.H., Piermarini, P.M., Choe, K.P., 2005. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85, 97-177.
Gamba, G., 2012. Regulation of the renal Na+-Cl- cotransporter by phosphorylation and ubiquitylation. Am J Physiol Renal Physiol 303, F1573-1583.
Gamba, G., Saltzberg, S.N., Lombardi, M., Miyanoshita, A., Lytton, J., Hediger, M.A., Brenner, B.M., Hebert, S.C., 1993. Primary structure and functional expression of a cDNA encoding the thiazide-sensitive, electroneutral sodium-chloride cotransporter. Proc Natl Acad Sci U S A 90, 2749-2753.
Gesek, F.A., Friedman, P.A., 1992. Mechanism of calcium transport stimulated by chlorothiazide in mouse distal convoluted tubule cells. J Clin Invest 90, 429-438.
Good, D.W., 2007. Nongenomic actions of aldosterone on the renal tubule. Hypertension 49, 728-739.
Hirano, T., 1986. The spectrum of prolactin action in teleosts. Prog Clin Biol Res 205, 53-74.
Hiroi, J., Yasumasu, S., McCormick, S.D., Hwang, P.P., Kaneko, T., 2008. Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish. J Exp Biol 211, 2584-2599.
Hirose, S., Kaneko, T., Naito, N., Takei, Y., 2003. Molecular biology of major components of chloride cells. Comp Biochem Physiol B Biochem Mol Biol 136, 593-620.
Horng, J.L., Hwang, P.P., Shih, T.H., Wen, Z.H., Lin, C.S., Lin, L.Y., 2009. Chloride transport in mitochondrion-rich cells of euryhaline tilapia (Oreochromis mossambicus) larvae. Am J Physiol Cell Physiol 297, C845-854.
Hwang, P.P., Lee, T.H., 2007. New insights into fish ion regulation and mitochondrion-rich cells. Comp Biochem Physiol A Mol Integr Physiol 148, 479-497.
Hwang, P.P., Lee, T.H., Lin, L.Y., 2011. Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. Am J Physiol Regul Integr Comp Physiol 301, R28-47.
Inokuchi, M., Hiroi, J., Watanabe, S., Hwang, P.P., Kaneko, T., 2009. Morphological and functional classification of ion-absorbing mitochondria-rich cells in the gills of Mozambique tilapia. J Exp Biol 212, 1003-1010.
Inokuchi, M., Hiroi, J., Watanabe, S., Lee, K.M., Kaneko, T., 2008. Gene expression and morphological localization of NHE3, NCC and NKCC1a in branchial mitochondria-rich cells of Mozambique tilapia (Oreochromis mossambicus) acclimated to a wide range of salinities. Comp Biochem Physiol A Mol Integr Physiol 151, 151-158.
Jentsch, T.J., Poet, M., Fuhrmann, J.C., Zdebik, A.A., 2005. Physiological functions of CLC Cl- channels gleaned from human genetic disease and mouse models. Annu Rev Physiol 67, 779-807.
Kim, G.H., Masilamani, S., Turner, R., Mitchell, C., Wade, J.B., Knepper, M.A., 1998. The thiazide-sensitive Na-Cl cotransporter is an aldosterone-induced protein. Proc Natl Acad Sci U S A 95, 14552-14557.
Ko, B., Cooke, L.L., Hoover, R.S., 2011. Parathyroid hormone (PTH) regulates the sodium chloride cotransporter via Ras guanyl releasing protein 1 (Ras-GRP1) and extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) pathway. Transl Res 158, 282-289.
Ko, B., Mistry, A., Hanson, L., Mallick, R., Hoover, R.S., 2015. Mechanisms of angiotensin II stimulation of NCC are time-dependent in mDCT15 cells. Am J Physiol Renal Physiol 308, F720-727.
Krogh, A., 1937. Osmotic regulation in the frog (R. esculenta) by active absorption of chloride ions. Skand Arch Physiol 76, 60-74.
Krogh, A., 1938. The active absorption of ions in some freshwater animals. Zeitschrift für vergleichende Physiologie 25, 335-350.
Kumai, Y., Nesan, D., Vijayan, M.M., Perry, S.F., 2012. Cortisol regulates Na+ uptake in zebrafish, Danio rerio, larvae via the glucocorticoid receptor. Mol Cell Endocrinol 364, 113-125.
Lin, C.H., Shih, T.H., Liu, S.T., Hsu, H.H., Hwang, P.P., 2015. Cortisol Regulates Acid Secretion of H+-ATPase-rich lonocytes in Zebrafish (Danio rerio) Embryos. Frontiers in Physiology 6.
Lin, C.H., Tsai, I.L., Su, C.H., Tseng, D.Y., Hwang, P.P., 2011. Reverse effect of mammalian hypocalcemic cortisol in fish: cortisol stimulates Ca2+ uptake via glucocorticoid receptor-mediated vitamin D3 metabolism. PLoS One 6, e23689.
Marshall, W.S.a.G., M., 2006. Ion transport, osmogulation and acid-base balance., in: Evans, D.H.a.C., J. B. (Ed.), The Physiology of Fishes. Boca Raton (Florida): CRC Press., pp. 177-230.
Masilamani, S., Wang, X., Kim, G.H., Brooks, H., Nielsen, J., Nielsen, S., Nakamura, K., Stokes, J.B., Knepper, M.A., 2002. Time course of renal Na-K-ATPase, NHE3, NKCC2, NCC, and ENaC abundance changes with dietary NaCl restriction. Am J Physiol Renal Physiol 283, F648-657.
Miyazaki, H., Uchida, S., Takei, Y., Hirano, T., Marumo, F., Sasaki, S., 1999. Molecular cloning of CLC chloride channels in Oreochromis mossambicus and their functional complementation of yeast CLC gene mutant. Biochem Biophys Res Commun 255, 175-181.
Mutig, K., Paliege, A., Kahl, T., Jons, T., Muller-Esterl, W., Bachmann, S., 2007. Vasopressin V2 receptor expression along rat, mouse, and human renal epithelia with focus on TAL. Am J Physiol Renal Physiol 293, F1166-1177.
Pacheco-Alvarez, D., Cristobal, P.S., Meade, P., Moreno, E., Vazquez, N., Munoz, E., Diaz, A., Juarez, M.E., Gimenez, I., Gamba, G., 2006. The Na+:Cl- cotransporter is activated and phosphorylated at the amino-terminal domain upon intracellular chloride depletion. J Biol Chem 281, 28755-28763.
Pedersen, N.B., Hofmeister, M.V., Rosenbaek, L.L., Nielsen, J., Fenton, R.A., 2010. Vasopressin induces phosphorylation of the thiazide-sensitive sodium chloride cotransporter in the distal convoluted tubule. Kidney Int 78, 160-169.
Perry, S.F., Vulesevic, B., Grosell, M., Bayaa, M., 2009. Evidence that SLC26 anion transporters mediate branchial chloride uptake in adult zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 297, R988-997.
Piermarini, P.M., Verlander, J.W., Royaux, I.E., Evans, D.H., 2002. Pendrin immunoreactivity in the gill epithelium of a euryhaline elasmobranch. Am J Physiol Regul Integr Comp Physiol 283, R983-992.
Reilly, R.F., Ellison, D.H., 2000. Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy. Physiol Rev 80, 277-313.
Riazi, S., Madala-Halagappa, V.K., Hu, X., Ecelbarger, C.A., 2006. Sex and body-type interactions in the regulation of renal sodium transporter levels, urinary excretion, and activity in lean and obese Zucker rats. Gend Med 3, 309-327.
Richardson, C., Rafiqi, F.H., Karlsson, H.K., Moleleki, N., Vandewalle, A., Campbell, D.G., Morrice, N.A., Alessi, D.R., 2008. Activation of the thiazide-sensitive Na+-Cl- cotransporter by the WNK-regulated kinases SPAK and OSR1. J Cell Sci 121, 675-684.
Rojas-Vega, L., Reyes-Castro, L.A., Ramirez, V., Bautista-Perez, R., Rafael, C., Castaneda-Bueno, M., Meade, P., de Los Heros, P., Arroyo-Garza, I., Bernard, V., Binart, N., Bobadilla, N.A., Hadchouel, J., Zambrano, E., Gamba, G., 2015. Ovarian hormones and prolactin increase renal NaCl cotransporter phosphorylation. Am J Physiol Renal Physiol 308, F799-808.
Ronzaud, C., Loffing-Cueni, D., Hausel, P., Debonneville, A., Malsure, S.R., Fowler-Jaeger, N., Boase, N.A., Perrier, R., Maillard, M., Yang, B., Stokes, J.B., Koesters, R., Kumar, S., Hummler, E., Loffing, J., Staub, O., 2013. Renal tubular NEDD4-2 deficiency causes NCC-mediated salt-dependent hypertension. J Clin Invest 123, 657-665.
Sakamoto, T., McCormick, S.D., 2006. Prolactin and growth hormone in fish osmoregulation. Gen Comp Endocrinol 147, 24-30.
San-Cristobal, P., Pacheco-Alvarez, D., Richardson, C., Ring, A.M., Vazquez, N., Rafiqi, F.H., Chari, D., Kahle, K.T., Leng, Q., Bobadilla, N.A., Hebert, S.C., Alessi, D.R., Lifton, R.P., Gamba, G., 2009. Angiotensin II signaling increases activity of the renal Na-Cl cotransporter through a WNK4-SPAK-dependent pathway. Proc Natl Acad Sci U S A 106, 4384-4389.
Song, J., Hu, X., Riazi, S., Tiwari, S., Wade, J.B., Ecelbarger, C.A., 2006. Regulation of blood pressure, the epithelial sodium channel (ENaC), and other key renal sodium transporters by chronic insulin infusion in rats. Am J Physiol Renal Physiol 290, F1055-1064.
Tang, C.H., Hwang, L.Y., Shen, I.D., Chiu, Y.H., Lee, T.H., 2011. Immunolocalization of chloride transporters to gill epithelia of euryhaline teleosts with opposite salinity-induced Na+/K+-ATPase responses. Fish Physiol Biochem 37, 709-724.
Terker, A.S., Yang, C.L., McCormick, J.A., Meermeier, N.P., Rogers, S.L., Grossmann, S., Trompf, K., Delpire, E., Loffing, J., Ellison, D.H., 2014. Sympathetic stimulation of thiazide-sensitive sodium chloride cotransport in the generation of salt-sensitive hypertension. Hypertension 64, 178-184.
Tresguerres, M., Katoh, F., Orr, E., Parks, S.K., Goss, G.G., 2006. Chloride uptake and base secretion in freshwater fish: a transepithelial ion-transport metabolon? Physiol Biochem Zool 79, 981-996.
Wang, Y.F., Tseng, Y.C., Yan, J.J., Hiroi, J., Hwang, P.P., 2009. Role of SLC12A10.2, a Na-Cl cotransporter-like protein, in a Cl uptake mechanism in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 296, R1650-1660.
Chapter 1 reference
References
Amemiya, C.T., Alfoldi, J., Lee, A.P., Fan, S, Philippe, H., Maccallum, I, et al., 2013. The African coelacanth genome provides insights into tetrapod evolution. Nature 496, 311-316.
Bayaa, M., Vulesevic, B., Esbaugh, A., Braun, M., Ekker, M.E., Grosell, M., Perry, S.F., 2009. The involvement of SLC26 anion transporters in chloride uptake in zebrafish (Danio rerio) larvae. J Exp Biol 212, 3283-3295.
Bosl, M.R., Stein, V., Hubner, C., Zdebik, A.A., Jordt, S.E., Mukhopadhyay, A.K., Davidoff, M.S., Holstein, A.F., Jentsch, T.J., 2001. Male germ cells and photoreceptors, both dependent on close cell-cell interactions, degenerate upon ClC-2 Cl(-) channel disruption. EMBO J 20, 1289-1299.
Bossus, M., Charmantier, G., Blondeau-Bidet, E., Valletta, B., Boulo, V., Lorin-Nebel, C., 2013. The ClC-3 chloride channel and osmoregulation in the European sea bass, Dicentrarchus labrax. J Comp Physiol B 183, 641-662.
Campean, V., Kricke, J., Ellison, D., Luft, F.C., Bachmann, S., 2001. Localization of thiazide-sensitive Na(+)-Cl(-) cotransport and associated gene products in mouse DCT. Am J Physiol Renal Physiol 281, F1028-1035.
Catalan, M., Cornejo, I., Figueroa, C.D., Niemeyer, M.I., Sepulveda, FV., Cid, L.P., 2002. ClC-2 in guinea pig colon: mRNA, immunolabeling, and functional evidence for surface epithelium localization. Am J Physiol Gastrointest Liver Physiol 283, G1004-13.
Catalan, M., Niemeyer, M.I., Cid, L.P., Sepulveda, F.V., 2004. Basolateral ClC-2 chloride channels in surface colon epithelium: regulation by a direct effect of intracellular chloride. Gastroenterology 126, 1104-14.
Chang, I.C., Wei, Y.Y., Chou, F.I., Hwang, P.P., 2003. Stimulation of Cl- uptake and morphological changes in gill mitochondria-rich cells in freshwater tilapia (Oreochromis mossambicus). Physiol Biochem Zool 76, 544-552.
Chang, W.J., Wang, Y.F., Hu, H.J., Wang, J.H., Lee, T.H., Hwang, P.P., 2013. Compensatory regulation of Na+ absorption by Na+/H+ exchanger and Na+-Cl- cotransporter in zebrafish (Danio rerio). Front Zool 10, 46.
Clark, N.L., Alani, E., Aquadro, C.F., 2012. Evolutionary rate covariation reveals shared functionality and coexpression of genes. Genome Res 22, 714-720.
Dymowska, A.K., Hwang, P.P., Goss, G.G., 2012. Structure and function of ionocytes in the freshwater fish gill. Respir Physiol Neurobiol 184, 282-292.
Estevez, R., Boettger, T., Stein, V., Birkenhager, R., Otto, E., Hildebrandt, F., et al., 2001. Barttin is a Cl- channel beta-subunit crucial for renal Cl- reabsorption and inner ear K+ secretion. Nature 414, 558-561.
Evans, D.H., Piermarini, P.M., Choe, K.P., 2005. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85, 97-177.
Findlay, G.D., Sitnik, J.L., Wang, W., Aquadro, C.F., Clark, N.L., Wolfner, M.F., 2014. Evolutionary rate covariation identifies new members of a protein network required for Drosophila melanogaster female post-mating responses. PLoS Genet, e1004108.
Goh, C.S., Bogan, A.A., Joachimiak, M., Walther, D., Cohen, F.E., 2000. Co-evolution of proteins with their interaction partners. J Mol Biol 299, 283-293.
Gyomorey, K., Yeger, H., Ackerley, C., Garami, E., Bear, C.E., 2000. Expression of the chloride channel ClC-2 in the murine small intestine epithelium. Am J Physiol Cell Physiol 279, C1787-94.
Hartmann, A.M., Tesch, D., Nothwang, H.G., Bininda-Emonds, O.R., 2014. Evolution of the cation chloride cotransporter family: ancient origins, gene losses, and subfunctionalization through duplication. Mol Biol Evol 31 (Suppl 1), 434-447.
Hsiao, C.D., You, M.S., Guh, Y.J., Ma, M., Jiang, Y.J., Hwang, P.P., 2007. A positive regulatory loop between foxi3a and foxi3b is essential for specification and differentiation of zebrafish epidermal ionocytes. PLoS One 2, e302.
Hsu, H.H., Lin, L.Y., Tseng, Y.C., Horng, J.L., Hwang, P.P.,2014. A new model for fish ion regulation: identification of ionocytes in freshwater- and seawater-acclimated medaka (Oryzias latipes). Cell Tissue Res 357, 225-243.
Hwang, P.P., Chou, M.Y., 2013. Zebrafish as an animal model to study ion homeostasis. Pflugers Arch 465, 1233-1247.
Hwang, P.P., Lee, T.H., Lin, L.Y., 2011. Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. Am J Physiol Regul Integr Comp Physiol 301, R28-47.
Hwang, P.P., Lee, T.H., 2007. New insights into fish ion regulation and mitochondrion-rich cells. Comp Biochem Physiol A Mol Integr Physiol 148, 479-497.
Hwang, P.P., Lin, L.Y., 2014. Gill ion transport, acid-base regulation and nitrogen excretion. In: Evans D, Claiborne JB and Currie S (eds.) The Physiology of Fishes. CRC Press.
Inokuchi, M., Hiroi, J., Watanabe, S., Lee, K.M., Kaneko, T., 2008. Gene expression and morphological localization of NHE3, NCC and NKCC1a in branchial mitochondria-rich cells of Mozambique tilapia (Oreochromis mossambicus) acclimated to a wide range of salinities. Comp Biochem Physiol A Mol Integr Physiol 151, 151-8.
Inoue, D., Wittbrodt, J., 2011. One for all--a highly efficient and versatile method for fluorescent immunostaining in fish embryos. PLoS One 6, e19713.
Jentsch, T..J., Stein, V., Weinreich, F., Zdebik, A.A., 2002. Molecular structure and physiological function of chloride channels. Physiol Rev 82, 503-68.
Kato, A., Romero, M.F., 2011. Regulation of electroneutral NaCl absorption by the small intestine. Annu Rev Physiol 73, 261-281.
Kobayashi, K., Uchida, S., Mizutani, S., Sasaki, S., Marumo, F., 2001. Intrarenal and cellular localization of CLC-K2 protein in the mouse kidney. J Am Soc Nephrol 12, 1327-1334.
Kobayashi, K., Uchida, S., Okamura, H.O., Marumo, F., Sasaki, S., 2001. Human CLC-KB gene promoter drives the EGFP expression in the specific distal nephron segments and inner ear. J Am Soc Nephrol 13, 1992-1998.
Liao, B.K., Chen, R.D., Hwang, P.P., 2009. Expression regulation of Na+-K+-ATPase alpha1-subunit subtypes in zebrafish gill ionocytes. Am J Physiol Regul Integr Comp Physiol 296, R1897-1906.
Lin, L.Y., Hwang, P.P., 2001. Modification of morphology and function of integument mitochondria-rich cells in tilapia larvae (Oreochromis mossambicus) acclimated to ambient chloride levels. Physiol Biochem Zool 74, 469-476.
Lipecka, J., Bali, M., Thomas, A., Fanen, P., Edelman, A., Fritsch, J., 2002. Distribution of ClC-2 chloride channel in rat and human epithelial tissues. Am J Physiol Cell Physiol 282, C805-816.
Matsuda, J.J., Filali, M.S., Volk, K.A., Collins, M.M., Moreland, J.G., Lamb, F.S., 2008. Overexpression of CLC-3 in HEK293T cells yields novel currents that are pH dependent. Am J Physiol Cell Physiol 294, C251-262.
Matsumura, Y., Uchida, S., Kondo, Y., Miyazaki, H., Ko, S.B., Hayama, A., et al., 1999. Overt nephrogenic diabetes insipidus in mice lacking the CLC-K1 chloride channel. Nat Genet 21, 95-98.
Miyazaki, H., Kaneko, T., Uchida, S., Sasaki, S., Takei, Y., 2002. Kidney-specific chloride channel, OmClC-K, predominantly expressed in the diluting segment of freshwater-adapted tilapia kidney. Proc Natl Acad Sci U S A 99, 15782-15787.
Miyazaki, H., Uchida, S., Takei, Y., Hirano, T., Marumo, F., Sasaki, S., 1999. Molecular cloning of CLC chloride channels in Oreochromis mossambicus and their functional complementation of yeast CLC gene mutant. Biochem Biophys Res Commun 255, 175-181.
Perez-Rius, C., Gaitan-Penas, H., Estevez, R., Barrallo-Gimeno, A., 2014. Identification and characterization of the zebrafish ClC-2 chloride channel orthologs. Pflugers Arch 467, 1769-1781.
Perry, S.F., Vulesevic, B., Grosell, M., Bayaa, M., 2009. Evidence that SLC26 anion transporters mediate branchial chloride uptake in adult zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 297, R988-997.
Piermarini, P.M., Verlander, J.W., Royaux, I.E., Evans, D.H., 2002. Pendrin immunoreactivity in the gill epithelium of a euryhaline elasmobranch. Am J Physiol Regul Integr Comp Physiol 283, R983-992.
Reilly, R.F., Ellison, D.H., 2000. Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy. Physiol Rev 80, 277-313.
Schlingmann, K.P., Konrad, M., Jeck, N., Waldegger, P., Reinalter, S.C., Holder, M., et al., 2004. Salt wasting and deafness resulting from mutations in two chloride channels. N Engl J Med 350, 1314-1319.
Stauber, T., Weinert, S., Jentsch, T.J., 2012. Cell biology and physiology of CLC chloride channels and transporters. Compr Physiol 2, 1701-1744.
Tang, C.H., Hwang, L.Y., Lee, T.H., 2010. Chloride channel ClC-3 in gills of the euryhaline teleost, Tetraodon nigroviridis: expression, localization and the possible role of chloride absorption. J Exp Biol 213, 683-693.
Tang, C.H., Hwang, L.Y., Shen, I.D., Chiu, Y.H., Lee, T.H., 2011. Immunolocalization of chloride transporters to gill epithelia of euryhaline teleosts with opposite salinity-induced Na+/K+-ATPase responses. Fish Physiol Biochem 37, 709-724.
Tang, C.H., Lee, T.H., 2011. Ion-deficient environment induces the expression of basolateral chloride channel, ClC-3-like protein, in gill mitochondrion-rich cells for chloride uptake of the tilapia Oreochromis mossambicus. Physiol Biochem Zool 84, 54-67.
Tang, C.H., Lee, T.H., 2007. The effect of environmental salinity on the protein expression of Na+/K+-ATPase, Na+/K+/2Cl- cotransporter, cystic fibrosis transmembrane conductance regulator, anion exchanger 1, and chloride channel 3 in gills of a euryhaline teleost, Tetraodon nigroviridis. Comp Biochem Physiol A Mol Integr Physiol 147, 521-528.
Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673-4680.
Uchida, S., Sasaki, S., Nitta, K., Uchida, K., Horita, S., Nihei, H., et al., 1995. Localization and functional characterization of rat kidney-specific chloride channel, ClC-K1. J Clin Invest 95, 104-113.
Vandewalle, A., Cluzeaud, F., Bens, M., Kieferle, S., Steinmeyer, K., Jentsch, T.J., 1997. Localization and induction by dehydration of ClC-K chloride channels in the rat kidney. Am J Physiol 272, F678-688.
Velazquez, H., Good, D.W., Wright, F.S., 1984. Mutual dependence of sodium and chloride absorption by renal distal tubule. Am J Physiol 247, F904-911.
Wang, Y.F., Tseng, Y.C., Yan, J.J., Hiroi, J., Hwang, P.P., 2009. Role of SLC12A10.2, a Na-Cl cotransporter-like protein, in a Cl uptake mechanism in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 296, R1650-1660.
Yoshikawa, M., Uchida, S., Yamauchi, A., Miyai, A., Tanaka, Y., Sasaki, S., et al., 1999. Localization of rat CLC-K2 chloride channel mRNA in the kidney. Am J Physiol 276, F552-558.
 
Chapter 2 reference
Amara, S.G., Jonas, V., Rosenfeld, M.G., Ong, E.S., Evans, R.M., 1982. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298, 240-244.
Bayaa, M., Vulesevic, B., Esbaugh, A., Braun, M., Ekker, M.E., Grosell, M., Perry, S.F., 2009. The involvement of SLC26 anion transporters in chloride uptake in zebrafish (Danio rerio) larvae. J Exp Biol 212, 3283-3295.
Bol, M., Leybaert, L., Vanheel, B., 2012. Influence of methanandamide and CGRP on potassium currents in smooth muscle cells of small mesenteric arteries. Pflugers Arch 463, 669-677.
Breves, J.P., Serizier, S.B., Goffin, V., McCormick, S.D., Karlstrom, R.O., 2013. Prolactin regulates transcription of the ion uptake Na+/Cl- cotransporter (ncc) gene in zebrafish gill. Mol Cell Endocrinol 369, 98-106.
Castaneda-Bueno, M., Gamba, G., 2012. Mechanisms of sodium-chloride cotransporter modulation by angiotensin II. Curr Opin Nephrol Hypertens 21, 516-522.
Chou, M.Y., Hung, J.C., Wu, L.C., Hwang, S.P., Hwang, P.P., 2011. Isotocin controls ion regulation through regulating ionocyte progenitor differentiation and proliferation. Cell Mol Life Sci 68, 2797-2809.
Chou, M.Y., Lin, C.H., Chao, P.L., Hung, J.C., Cruz, S.A., Hwang, P.P., 2015. Stanniocalcin-1 controls ion regulation functions of ion-transporting epithelium other than calcium balance. Int J Biol Sci 11, 122-132.
Edwards, J.C., 2012. Chloride transport. Compr Physiol 2, 1061-1092.
Evans, D.H., Piermarini, P.M., Choe, K.P., 2005. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85, 97-177.
Feng, X., Zhang, Y., Shao, N., Wang, Y., Zhuang, Z., Wu, P., et al., 2015. Aldosterone modulates thiazide-sensitive sodium chloride cotransporter abundance via DUSP6-mediated ERK1/2 signaling pathway. Am J Physiol Renal Physiol 308, F1119-1127.
Gamba, G., 2012. Regulation of the renal Na+-Cl- cotransporter by phosphorylation and ubiquitylation. Am J Physiol Renal Physiol 303, F1573-1583.
Gangula, P.R., Zhao, H., Supowit, S., Wimalawansa, S., DiPette, D., Yallampalli, C., 1999. Pregnancy and steroid hormones enhance the vasodilation responses to CGRP in rats. Am J Physiol 276, H284-288.
Gennari, C., Fischer, J.A., 1985. Cardiovascular action of calcitonin gene-related peptide in humans. Calcif Tissue Int 37, 581-584.
Glover, M., Clayton, J., 2012. Thiazide-induced hyponatraemia: epidemiology and clues to pathogenesis. Cardiovasc Ther 30, e219-226.
Gray, D.W., Marshall, I., 1992. Human alpha-calcitonin gene-related peptide stimulates adenylate cyclase and guanylate cyclase and relaxes rat thoracic aorta by releasing nitric oxide. Br J Pharmacol 107, 691-696.
Guh, Y.J., Lin, C.H., Hwang, P.P., 2015. Osmoregulation in zebrafish: ion transport mechanisms and functional regulation. EXCLI J 14, 627-659.
Hamilton, K.L., Devor, D.C., 2012. Basolateral membrane K+ channels in renal epithelial cells. Am J Physiol Renal Physiol 302, F1069-1081.
Hwang, P.P., Chou, M.Y., 2013. Zebrafish as an animal model to study ion homeostasis. Pflugers Arch 465, 1233-1247.
Hwang, P.P., Lee, T.H., 2007. New insights into fish ion regulation and mitochondrion-rich cells. Comp Biochem Physiol A Mol Integr Physiol 148, 479-497.
Hwang, P.P., Steve, F.P., 2010. Ionic and Acid-Base Regulation. In Fish Physiology (ed. Perry S.F., Ekker, M., Farrell, A.P. and Brauner, C.J.), pp. 311-343. San Diego, Elsevier Academia Press.
Inoue, D., Wittbrodt, J., 2011. One for all--a highly efficient and versatile method for fluorescent immunostaining in fish embryos. PLoS One 6, e19713.
Jentsch, T.J., Stein, V., Weinreich, F., Zdebik, A.A., 2002. Molecular structure and physiological function of chloride channels. Physiol Rev 82, 503-568.
Ko, B., Cooke, L.L., Hoover, R.S., 2011. Parathyroid hormone (PTH) regulates the sodium chloride cotransporter via Ras guanyl releasing protein 1 (Ras-GRP1) and extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) pathway. Transl Res 158, 282-289.
Ko, B., Mistry, A., Hanson, L., Mallick, R., Hoover, R.S., 2015. Mechanisms of angiotensin II stimulation of NCC are time-dependent in mDCT15 cells. Am J Physiol Renal Physiol 308, F720-727.
Ko, B., Mistry, A.C., Hanson, L., Mallick, R., Wynne, B.M., Thai, T.L., Bailey, J.L., Klein, J.D., Hoover, R.S., 2013. Aldosterone acutely stimulates NCC activity via a SPAK-mediated pathway. Am J Physiol Renal Physiol 305, F645-652.
Kumai, Y., Bernier, N.J., Perry, S.F., 2014. Angiotensin-II promotes Na+ uptake in larval zebrafish, Danio rerio, in acidic and ion-poor water. J Endocrinol 220, 195-205.
Kurtz, A., Muff, R., Fischer, J.A., 1989. Calcitonin gene products and the kidney. Klin Wochenschr 67, 870-875.
Lafont, A.G., Fitzpatrick, T., Cliff Rankin, J., Dufour, S., Fouchereau-Peron, M., 2006. Possible role of calcitonin gene-related peptide in osmoregulation via the endocrine control of the gill in a teleost, the eel, Anguilla anguilla. Peptides 27, 812-819.
Lafont, A.G., Wang,Y.F., Chen, G.D., Liao, B.K., Tseng, Y.C., Huang, C.J., Hwang, P.P., 2011. Involvement of calcitonin and its receptor in the control of calcium-regulating genes and calcium homeostasis in zebrafish (Danio rerio). J Bone Miner Res 26, 1072-1083.
Lin, C.H., Shih, T.H., Liu, S.T., Hsu, H.H., Hwang, P.P., 2015. Cortisol Regulates Acid Secretion of H(+)-ATPase-rich Ionocytes in Zebrafish (Danio rerio) Embryos. Front Physiol 6, 328.
McCallum, L., Lip S., Padmanabhan, S., 2015. The hidden hand of chloride in hypertension. Pflugers Arch 467, 595-603.
McLatchie, L.M., Fraser, N.J., Main, M.J., Wise, A., Brown, J., Thompson, N., Solari, R., Lee, M.G., Foord, S.M., 1998. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393, 333-339.
Nag, K., Kato, A., Nakada, T., Hoshijima, K., Mistry, A.C., Takei, Y., Hirose, S., 2006. Molecular and functional characterization of adrenomedullin receptors in pufferfish. Am J Physiol Regul Integr Comp Physiol 290, R467-478.
Najib, L., Martine, F.P., 1996. Adaptation of rainbow trout to seawater: changes in calcitonin gene-related peptide levels are associated with an increase in hormone-receptor interaction in gill membranes. Gen Comp Endocrinol 102, 274-280.
Nakajima, K., Oda, E., Kanda, E., 2016. The association of serum sodium and chloride levels with blood pressure and estimated glomerular filtration rate. Blood Press 25, 51-57.
Nicoli, S., Tobia, C., Gualandi, L., De Sena, G., Presta, M., 2008. Calcitonin receptor-like receptor guides arterial differentiation in zebrafish. Blood 111, 4965-4972.
Reilly, R.F., Ellison, D.H., 2000. Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy. Physiol Rev 80, 277-313.
Rojas-Vega, L., Jimenez-Vega, A.R., Bazua-Valenti, S., Arroyo-Garza, I., Jimenez, J.V., Gomez-Ocadiz, R., et al., 2015. Increased phosphorylation of the renal Na+-Cl- cotransporter in male kidney transplant recipient patients with hypertension: a prospective cohort. Am J Physiol Renal Physiol 309, F836-842.
Rombough, P., 2002. Gills are needed for ionoregulation before they are needed for O(2) uptake in developing zebrafish, Danio rerio. J Exp Biol 205, 1787-1794.
Saritas, T., Borschewski, A., McCormick, J.A., Paliege, A., Dathe, C., Uchida, S., et al., 2013. SPAK differentially mediates vasopressin effects on sodium cotransporters. J Am Soc Nephrol 24, 407-418.
Smillie, S.J., King, R., Kodji, X., Outzen, E., Pozsgai, G., Fernandes, E., et al., 2014. An ongoing role of alpha-calcitonin gene-related peptide as part of a protective network against hypertension, vascular hypertrophy, and oxidative stress. Hypertension 63, 1056-1062.
Subramanya, A.R., Ellison, D.H., 2014. Distal convoluted tubule. Clin J Am Soc Nephrol 9, 2147-2163.
Suzuki, N., Suzuki, T., Kurokawa, T., 2002. Possible involvement of calcitonin gene-related peptide in seawater adaptation of flounder: Expression analysis of its receptor mRNA in the gill. Fisheries Sci 68, 425-429.
Tache, Y., Pappas, T., Lauffenburger, M., Goto, Y., Walsh, J.H., Debas, H., 1984. Calcitonin gene-related peptide: potent peripheral inhibitor of gastric acid secretion in rats and dogs. Gastroenterology 87, 344-349.
Talati, G., Ohtam, A., Rai, T., Sohara, E., Naito, S., Vandewalle, A., Sasaki, S., Uchida, S., 2010. Effect of angiotensin II on the WNK-OSR1/SPAK-NCC phosphorylation cascade in cultured mpkDCT cells and in vivo mouse kidney. Biochem Biophys Res Commun 393, 844-848.
Van Rossum, D., Hanisch, U.K., Quirion, R., 1997. Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors. Neurosci Biobehav Rev 21, 649-678.
Wang, Y.F., Tseng, Y.C., Yan, J.J., Hiroi, J., Hwang, P.P., 2009. Role of SLC12A10.2, a Na-Cl cotransporter-like protein, in a Cl uptake mechanism in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 296, R1650-1660.
Wang, Y.F., Yan J.J., Tseng Y.C., Chen R.D., Hwang P.P., 2015. Molecular Physiology of an Extra-renal Cl(-) Uptake Mechanism for Body Fluid Cl(-) Homeostasis. Int J Biol Sci 11, 1190-1203.
Xie, W., Fisher, J.T., Lynch, T.J., Luo, M., Evans, T.I., Neff, T.L., et al., 2011. CGRP induction in cystic fibrosis airways alters the submucosal gland progenitor cell niche in mice. J Clin Invest 121, 3144-3158.
Chapter 3 reference
Abbas, L., Hajihashemi, S., Stead, L.F., Cooper, G.J., Ware, T.L., Munsey, T.S., Whitfield, T.T., White, S.J., 2011. Functional and developmental expression of a zebrafish Kir1.1 (ROMK) potassium channel homologue Kcnj1. J Physiol 589,1489-1503.
Ade, T., Segner, H., Hanke, W., 1995. Hormonal response of primary hepatocytes of the clawed toad, Xenopus laevis. Exp Clin Endocrinol Diabetes 103,21-27.
Alonso, G., Galibert, E., Boulay, V., Guillou, A., Jean, A., Compan, V., Guillon, G., 2009. Sustained elevated levels of circulating vasopressin selectively stimulate the proliferation of kidney tubular cells via the activatio
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49951-
dc.description.abstract脊椎動物為了確保生理機能的正常運作必須維持體內氯離子的恆定,在由水生生物演化為陸生的過程中發展出一套複雜且精細的調控氯離子恆定的機制,以適應環境中氯離子濃度的變化。魚類和陸生脊椎動物具有相似的調控氯離子機制,然而,非哺乳類的脊椎動物其調控氯離子的詳細機制則尚不明確。之前的研究發現鈉氯共同運輸蛋白2b (NCC2b)負責斑馬魚在鰓上以及表皮的氯離子吸收,然而,詳細的氯離子吸收的運輸途徑則仍屬未知。
內分泌系統的功能一直被視為在生物面對環境變化時負責維持正常的生理機能,然而,我們對於魚類內分泌系統對於氯離子吸收的機制上所知甚少。因此,本研究旨在以斑馬魚為模式物種調查和表現NCC2b 的離子細胞相關的氯離子吸收途徑,並進一步研究和氯離子吸收相關的賀爾蒙及其調控的機制與角色為何。
第一章主要研究 CLC 氯離子通道在氯離子吸收扮演的角色。藉由原位雜和反應及免疫螢光染色實驗發現CLC-2c 表現在NCC2b 離子細胞上,當clc-2c 基因表現缺失時,會造成斑馬魚胚胎體內氯離子含量下降,顯示CLC-2c 和氯離子吸收相關。並且,當clc-2c 基因表現缺失時會刺激ncc2b mRNA 的表現,反之亦然。由分子與細胞生理的實驗結果證明CLC-2c 和NCC2b 共同負責斑馬魚鰓上及表皮的氯離子吸收功能。綜合演化上的分析,魚類特有的NCC2b 和CLC-2c可能是共同參與魚類鰓上的氯離子吸收機制而共同演化保留至今。
第二章主要研究 CGRP 和其受器CRLR1 對於氯離子吸收機制的調控。適應在高氯的環境中會刺激cgrp 和crlr1 mRNA 的表現,當cgrp 基因缺失的時候會刺激ncc2b RNA 的表現同時造成表現NCC2b 的離子細胞的密度增高,反之,當CGRP過量表現時會抑制ncc2b mRNA的合成同時造成斑馬魚胚胎氯離子吸收的減少。本實驗首次證實CGRP 會經由抑制NCC2b 的合成和降低表現NCC2b 離子細胞的分化來調控降低血液中的氯離子含量,了解CGRP 在調控氯離子吸收方面扮演的角色有助於我們更加了解脊椎動物相關的生理功能。
第三章主要研究 AVT 對於氯離子吸收調控的機制。當avt 基因功能缺失時會造成NCC2b mRNA 和蛋白質的表現下降,同時造成表現NCC2b 的離子細胞的密度降低並且造成胚胎體內氯離子含量的下降,實驗結果顯示AVT 藉由調控離子運輸蛋白的轉抑或是轉錄機制進而達到調控氯離子吸收的功能。此外,avt基因功能缺失亦會造成cgrp 及crlr1 mRNA 表現量下降,顯示了AVT 和CGRP之間有交互作用以便共同調控氯離子吸收的路徑,維持生物體內的氯離子恆定。
zh_TW
dc.description.abstractVertebrates need to maintain body fluid Cl- homeostasis to ensure normal operation of physiological process; the transition from aquatic to terrestrial environments necessitated the development of sophisticated mechanisms to ensure Cl- homeostasis in the face of fluctuating Cl-levels. The homeostatic mechanism of Cl- in aquatic fish appears to be similar to that of terrestrial vertebrates; however, the mechanism in non-mammalian vertebrates is poorly understood. Previous studies in zebrafish identified Na+-Cl- cotransporter (NCC) 2b-expressing cells in the gills and skin as the major ionocytes responsible for Cl- uptake. However, the mechanism by which basolateral ions exit from NCC2b-expressing cells is still unclear. Endocrine system is considered as the primary system to response to the environmental changes and maintain the normal physiological functions in vertebrates. However, less is known about the endocrine control of Cl- uptake mechanism in fish. The aims of this study are to use zebrafish as a model to investigate the Cl- uptake pathway of NCC2b-expressing ionocytes and identify hormones involved in the Cl- uptake mechanisms and to elucidate the mechanism in the regulation of Cl- uptake function.
In the first chapter, the role of CLC Cl- channels in the Cl- uptake mechanism were examined. Doubled in situ hybridization/immunocytochemistry indicated colocalization of apical NCC2b with basolateral CLC-2c. Loss-of-function of clc-2c resulted in a significant decrease in whole body Cl- content in zebrafish embryos, which suggests a role of CLC-2c in Cl- uptake. Translational knockdown of clc-2c stimulated ncc2b mRNA expression and vice versa, revealing cooperation between these two transporters in the context of zebrafish Cl- homeostasis. Several lines of molecular and cellular physiological evidences demonstrated the cofunctional role of apical NCC2b and basolateral CLC-2c in the gill/skin Cl- uptake pathway. Taking the phylogenetic evidence into consideration, fish-specific NCC2b and CLC-2c may have coevolved to perform extra-renal Cl- uptake during the evolution of vertebrates in an aquatic environment.
In the second chapter, the roles of calcitonin gene-related peptide (CGRP) and its receptor, calcitonin receptor-like receptor (CRLR1), in the regulation of Cl- uptake mechanism were examined. Acclimation to high-Cl− artificial water stimulated the mRNA expression of cgrp and crlr1 when compared with low-Cl−. CGRP knockdown induced upregulation of the ncc2b, while overexpression of CGRP resulted in the downregulation of ncc2b mRNA synthesis and a simultaneous decrease in Cl− uptake in embryos. Consistent with these findings, knockdown of either cgrp or crlr1 was found to increase the density of NCC2b-expressing cells in embryos. This is the first demonstration that CGRP acts as a hypochloremic hormone through suppressing NCC2b expression and the differentiation of NCC2b-expressing cells. Elucidation of this novel function of CGRP in fish body fluid Cl− homeostasis promises to enhance our understanding of the related physiology in vertebrates.
In the third chapter, the role of arginine vasotocin (AVT) on Cl- uptake regulation was examined. The loss-of-function of avt significantly downregulated the mRNA and protein expressions of NCC2b. Moreover, NCC2b expressing cells were significantly decreased in avt morphants. The whole body Cl- content was also declined in avt morphants. These results suggest that AVT exerts its actions on Cl uptake pathway in zebrafish embryos through regulating the transcriptional and/or translational levels of the ion transporters. Notably, the mRNA expression of cgrp and crlr1 were downregulated in avt morphants, suggesting that the crosstalk between AVT and CGRP mediated the regulation signaling of Cl-uptake mechanisms in zebrafish.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:26:41Z (GMT). No. of bitstreams: 1
ntu-105-D98b45002-1.pdf: 4336552 bytes, checksum: f7b67da98c1bcf57f66b06771a067200 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsBackgrounds……………………………………...………………………………….1
Purpose…………………………………………...……………………………….….9
Background reference…………………………...…………………………………11
Chapter 1. Molecular physiology of an extra-renal Cl- uptake mechanism for body
fluid Cl- homeostasis………………..………………………………….22
Chapter 1. reference ……………………………………………………………….58
Chapter 2. A novel function of calcitonin gene-related peptide in body fluid Clhomeostasis……………………………………………….…………....
81
Chapter 2. reference……………………………………………….……………...106
Chapter 3. The nonapeptide hormone arginine vasotocin participates in
Cl- uptake regulation in zebrafish (Danio rerio) …….…………….....124
Chapter 3. reference…….……………...…….……………...…….………...…....152
Conclusion and Perspectives………...…….………...…………...…….………...176
dc.language.isoen
dc.subject體液恆定zh_TW
dc.subject斑馬魚zh_TW
dc.subject賀爾蒙zh_TW
dc.subject體液恆定zh_TW
dc.subject賀爾蒙zh_TW
dc.subject氯離子zh_TW
dc.subject斑馬魚zh_TW
dc.subject氯離子zh_TW
dc.subjecthormoneen
dc.subjectzebrafishen
dc.subjectchlorideen
dc.subjecthomeostasisen
dc.subjecthormoneen
dc.subjectzebrafishen
dc.subjectchlorideen
dc.subjecthomeostasisen
dc.title斑馬魚之氯離子吸收機制與其功能方面之調控zh_TW
dc.titleChloride uptake mechanism and the functional regulation in zebrafishen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.oralexamcommittee張清風,胡清華,韓玉山,曾庸哲
dc.subject.keyword斑馬魚,氯離子,體液恆定,賀爾蒙,zh_TW
dc.subject.keywordzebrafish,chloride,homeostasis,hormone,en
dc.relation.page177
dc.identifier.doi10.6342/NTU201602000
dc.rights.note有償授權
dc.date.accepted2016-08-10
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept漁業科學研究所zh_TW
顯示於系所單位:漁業科學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
4.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved