Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 職業醫學與工業衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49949
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉貞佑(Chen-Yu Liu)
dc.contributor.authorWan-Ju Tsaien
dc.contributor.author蔡宛汝zh_TW
dc.date.accessioned2021-06-15T12:26:39Z-
dc.date.available2021-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-09
dc.identifier.citationAchenbach TM, R.L (2001) Manual for the ASEBA Preschool Forms and Profiles: Child Behavior Checklist & Profile for Ages 1.5-5. VT: University of Vermont Research Center for Children, Youth, and Families, Burlington.
Alexander BH, Olsen GW, Burris JM, Mandel JH, Mandel JS (2003) Mortality of employees of a perfluorooctanesulphonyl fluoride manufacturing facility. Occupational and environmental medicine 60:722-729
Andersen ME, Butenhoff JL, Chang SC, Farrar DG, Kennedy GL, Jr., Lau C, Olsen GW, Seed J, Wallace KB (2008) Perfluoroalkyl acids and related chemistries--toxicokinetics and modes of action. Toxicological sciences : an official journal of the Society of Toxicology 102:3-14
Arita A, Niu J, Qu Q, Zhao N, Ruan Y, Nadas A, Chervona Y, Wu F, Sun H, Hayes RB, Costa M (2012) Global levels of histone modifications in peripheral blood mononuclear cells of subjects with exposure to nickel. Environmental health perspectives 120:198-203
ATSDR (2009) Toxicological Profile for Perfluoroalkyls (Draft for Public Comment). Atlanta, GA: U.S. Department of Public Health and Human Services. Public Health Service
Austin ME, Kasturi BS, Barber M, Kannan K, MohanKumar PS, MohanKumar SM (2003) Neuroendocrine effects of perfluorooctane sulfonate in rats. Environmental health perspectives 111:1485-1489
Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315-326
Breton CV, Byun HM, Wenten M, Pan F, Yang A, Gilliland FD (2009) Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. American journal of respiratory and critical care medicine 180:462-467
Butenhoff JL, Ehresman DJ, Chang SC, Parker GA, Stump DG (2009) Gestational and lactational exposure to potassium perfluorooctanesulfonate (K+PFOS) in rats: developmental neurotoxicity. Reproductive toxicology (Elmsford, NY) 27:319-330
Butenhoff JL, Olsen GW, Pfahles-Hutchens A (2006) The applicability of biomonitoring data for perfluorooctanesulfonate to the environmental public health continuum. Environmental health perspectives 114:1776-1782
Chen MH, Ha EH, Liao HF, Jeng SF, Su YN, Wen TW, Lien GW, Chen CY, Hsieh WS, Chen PC (2013) Perfluorinated compound levels in cord blood and neurodevelopment at 2 years of age. Epidemiology 24:800-808
Chen MH, Ha EH, Wen TW, Su YN, Lien GW, Chen CY, Chen PC, Hsieh WS (2012) Perfluorinated compounds in umbilical cord blood and adverse birth outcomes. PloS one 7:e42474
Chervona Y, Hall MN, Arita A, Wu F, Sun H, Tseng HC, Ali E, Uddin MN, Liu X, Zoroddu MA, Gamble MV, Costa M (2012) Associations between arsenic exposure and global posttranslational histone modifications among adults in Bangladesh. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 21:2252-2260
Concha G, Vogler G, Lezcano D, Nermell B, Vahter M (1998) Exposure to inorganic arsenic metabolites during early human development. Toxicological sciences : an official journal of the Society of Toxicology 44:185-190
Cui L, Zhou QF, Liao CY, Fu JJ, Jiang GB (2009) Studies on the toxicological effects of PFOA and PFOS on rats using histological observation and chemical analysis. Arch Environ Contam Toxicol 56:338-349
EFSA (2008) Perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts Scientific opinion of the panel on contaminants in the food chain. EFSA 653: 1-131
Fei C, Olsen J (2011) Prenatal exposure to perfluorinated chemicals and behavioral or coordination problems at age 7 years. Environmental health perspectives 119:573-578
Feng X, Wang X, Cao X, Xia Y, Zhou R, Chen L (2015) Chronic Exposure of Female Mice to an Environmental Level of Perfluorooctane Sulfonate Suppresses Estrogen Synthesis Through Reduced Histone H3K14 Acetylation of the StAR Promoter Leading to Deficits in Follicular Development and Ovulation. Toxicological sciences : an official journal of the Society of Toxicology 148:368-379
Fromme H, Tittlemier SA, Volkel W, Wilhelm M, Twardella D (2009) Perfluorinated compounds--exposure assessment for the general population in Western countries. Int J Hyg Environ Health 212:239-270
Giesy JP, Kannan K (2001) Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol 35:1339-1342
Gore AC (2008) Developmental programming and endocrine disruptor effects on reproductive neuroendocrine systems. Frontiers in neuroendocrinology 29:358-374
Graziano JH, Popovac D, Factor-Litvak P, Shrout P, Kline J, Murphy MJ, Zhao YH, Mehmeti A, Ahmedi X, Rajovic B, et al. (1990) Determinants of elevated blood lead during pregnancy in a population surrounding a lead smelter in Kosovo, Yugoslavia. Environmental health perspectives 89:95-100
Guerrero-Preston R, Goldman LR, Brebi-Mieville P, Ili-Gangas C, Lebron C, Witter FR, Apelberg BJ, Hernandez-Roystacher M, Jaffe A, Halden RU, Sidransky D (2010) Global DNA hypomethylation is associated with in utero exposure to cotinine and perfluorinated alkyl compounds. Epigenetics 5:539-546
Gump BB, Wu Q, Dumas AK, Kannan K (2011) Perfluorochemical (PFC) exposure in children: associations with impaired response inhibition. Environ Sci Technol 45:8151-8159
Hoffman K, Webster TF, Weisskopf MG, Weinberg J, Vieira VM (2010) Exposure to polyfluoroalkyl chemicals and attention deficit/hyperactivity disorder in U.S. children 12-15 years of age. Environmental health perspectives 118:1762-1767
Houde M, Martin JW, Letcher RJ, Solomon KR, Muir DC (2006) Biological monitoring of polyfluoroalkyl substances: A review. Environ Sci Technol 40:3463-3473
Hsieh C-J, Hsieh W-S, Su Y-N, Liao H-F, Jeng S-F, Taso F-M, Hwang Y-H, Wu K-Y, Chen C-Y, Guo YL, Chen P-C (2011) The Taiwan Birth Panel Study: a prospective cohort study for environmentally- related child health. BMC Research Notes 4:1-8
Johansson N, Eriksson P, Viberg H (2009) Neonatal exposure to PFOS and PFOA in mice results in changes in proteins which are important for neuronal growth and synaptogenesis in the developing brain. Toxicological sciences : an official journal of the Society of Toxicology 108:412-418
Johnson JD, Gibson SJ, Ober RE (1984) Cholestyramine-enhanced fecal elimination of carbon-14 in rats after administration of ammonium [14C]perfluorooctanoate or potassium [14C]perfluorooctanesulfonate. Fundam Appl Toxicol 4:972-976
Kelleher KJ, McInerny TK, Gardner WP, Childs GE, Wasserman RC (2000) Increasing identification of psychosocial problems: 1979-1996. Pediatrics 105:1313-1321
Kerstner-Wood C, Coward L, Gorman G (2003) Protein Binding of Perfluorobutane Sulfonate, Perfluorohexane Sulfonate, Perfluorooctane Sulfonate and Perfluorooctanoate to Plasma (Human, Rat and Monkey), and Various Human-Derived Plasma Protein Fractions. US Environmental Protection Agency:226-1354
Khan SA, Reddy D, Gupta S (2015) Global histone post-translational modifications and cancer: Biomarkers for diagnosis, prognosis and treatment? World journal of biological chemistry 6:333-345
Kornberg RD, Thomas JO (1974) Chromatin structure; oligomers of the histones. Science (New York, NY) 184:865-868
Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693-705
Krachler M, Rossipal E, Micetic-Turk D (1999) Trace element transfer from the mother to the newborn--investigations on triplets of colostrum, maternal and umbilical cord sera. European journal of clinical nutrition 53:486-494
Kurdistani SK (2011) Histone modifications in cancer biology and prognosis. Progress in drug research Fortschritte der Arzneimittelforschung Progres des recherches pharmaceutiques 67:91-106
Kuslikis BI, Vanden Heuvel JP, Peterson RE (1992) Lack of evidence for perfluorodecanoyl- or perfluorooctanoyl-coenzyme A formation in male and female rats. J Biochem Toxicol 7:25-29
Lachner M, Jenuwein T (2002) The many faces of histone lysine methylation. Current opinion in cell biology 14:286-298
Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J (2007) Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicological sciences : an official journal of the Society of Toxicology 99:366-394
Lau C, Butenhoff JL, Rogers JM (2004) The developmental toxicity of perfluoroalkyl acids and their derivatives. Toxicol Appl Pharmacol 198:231-241
Leter G, Consales C, Eleuteri P, Uccelli R, Specht IO, Toft G, Moccia T, Budillon A, Jonsson BA, Lindh CH, Giwercman A, Pedersen HS, Ludwicki JK, Zviezdai V, Heederik D, Bonde JP, Spano M (2014) Exposure to perfluoroalkyl substances and sperm DNA global methylation in Arctic and European populations. Environmental and molecular mutagenesis 55:591-600
Li LX, Chen L, Meng XZ, Chen BH, Chen SQ, Zhao Y, Zhao LF, Liang Y, Zhang YH (2013) Exposure levels of environmental endocrine disruptors in mother-newborn pairs in China and their placental transfer characteristics. PloS one 8:e62526
Lien GW, Huang CC, Shiu JS, Chen MH, Hsieh WS, Guo YL, Chen PC (2016) Perfluoroalkyl substances in cord blood and attention deficit/hyperactivity disorder symptoms in seven-year-old children. Chemosphere 156:118-127
Lien GW, Huang CC, Wu KY, Chen MH, Lin CY, Chen CY, Hsieh WS, Chen PC (2013) Neonatal-maternal factors and perfluoroalkyl substances in cord blood. Chemosphere 92:843-850
Lien GW, Wen TW, Hsieh WS, Wu KY, Chen CY, Chen PC (2011) Analysis of perfluorinated chemicals in umbilical cord blood by ultra-high performance liquid chromatography/tandem mass spectrometry. Journal of chromatography B, Analytical technologies in the biomedical and life sciences 879:641-646
Liu C, Chang VW, Gin KY, Nguyen VT (2014) Genotoxicity of perfluorinated chemicals (PFCs) to the green mussel (Perna viridis). Sci Total Environ 487:117-122
Liu X, Liu W, Jin Y, Yu W, Liu L, Yu H (2010) Effects of subchronic perfluorooctane sulfonate exposure of rats on calcium-dependent signaling molecules in the brain tissue. Arch Toxicol 84:471-479
Ma L, Bai Y, Pu H, Gou F, Dai M, Wang H, He J, Zheng T, Cheng N (2015) Histone Methylation in Nickel-Smelting Industrial Workers. PloS one 10:e0140339
Maughan B, Iervolino AC, Collishaw S (2005) Time trends in child and adolescent mental disorders. Current opinion in psychiatry 18:381-385
Olsen G, Church TR, Hansen KJ, Burris JM, Butenhoff JL, JH M (2004) Quantitative evaluation of perfluorooctanesulfonate (PFOS) and other fluorochemicals in the serum of children. Journal of Children's Health:53-76
Olsen GW, Burris JM, Ehresman DJ, Froehlich JW, Seacat AM, Butenhoff JL, Zobel LR (2007) Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environmental health perspectives 115:1298-1305
Perera F, Herbstman J (2011) Prenatal environmental exposures, epigenetics, and disease. Reproductive toxicology (Elmsford, NY) 31:363-373
Power MC, Webster TF, Baccarelli AA, Weisskopf MG (2013) Cross-sectional association between polyfluoroalkyl chemicals and cognitive limitation in the National Health and Nutrition Examination Survey. Neuroepidemiology 40:125-132
Prevedouros K, Cousins IT, Buck RC, Korzeniowski SH (2006) Sources, fate and transport of perfluorocarboxylates. Environ Sci Technol 40:32-44
Quaak I, de Cock M, de Boer M, Lamoree M, Leonards P, van de Bor M (2016) Prenatal Exposure to Perfluoroalkyl Substances and Behavioral Development in Children. International journal of environmental research and public health 13
Rumbaugh G, Miller CA (2011) Epigenetic changes in the brain: measuring global histone modifications. Methods in molecular biology (Clifton, NJ) 670:263-274
Sato I, Kawamoto K, Nishikawa Y, Tsuda S, Yoshida M, Yaegashi K, Saito N, Liu W, Jin Y (2009) Neurotoxicity of perfluorooctane sulfonate (PFOS) in rats and mice after single oral exposure. J Toxicol Sci 34:569-574
Segev H, Memili E, First NL (2001) Expression patterns of histone deacetylases in bovine oocytes and early embryos, and the effect of their inhibition on embryo development. Zygote 9:123-133
Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M, Kurdistani SK (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435:1262-1266
Spencer VA, Davie JR (1999) Role of covalent modifications of histones in regulating gene expression. Gene 240:1-12
Stahl T, Mattern D, Brunn H (2011) Toxicology of perfluorinated compounds. Environmental Sciences Europe 23:1-52
Steenland K, Fletcher T, Savitz DA (2010) Epidemiologic evidence on the health effects of perfluorooctanoic acid (PFOA). Environmental health perspectives 118:1100-1108
Stein CR, Savitz DA, Bellinger DC (2014) Perfluorooctanoate exposure in a highly exposed community and parent and teacher reports of behaviour in 6-12-year-old children. Paediatric and perinatal epidemiology 28:146-156
Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Barbee BD, Richards JH, Butenhoff JL, Stevenson LA, Lau C (2003) Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. I: maternal and prenatal evaluations. Toxicological sciences : an official journal of the Society of Toxicology 74:369-381
Thoma F, Koller T, Klug A (1979) Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. The Journal of cell biology 83:403-427
Trudel D, Horowitz L, Wormuth M, Scheringer M, Cousins IT, Hungerbuhler K (2008) Estimating consumer exposure to PFOS and PFOA. Risk Anal 28:251-269
Turner BM (2000) Histone acetylation and an epigenetic code. BioEssays : news and reviews in molecular, cellular and developmental biology 22:836-845
USEPA (2010) Basic Information on Perfluorooctanoic Acid (PFOA) and Fluorinated Telomers
Vallianatos CN, Iwase S (2015) Disrupted intricacy of histone H3K4 methylation in neurodevelopmental disorders. Epigenomics 7:503-519
Vanden Heuvel JP, Kuslikis BI, Van Rafelghem MJ, Peterson RE (1991) Tissue distribution, metabolism, and elimination of perfluorooctanoic acid in male and female rats. J Biochem Toxicol 6:83-92
Vested A, Ramlau-Hansen CH, Olsen SF, Bonde JP, Kristensen SL, Halldorsson TI, Becher G, Haug LS, Ernst EH, Toft G (2013) Associations of in utero exposure to perfluorinated alkyl acids with human semen quality and reproductive hormones in adult men. Environmental health perspectives 121:453-458
Vestergren R, Cousins IT (2009) Tracking the pathways of human exposure to perfluorocarboxylates. Environ Sci Technol 43:5565-5575
Volkel P, Angrand PO (2007) The control of histone lysine methylation in epigenetic regulation. Biochimie 89:1-20
Vuong AM, Yolton K, Webster GM, Sjodin A, Calafat AM, Braun JM, Dietrich KN, Lanphear BP, Chen A (2016) Prenatal polybrominated diphenyl ether and perfluoroalkyl substance exposures and executive function in school-age children. Environ Res 147:556-564
Watkins DJ, Wellenius GA, Butler RA, Bartell SM, Fletcher T, Kelsey KT (2014) Associations between serum perfluoroalkyl acids and LINE-1 DNA methylation. Environ Int 63:71-76
Weinfurtner K, Kördel W, Bücking M (2008) Untersuchungen zum Übergang von PFT aus belasteten Böden in Pflanzen. Bodenschutz Ausgabe 03
Wu YT, Chen WJ, Hsieh WS, Chen PC, Liao HF, Su YN, Jeng SF (2012) Maternal-reported behavioral and emotional problems in Taiwanese preschool children. Research in developmental disabilities 33:866-873
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49949-
dc.description.abstract背景及目的:全氟碳化物會穿透胎盤,可能造成兒童產前暴露之危害,尤其是在懷孕期間暴露全氟辛烷磺酸和全氟辛酸,可能會對兒童的發展造成不良健康影響,而此影響可能不是經由基因損害而導致,可能是由一個潛在的表基因機制所調控。組蛋白修飾會影響染色質的結構,與基因體的不穩定性和轉錄活性有關。產前全氟碳化物的暴露可能會改變表基因機制,因此本研究的目的為探討產前全氟碳化物的暴露與組蛋白修飾、兒童行為發展之相關性。
材料與方法:本研究採用2004年到2005年間所收集的臺灣出生長期追蹤世代研究,經過篩選後一共有91對母嬰配對納入研究,並完成長期追蹤、暴露測量以及樣本收集。臍帶血中的全氟辛酸、全氟辛烷磺酸、全氟癸酸和全氟壬酸的濃度是使用超高效液相層析串聯質譜法分析。兩歲兒童的行為發展則是利用一歲半至五歲的兒童行為檢核表所量測,並且利用西方墨點法分析兩歲兒童的組蛋白修飾H3K4me3, H3K27me3與H3K9me3之程度。本研究使用單一與多重線性回歸校正相關干擾因子之後進行全氟碳化物、組蛋白修飾與兩歲兒童行為發展之關聯性探討。
結果:只有自然對數轉換後的全氟癸酸與兒童情緒反應有顯著相關 [ß值 (95% 信賴區間)= -0.45 (-0.89, -0.01), p=0.04]。在校正相關干擾因子後,全氟碳化物與兩歲兒童行為之發展沒有顯著的線性相關,但是具有性別差異。在男孩中,全氟辛酸與兒童情緒反應 [adjusted ß (95% CI)= 1.47 (0.22, 2.71), p=0.02] 及焦慮/沮喪問題 [adjusted ß (95% CI)= 1.70 (0.36, 3.04), p=0.02] 有顯著相關;全氟癸酸與注意力問題有顯著相關 [adjusted ß (95% CI)= 0.52 (0.10. 0.93), p=0.02]。而在女孩中,全氟辛酸與退縮行為達到統計上顯著相關 [adjusted ß (95% CI)= 1.03 (0.05, 2.01), p=0.02]。全氟辛酸的濃度會影響組蛋白修飾H3K27me3 的程度,且達統計顯著相關[adjusted ß (95% CI)= -1.73(-3.31, -0.15), p=0.03]。全氟辛酸濃度最高組與參考組相比,會造成組蛋白修飾H3K27me3 [多重校正之ß值(95%信賴區間)= -4.38 (-7.93, -0.84)] 與H3K9me3 [-2.40 (-4.37, -0.43)] 的程度顯著降低。組蛋白修飾與兒童行為之發展則無統計上顯著相關。
結論:產前全氟碳化物的暴露可能會影響兒童行為發展且具有性別差異。產前全氟碳化物的暴露會造成組蛋白修飾的程度降低,表示全氟碳化物可能會誘發表基因遺傳的變化和潛在影響疾病的結果。但是需要更進一步的研究來證實這些發現。
zh_TW
dc.description.abstractBackground: Perfluoroalkyl substances (PFASs) can penetrate placenta and make prenatal exposure of potential concern. Perfluorooctyl sulfonate (PFOS) and perfluorooctanoic acid (PFOA) exposures, especially during pregnancy, were associated with adverse childhood development without DNA damage, suggesting a potential epigenetic regulation. Histone modifications affect chromatin configuration and are associated with genomic instability and transcription activities. Life-long effects of in utero PFASs exposures may be mediated via epigenetic changes. The aim of the study was to investigate the associations among in utero exposures to PFASs, histone modifications and children's behavior.
Methods: The study was a follow-up study from the Taiwan Birth Panel Study (TBPS), including children born between July 2004 and June 2005 in four hospitals in Taipei city and county. A total of 91 mother-infant pairs completed follow-up information, exposure measurements and sample collection. Cord blood plasma PFOA, PFOS,  perfluorononanoic acid (PFNA) and perfluoroundecanoic acid (PFUA) were analyzed by ultraperformance liquid chromatography-tandem mass spectrometry (UPCL-MS/MS). Children’s behavior problems at 2 years of age were measured by the child behavior checklist for ages 1.5-5 (CBCL/1.5-5). Global histone H3 at lysine 4 residue trimethylation (H3K4me3), histone H3 at lysine 27 residue trimethylation (H3K27me3) and histone H3 at lysine 9 residue trimethylation (H3K9me3) levels were measured from blood leukocytes of 2-year-old children. Simple and multiple regression models adjusting for potential confounders were used to investigate the relationships among PFASs, histone modifications and behavior outcomes.
Results: Only prenatal PFUA concentrations in natural log transformed were correlated with emotionally reactive [ß (95% CI)= -0.45 (-0.89, -0.01), p=0.04]. After adjusting for potential confounders, no statistical linear association was shown between PFASs and child behavior problems, but had sex-specific patterns. Among boys, PFOA is associated with emotionally reactive problems [adjusted ß (95% CI)= 1.47 (0.22, 2.71), p=0.02] and anxious/depressed problems [adjusted ß (95% CI)= 1.70 (0.36, 3.04), p=0.02]; PFNA is associated with attention problems [adjusted ß (95% CI)= 0.52 (0.10. 0.93), p=0.02]. Among girls, lnPFOA is correlated with withdrawn problems [adjusted ß (95% CI)= 1.03 (0.05, 2.01), p=0.02]. Global H3K27me3 was correlated with lnPFOA [adjusted ß (95% CI)= -1.73(-3.31, -0.15), p=0.03]. The highest PFOA levels are associated with global H3K27me3 [adjusted ß (95% CI)= -4.38 (-7.93, -0.84)] and H3K9me3 [-2.40 (-4.37, -0.43)] levels comparing to the lowest group. No association was observed between global histone modification levels and children's behavior problems.
Conclusion: These data suggest that prenatal PFASs exposure might be associated with children's behavior problems of the CBCL at age 2 and have a sex-specific pattern. Prenatal exposures to PFASs were associated with decreased global histone modification levels, suggesting that PFASs may induce epigenetic changes and potentially influence disease outcomes later in life. Further studies are needed to confirm these findings.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:26:39Z (GMT). No. of bitstreams: 1
ntu-105-R02841017-1.pdf: 1090626 bytes, checksum: 80c0e4cb4f75fa05b07d7849d3995662 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents中文摘要.................................................I
Abstract..............................................III
Table of Contents......................................VI
List of Tables.......................................VIII
List of Figures.........................................X
Chapter 1. General Introduction.........................1
1.1 Prenatal environmental exposures....................1
1.2 Perfluoroalkyl substances (PFASs)...................2
1.3 Epigenetics: histone modifications..................5
1.4 Behavioral development..............................6
1.5 Study aims..........................................7
Chapter 2. Materials and Methods.......................10
2.1 Study design.......................................10
2.2 Study population...................................10
2.3 Biospecimen........................................12
2.4 Questionnaires.....................................12
2.5 Analysis of perfluoroalkyl substances..............13
2.6 Measurement of global histone modification levels..14
2.7 Child behavior measurements........................16
2.8 Statistics.........................................17
Chapter 3. Results.....................................19
Chapter 4. Discussion..................................25
4.1 PFASs and children behavior development............25
4.2 PFASs and histone modifications....................28
4.3 Histone modifications and children’s behavior......31
4.4 Strengths..........................................32
4.5 Limitations........................................33
Conclusion.............................................34
References.............................................49
Appendix...............................................55
dc.language.isoen
dc.subject產前暴露zh_TW
dc.subject產前暴露zh_TW
dc.subject全氟碳化物zh_TW
dc.subject兒童行為發展zh_TW
dc.subject表基因修飾zh_TW
dc.subject組蛋白甲基化zh_TW
dc.subject組蛋白甲基化zh_TW
dc.subject西方墨點法zh_TW
dc.subject表基因修飾zh_TW
dc.subject西方墨點法zh_TW
dc.subject兒童行為發展zh_TW
dc.subject全氟碳化物zh_TW
dc.subjectprenatal exposureen
dc.subjectperfluoroalkyl substancesen
dc.subjectchild behavioren
dc.subjectepigeneticen
dc.subjecthistone modificationen
dc.subjectwestern bloten
dc.subjectprenatal exposureen
dc.subjectperfluoroalkyl substancesen
dc.subjectchild behavioren
dc.subjectepigeneticen
dc.subjecthistone modificationen
dc.subjectwestern bloten
dc.title產前全氟碳化物暴露對於組蛋白修飾及兒童行為發展間之相關性探討zh_TW
dc.titleImpact of Prenatal Exposure to Perfluoroalkyl Substances on Children's Behavior and Global Histone Modification Levelsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.coadvisor陳保中(Pau-Chung Chen)
dc.contributor.oralexamcommittee陳美蓮(Mei-Lien Chen),簡伶朱(Ling-Chu Chien),黃憲松(Hsien-Sung Huang)
dc.subject.keyword產前暴露,全氟碳化物,兒童行為發展,表基因修飾,組蛋白甲基化,西方墨點法,zh_TW
dc.subject.keywordprenatal exposure,perfluoroalkyl substances,child behavior,epigenetic,histone modification,western blot,en
dc.relation.page66
dc.identifier.doi10.6342/NTU201602236
dc.rights.note有償授權
dc.date.accepted2016-08-10
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept職業醫學與工業衛生研究所zh_TW
顯示於系所單位:職業醫學與工業衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
1.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved