請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49947
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 徐立中(Li-Chung Hsu) | |
dc.contributor.author | Yen-Kai Chen | en |
dc.contributor.author | 陳彥剴 | zh_TW |
dc.date.accessioned | 2021-06-15T12:26:37Z | - |
dc.date.available | 2021-08-26 | |
dc.date.copyright | 2016-08-26 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-10 | |
dc.identifier.citation | Alwan, H. A. and J. E. van Leeuwen (2007). 'UBPY-mediated epidermal growth factor receptor (EGFR) de-ubiquitination promotes EGFR degradation.' J Biol Chem 282(3): 1658-1669.
Anderson, R. G. (1998). 'The caveolae membrane system.' Annu Rev Biochem 67: 199-225. Araki, T. and J. Milbrandt (2003). 'ZNRF proteins constitute a family of presynaptic E3 ubiquitin ligases.' J Neurosci 23(28): 9385-9394. Araki, T., R. Nagarajan and J. Milbrandt (2001). 'Identification of genes induced in peripheral nerve after injury. Expression profiling and novel gene discovery.' J Biol Chem 276(36): 34131-34141. Ayuso-Sacido, A., J. A. Moliterno, S. Kratovac, G. S. Kapoor, D. M. O'Rourke, E. C. Holland, J. M. Garcia-Verdugo, N. S. Roy and J. A. Boockvar (2010). 'Activated EGFR signaling increases proliferation, survival, and migration and blocks neuronal differentiation in post-natal neural stem cells.' J Neurooncol 97(3): 323-337. Batzer, A. G., D. Rotin, J. M. Urena, E. Y. Skolnik and J. Schlessinger (1994). 'Hierarchy of binding sites for Grb2 and Shc on the epidermal growth factor receptor.' Mol Cell Biol 14(8): 5192-5201. Castellano, E. and J. Downward (2011). 'RAS Interaction with PI3K: More Than Just Another Effector Pathway.' Genes Cancer 2(3): 261-274. Chardin, P., J. H. Camonis, N. W. Gale, L. van Aelst, J. Schlessinger, M. H. Wigler and D. Bar-Sagi (1993). 'Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2.' Science 260(5112): 1338-1343. Chen, D. and G. Che (2014). 'Value of caveolin-1 in cancer progression and prognosis: Emphasis on cancer-associated fibroblasts, human cancer cells and mechanism of caveolin-1 expression (Review).' Oncol Lett 8(4): 1409-1421. Chu, Y. W., P. C. Yang, S. C. Yang, Y. C. Shyu, M. J. Hendrix, R. Wu and C. W. Wu (1997). 'Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line.' Am J Respir Cell Mol Biol 17(3): 353-360. Chung, B. M., S. M. Raja, R. J. Clubb, C. Tu, M. George, V. Band and H. Band (2009). 'Aberrant trafficking of NSCLC-associated EGFR mutants through the endocytic recycling pathway promotes interaction with Src.' BMC Cell Biol 10: 84. Chung, B. M., S. M. Raja, R. J. Clubb, C. Tu, M. George, V. Band and H. Band (2009). 'Aberrant trafficking of NSCLC-associated EGFR mutants through the endocytic recycling pathway promotes interaction with Src@.' Bmc Cell Biology 10. Clague, M. J., H. Liu and S. Urbe (2012). 'Governance of endocytic trafficking and signaling by reversible ubiquitylation.' Dev Cell 23(3): 457-467. Clague, M. J. and S. Urbe (2010). 'Ubiquitin: same molecule, different degradation pathways.' Cell 143(5): 682-685. Couet, J., L. Shengwen, T. Okamoto, P. E. Scherer and M. P. Lisanti (1997). 'Molecular and cellular biology of caveolae paradoxes and plasticities.' Trends Cardiovasc Med 7(4): 103-110. Deng, X., B. Wu, K. Xiao, J. Kang, J. Xie, X. Zhang and Y. Fan (2015). 'MiR-146b-5p promotes metastasis and induces epithelial-mesenchymal transition in thyroid cancer by targeting ZNRF3.' Cell Physiol Biochem 35(1): 71-82. Dube, N., A. Bourdeau, K. M. Heinonen, A. Cheng, A. L. Loy and M. L. Tremblay (2005). 'Genetic ablation of protein tyrosine phosphatase 1B accelerates lymphomagenesis of p53-null mice through the regulation of B-cell development.' Cancer Res 65(21): 10088-10095. Eden, E. R., F. Huang, A. Sorkin and C. E. Futter (2012). 'The role of EGF receptor ubiquitination in regulating its intracellular traffic.' Traffic 13(2): 329-337. Eden, E. R., I. J. White, A. Tsapara and C. E. Futter (2010). 'Membrane contacts between endosomes and ER provide sites for PTP1B-epidermal growth factor receptor interaction.' Nat Cell Biol 12(3): 267-272. Fu, W., C. Wang, Z. Y. Liu, E. H. Wang and J. Liu (2014). 'Caveolin-1 deficiency enhances cancer cell transendothelial migration and promotes lung metastasis through upregulation of VCAM-1 in lung endothelial cells.' Faseb Journal 28(1). Grundner-Culemann, K., J. N. Dybowski, M. Klammer, A. Tebbe, C. Schaab and H. Daub (2016). 'Comparative proteome analysis across non-small cell lung cancer cell lines.' J Proteomics 130: 1-10. Hao, H. X., Y. Xie, Y. Zhang, O. Charlat, E. Oster, M. Avello, H. Lei, C. Mickanin, D. Liu, H. Ruffner, X. Mao, Q. Ma, R. Zamponi, T. Bouwmeester, P. M. Finan, M. W. Kirschner, J. A. Porter, F. C. Serluca and F. Cong (2012). 'ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner.' Nature 485(7397): 195-200. Hirano, S., M. Kawasaki, H. Ura, R. Kato, C. Raiborg, H. Stenmark and S. Wakatsuki (2006). 'Double-sided ubiquitin binding of Hrs-UIM in endosomal protein sorting.' Nat Struct Mol Biol 13(3): 272-277. Hirst, J., G. H. H. Borner, J. Edgar, M. Y. Hein, M. Mann, F. Buchholz, R. Antrobus and M. S. Robinson (2013). 'Interaction between AP-5 and the hereditary spastic paraplegia proteins SPG11 and SPG15.' Molecular Biology of the Cell 24(16): 2558-2569. Hoxhaj, G., A. Najafov, R. Toth, D. G. Campbell, A. R. Prescott and C. MacKintosh (2012). 'ZNRF2 is released from membranes by growth factors and, together with ZNRF1, regulates the Na+/K+ATPase.' J Cell Sci 125(Pt 19): 4662-4675. Huang, F., L. K. Goh and A. Sorkin (2007). 'EGF receptor ubiquitination is not necessary for its internalization.' Proc Natl Acad Sci U S A 104(43): 16904-16909. Huang, F., D. Kirkpatrick, X. Jiang, S. Gygi and A. Sorkin (2006). 'Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain.' Mol Cell 21(6): 737-748. Huang, F., X. Zeng, W. Kim, M. Balasubramani, A. Fortian, S. P. Gygi, N. A. Yates and A. Sorkin (2013). 'Lysine 63-linked polyubiquitination is required for EGF receptor degradation.' Proc Natl Acad Sci U S A 110(39): 15722-15727. Hynes, N. E. and H. A. Lane (2005). 'ERBB receptors and cancer: the complexity of targeted inhibitors.' Nat Rev Cancer 5(5): 341-354. Jiang, X., F. Huang, A. Marusyk and A. Sorkin (2003). 'Grb2 regulates internalization of EGF receptors through clathrin-coated pits.' Mol Biol Cell 14(3): 858-870. Joazeiro, C. A. and A. M. Weissman (2000). 'RING finger proteins: mediators of ubiquitin ligase activity.' Cell 102(5): 549-552. Klein, P., D. Mattoon, M. A. Lemmon and J. Schlessinger (2004). 'A structure-based model for ligand binding and dimerization of EGF receptors.' Proc Natl Acad Sci U S A 101(4): 929-934. Lai, T.-Y. (July, 2015). 'The novel regulation of Toll-like receptor 4.' Unpublished doctoral thesis. Lei, Z. J., J. Wang, H. L. Xiao, Y. Guo, T. Wang, Q. Li, L. Liu, X. Luo, L. L. Fan, L. Lin, C. Y. Mao, S. N. Wang, Y. L. Wei, C. H. Lan, J. Jiang, X. J. Yang, P. D. Liu, D. F. Chen and B. Wang (2015). 'Lysine-specific demethylase 1 promotes the stemness and chemoresistance of Lgr5(+) liver cancer initiating cells by suppressing negative regulators of beta-catenin signaling.' Oncogene 34(24): 3188-3198. Levkowitz, G., H. Waterman, E. Zamir, Z. Kam, S. Oved, W. Y. Langdon, L. Beguinot, B. Geiger and Y. Yarden (1998). 'c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor.' Genes Dev 12(23): 3663-3674. Liu, Y. W., V. Lukiyanchuk and S. L. Schmid (2011). 'Common membrane trafficking defects of disease-associated dynamin 2 mutations.' Traffic 12(11): 1620-1633. Lu, Z., S. Ghosh, Z. Wang and T. Hunter (2003). 'Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion.' Cancer Cell 4(6): 499-515. Mahajan, K. and N. P. Mahajan (2012). 'PI3K-independent AKT activation in cancers: a treasure trove for novel therapeutics.' J Cell Physiol 227(9): 3178-3184. Mattoon, D. R., B. Lamothe, I. Lax and J. Schlessinger (2004). 'The docking protein Gab1 is the primary mediator of EGF-stimulated activation of the PI-3K/Akt cell survival pathway.' BMC Biol 2: 24. McCubrey, J. A., L. S. Steelman, W. H. Chappell, S. L. Abrams, E. W. Wong, F. Chang, B. Lehmann, D. M. Terrian, M. Milella, A. Tafuri, F. Stivala, M. Libra, J. Basecke, C. Evangelisti, A. M. Martelli and R. A. Franklin (2007). 'Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance.' Biochim Biophys Acta 1773(8): 1263-1284. Meijer, I. M., W. van Rotterdam, E. J. van Zoelen and J. E. van Leeuwen (2012). 'Recycling of EGFR and ErbB2 is associated with impaired Hrs tyrosine phosphorylation and decreased deubiquitination by AMSH.' Cell Signal 24(11): 1981-1988. Miaczynska, M., S. Christoforidis, A. Giner, A. Shevchenko, S. Uttenweiler-Joseph, B. Habermann, M. Wilm, R. G. Parton and M. Zerial (2004). 'APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment.' Cell 116(3): 445-456. Moscatello, D. K., M. Holgado-Madruga, A. K. Godwin, G. Ramirez, G. Gunn, P. W. Zoltick, J. A. Biegel, R. L. Hayes and A. J. Wong (1995). 'Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors.' Cancer Res 55(23): 5536-5539. Nicholson, K. M. and N. G. Anderson (2002). 'The protein kinase B/Akt signalling pathway in human malignancy.' Cell Signal 14(5): 381-395. Niendorf, S., A. Oksche, A. Kisser, J. Lohler, M. Prinz, H. Schorle, S. Feller, M. Lewitzky, I. Horak and K. P. Knobeloch (2007). 'Essential role of ubiquitin-specific protease 8 for receptor tyrosine kinase stability and endocytic trafficking in vivo.' Mol Cell Biol 27(13): 5029-5039. Ohgaki, H., P. Dessen, B. Jourde, S. Horstmann, T. Nishikawa, P. L. Di Patre, C. Burkhard, D. Schuler, N. M. Probst-Hensch, P. C. Maiorka, N. Baeza, P. Pisani, Y. Yonekawa, M. G. Yasargil, U. M. Lutolf and P. Kleihues (2004). 'Genetic pathways to glioblastoma: a population-based study.' Cancer Res 64(19): 6892-6899. Osaki, M., M. Oshimura and H. Ito (2004). 'PI3K-Akt pathway: its functions and alterations in human cancer.' Apoptosis 9(6): 667-676. Park, S. Y. and X. Guo (2014). 'Adaptor protein complexes and intracellular transport.' Biosci Rep 34(4). Peng, D., J. Wang, R. Zhang, F. Jiang, S. Tang, M. Chen, J. Yan, X. Sun, S. Wang, T. Wang, D. Yan, Y. Bao, C. Hu and W. Jia (2015). 'Common variants in or near ZNRF1, COLEC12, SCYL1BP1 and API5 are associated with diabetic retinopathy in Chinese patients with type 2 diabetes.' Diabetologia 58(6): 1231-1238. Pickart, C. M. and M. J. Eddins (2004). 'Ubiquitin: structures, functions, mechanisms.' Biochim Biophys Acta 1695(1-3): 55-72. Razi, M. and C. E. Futter (2006). 'Distinct roles for Tsg101 and Hrs in multivesicular body formation and inward vesiculation.' Mol Biol Cell 17(8): 3469-3483. Roepstorff, K., L. Grovdal, M. Grandal, M. Lerdrup and B. van Deurs (2008). 'Endocytic downregulation of ErbB receptors: mechanisms and relevance in cancer.' Histochem Cell Biol 129(5): 563-578. Row, P. E., I. A. Prior, J. McCullough, M. J. Clague and S. Urbe (2006). 'The ubiquitin isopeptidase UBPY regulates endosomal ubiquitin dynamics and is essential for receptor down-regulation.' J Biol Chem 281(18): 12618-12624. Saitoh, F. and T. Araki (2010). 'Proteasomal degradation of glutamine synthetase regulates schwann cell differentiation.' J Neurosci 30(4): 1204-1212. Sander, J. D. and J. K. Joung (2014). 'CRISPR-Cas systems for editing, regulating and targeting genomes.' Nat Biotechnol 32(4): 347-355. Sebolt-Leopold, J. S. (2008). 'Advances in the development of cancer therapeutics directed against the RAS-mitogen-activated protein kinase pathway.' Clin Cancer Res 14(12): 3651-3656. Shang, Z., Y. Zhao, K. Zhou, Y. Xu and W. Huang (2013). 'PAX5 alteration-associated gene-expression signatures in B-cell acute lymphoblastic leukemia.' Int J Hematol 97(5): 599-603. Sharma, S. V., D. W. Bell, J. Settleman and D. A. Haber (2007). 'Epidermal growth factor receptor mutations in lung cancer.' Nat Rev Cancer 7(3): 169-181. Shi, J., X. Jiang, Z. Yu, G. He, H. Ning, Z. Wu, Y. Cai, H. Yu and A. Chen (2016). 'ZNRF3 contributes to the growth of lung carcinoma via inhibiting Wnt/beta-catenin pathway and is regulated by miR-93.' Tumour Biol 37(3): 3051-3057. Shtiegman, K., B. S. Kochupurakkal, Y. Zwang, G. Pines, A. Starr, A. Vexler, A. Citri, M. Katz, S. Lavi, Y. Ben-Basat, S. Benjamin, S. Corso, J. Gan, R. B. Yosef, S. Giordano and Y. Yarden (2007). 'Defective ubiquitinylation of EGFR mutants of lung cancer confers prolonged signaling.' Oncogene 26(49): 6968-6978. Sigismund, S., V. Algisi, G. Nappo, A. Conte, R. Pascolutti, A. Cuomo, T. Bonaldi, E. Argenzio, L. G. Verhoef, E. Maspero, F. Bianchi, F. Capuani, A. Ciliberto, S. Polo and P. P. Di Fiore (2013). 'Threshold-controlled ubiquitination of the EGFR directs receptor fate.' EMBO J 32(15): 2140-2157. Sigismund, S., T. Woelk, C. Puri, E. Maspero, C. Tacchetti, P. Transidico, P. P. Di Fiore and S. Polo (2005). 'Clathrin-independent endocytosis of ubiquitinated cargos.' Proc Natl Acad Sci U S A 102(8): 2760-2765. Sorkin, A. (2004). 'Cargo recognition during clathrin-mediated endocytosis: a team effort.' Curr Opin Cell Biol 16(4): 392-399. Sorkin, A. and M. von Zastrow (2009). 'Endocytosis and signalling: intertwining molecular networks.' Nat Rev Mol Cell Biol 10(9): 609-622. Sousa, L. P., I. Lax, H. Shen, S. M. Ferguson, P. De Camilli and J. Schlessinger (2012). 'Suppression of EGFR endocytosis by dynamin depletion reveals that EGFR signaling occurs primarily at the plasma membrane.' Proc Natl Acad Sci U S A 109(12): 4419-4424. Stuible, M., J. V. Abella, M. Feldhammer, M. Nossov, V. Sangwan, B. Blagoev, M. Park and M. L. Tremblay (2010). 'PTP1B targets the endosomal sorting machinery: dephosphorylation of regulatory sites on the endosomal sorting complex required for transport component STAM2.' J Biol Chem 285(31): 23899-23907. Sun, Y., A. C. Hedman, X. Tan, N. J. Schill and R. A. Anderson (2013). 'Endosomal type Igamma PIP 5-kinase controls EGF receptor lysosomal sorting.' Dev Cell 25(2): 144-155. Sunpaweravong, P., S. Sunpaweravong, P. Puttawibul, W. Mitarnun, C. Zeng, A. E. Baron, W. Franklin, S. Said and M. Varella-Garcia (2005). 'Epidermal growth factor receptor and cyclin D1 are independently amplified and overexpressed in esophageal squamous cell carcinoma.' J Cancer Res Clin Oncol 131(2): 111-119. Teis, D., N. Taub, R. Kurzbauer, D. Hilber, M. E. de Araujo, M. Erlacher, M. Offterdinger, A. Villunger, S. Geley, G. Bohn, C. Klein, M. W. Hess and L. A. Huber (2006). 'p14-MP1-MEK1 signaling regulates endosomal traffic and cellular proliferation during tissue homeostasis.' J Cell Biol 175(6): 861-868. Tomas, A., C. E. Futter and E. R. Eden (2014). 'EGF receptor trafficking: consequences for signaling and cancer.' Trends Cell Biol 24(1): 26-34. Tong, J., Y. Sydorskyy, J. R. St-Germain, P. Taylor, M. S. Tsao and M. F. Moran (2013). 'Odin (ANKS1A) modulates EGF receptor recycling and stability.' PLoS One 8(6): e64817. Tran, D. D., H. R. Russell, S. L. Sutor, J. van Deursen and R. J. Bram (2003). 'CAML is required for efficient EGF receptor recycling.' Dev Cell 5(2): 245-256. Visser Smit, G. D., T. L. Place, S. L. Cole, K. A. Clausen, S. Vemuganti, G. Zhang, J. G. Koland and N. L. Lill (2009). 'Cbl controls EGFR fate by regulating early endosome fusion.' Sci Signal 2(102): ra86. Wakatsuki, S. and T. Araki (2016). 'NADPH oxidases promote apoptosis by activating ZNRF1 ubiquitin ligase in neurons treated with an exogenously applied oxidant.' Commun Integr Biol 9(2): e1143575. Wakatsuki, S., A. Furuno, M. Ohshima and T. Araki (2015). 'Oxidative stress-dependent phosphorylation activates ZNRF1 to induce neuronal/axonal degeneration.' J Cell Biol 211(4): 881-896. Wakatsuki, S., F. Saitoh and T. Araki (2011). 'ZNRF1 promotes Wallerian degeneration by degrading AKT to induce GSK3B-dependent CRMP2 phosphorylation.' Nat Cell Biol 13(12): 1415-1423. Wang, B., J. Liu, L. N. Ma, H. L. Xiao, Y. Z. Wang, Y. Li, Z. Wang, L. Fan, C. Lan, M. Yang, L. Hu, Y. Wei, X. W. Bian, D. Chen and J. Wang (2013). 'Chimeric 5/35 adenovirus-mediated Dickkopf-1 overexpression suppressed tumorigenicity of CD44(+) gastric cancer cells via attenuating Wnt signaling.' J Gastroenterol 48(7): 798-808. Wang, B., Q. Wang, Z. Wang, J. Jiang, S. C. Yu, Y. F. Ping, J. Yang, S. L. Xu, X. Z. Ye, C. Xu, L. Yang, C. Qian, J. M. Wang, Y. H. Cui, X. Zhang and X. W. Bian (2014). 'Metastatic consequences of immune escape from NK cell cytotoxicity by human breast cancer stem cells.' Cancer Res 74(20): 5746-5757. Wilde, A., E. C. Beattie, L. Lem, D. A. Riethof, S. H. Liu, W. C. Mobley, P. Soriano and F. M. Brodsky (1999). 'EGF receptor signaling stimulates SRC kinase phosphorylation of clathrin, influencing clathrin redistribution and EGF uptake.' Cell 96(5): 677-687. Williams, R. L. and S. Urbe (2007). 'The emerging shape of the ESCRT machinery.' Nat Rev Mol Cell Biol 8(5): 355-368. Xu, N., Y. Lao, Y. Zhang and D. A. Gillespie (2012). 'Akt: a double-edged sword in cell proliferation and genome stability.' J Oncol 2012: 951724. Xue, G. and B. A. Hemmings (2013). 'PKB/Akt-dependent regulation of cell motility.' J Natl Cancer Inst 105(6): 393-404. Yoshida, K., M. Watanabe and S. Hatakeyama (2009). 'ZNRF1 interacts with tubulin and regulates cell morphogenesis.' Biochem Biophys Res Commun 389(3): 506-511. Zheng, B., P. Fiumara, Y. V. Li, G. Georgakis, V. Snell, M. Younes, J. N. Vauthey, A. Carbone and A. Younes (2003). 'MEK/ERK pathway is aberrantly active in Hodgkin disease: a signaling pathway shared by CD30, CD40, and RANK that regulates cell proliferation and survival.' Blood 102(3): 1019-1027. Zheng, B., P. Fiumara, Y. V. Li, G. Georgakis, V. Snell, M. Younes, J. N. Vauthey, A. Carbone and A. Younes (2003). 'MEK/ERK pathway is aberrantly active in Hodgkin disease: a signaling pathway shared by CD30, CD40, and RANK that regulates cell proliferation and survival.' Blood 102(3): 1019-1027. Zhou, Y., J. Lan, W. Wang, Q. Shi, Y. Lan, Z. Cheng and H. Guan (2013). 'ZNRF3 acts as a tumour suppressor by the Wnt signalling pathway in human gastric adenocarcinoma.' J Mol Histol 44(5): 555-563. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49947 | - |
dc.description.abstract | 表皮生長因子受體(EGFR)是一種受體酪胺酸激酶(RTK),並且參與在許多細胞代謝的過程當中,包括細胞的增生、分化與存活。表皮生長因子受體在細胞當中表現量的異常,以及訊息傳遞過度的活化會導致許多的疾病,例如:癌症;所以準確的調控表皮生長因子受體在細胞內的運輸與降解是相當重要的。有許多的證據指出表皮生長因子受體的磷酸化(phosphorylation)與泛素化(ubiquitination)會和它的運輸與降解的過程有關係,但是詳細的分子機制到目前為止還不清楚。最近我們發現了一個E3泛素接合酶ZNRF1蛋白,它可以在肺癌細胞當中去調控表皮生長因子受體的降解,因此我們想要進一步去探討ZNRF1是如何去調控表皮生長因子受體的運輸與降解。首先,我們在非小細胞肺癌細胞株A549中利用CRISPR/ Cas9的技術剔除ZNRF1基因,然後在這樣的細胞當中加入會促使表皮生長因子受體開始降解的表皮生長因子配體(EGF),我們發現表皮生長因子受體的降解會因此而減緩。然而,在這樣的細胞當中重新表現野生型(wild-type)的ZNRF1會使得表皮生長因子受體原本減緩的降解速率得到回復,但如果是表現酵素活性受到突變的ZNRF1則無法達到回復的效果;這樣的結果顯示ZNRF1的酵素活性對於調控表皮生長因子受體的降解是必須的。此外,我們發現ZNRF1會與表皮生長因子受體的酪胺酸激酶結構區(tyrosine kinase domain; TKD)有交互作用,並且會調控受體的泛素化。接著,我們發現了第五號銜接蛋白複合體(AP-5)的其中一個成員SPG11也會參與在表皮生長因子受體的降解過程,因為當我們在肺癌細胞中降低SPG11蛋白表現量的時候,同樣會減緩表皮生長因子受體的降解。雖然我們還需要許多的研究才能更全面性的了解ZNRF1調控表皮生長因子受體運輸和降解的機制;但總體而言,我們的實驗結果指出ZNRF1會與表皮生長因子受體(EGFR)產生交互作用,並且可能是藉由調控第五號銜接蛋白複合體(AP-5)來協助受體的運輸與降解,以達到調控表皮生長因子受體降解與訊息傳遞的平衡。 | zh_TW |
dc.description.abstract | Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase (RTK) that plays roles in numerous cellular processes, including cell proliferation, survival and differentiation. Downregulation or overactivation of EGFR has been associated with many human diseases, such as cancer. Endosomal trafficking and degradation of EGFR is crucial for controlling its downstream signaling. Mounting evidence suggests that ubiquitination and phosphorylation of EGFR are important for its trafficking and degradation, but the molecular mechanism remains unclear. We recently found an E3 ubiquitin ligase, ZNRF1, mediate EGFR degradation in lung cancer cell lines. Here, we aim to elucidate how ZNRF1 mediates EGFR trafficking and degradation. We first generated ZNRF1-/- A549 cells using the CRISPR/Cas9 system, and confirmed that EGF-triggered EGFR degradation was decreased in these cells. Reconstitution of wild-type, but not the catalytically inactive E3 ligase, ZNRF1 to ZNRF1-deleted cells restored the effect of ZNRF1-mediated EGFR degradation, suggesting a requirement of the E3 ubiquitin ligase in the ZNRF1-mediated EGFR trafficking. In addition, we found that ZNRF1 physically associated with the tyrosine kinase domain (TKD) of EGFR and regulated its ubiquitination. Depletion of SPG11, a component of the adaptor protein-5 (AP-5) complex, in A549 cells decreased ligand-induced EGFR degradation, suggesting also its involvement in EGFR degradation. Together, our data suggest that ZNRF1 interacts and controls EGFR trafficking and degradation possible through the AP-5 complex. Nevertheless, more studies are needed to completely understand the underlying mechanism by which ZNRF1 regulates EGFR trafficking and degradation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T12:26:37Z (GMT). No. of bitstreams: 1 ntu-105-R02448013-1.pdf: 3343179 bytes, checksum: 97d656edeff375a4f3632b37fa1038a1 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | Contents
口試委員會審定書 I 致謝 II 摘要 III Abstract IV Contents 1 Introduction 4 Epidermal Growth Factor Receptor (EGFR) and cancer 4 EGFR trafficking 5 The role of EGFR ubiquitination in trafficking 7 EGFR signaling 9 Zinc and RING finger protein 1 (ZNRF1) 12 Other members of ZNRF protein family 14 Specific aim 16 Materials and Methods 17 Antibodies and Reagents List 17 Plasmids 18 Primer list 20 Cell line, Cell culture and Transfection 20 Preparation of pseudo-typed lentiviruses and Infection 21 Generation of stable single cell clone 22 Preparation of whole cell lysate 22 Immunoblotting 23 Immunoprecipitation 24 RNA extraction and Reverse Transcription Quantitative PCR (RT-qPCR) 25 Cell Proliferation assay 25 Wound healing assay 26 Statistic analysis 26 Results 27 ZNRF1 regulates EGFR degradation in A549 cells 27 ZNRF1 deficiency enhances EGFR activation and signaling in A549 cells 28 ZNRF1 controls EGFR degradation requires its E3 ubiquitin ligase 29 ZNRF1 regulates cell proliferation and migration 30 ZNRF1 regulates ligand-triggered EGFR degradation in different lung cancer cells 31 EGFR interacts with ZNRF1 via its tyrosine kinase domain (TKD) 32 ZNRF1 regulates EGFR ubiquitination 33 SPG11 is involved in ligand-induced EGFR degradation 34 Discussion 35 Figures 41 Figure 1 41 Figure 2 43 Figure 3 45 Figure 4 46 Figure 5 48 Figure 6 50 Figure 7 52 Figure 8 53 Figure 9 55 Figure 10 57 Figure 11 58 Figure 12 60 Figure 13 61 Supplementary Figures 62 Supplementary Figure 1 62 Supplementary Figure 2 64 Supplementary Figure 3 65 Supplementary Figure 4 66 Supplementary Figure 5 67 References 68 | |
dc.language.iso | en | |
dc.title | ZNRF1在表皮生長因子受體的運輸與降解所扮演之角色 | zh_TW |
dc.title | The role of ZNRF1 in EGFR trafficking and degradation | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李明學(Ming-Shyue Lee),潘思樺(Szu-Hua Pan) | |
dc.subject.keyword | 表皮生長因子受體,表皮生長因子配體,受體酪胺酸激?,泛素化, | zh_TW |
dc.subject.keyword | ZNRF1,EGFR,EGF,RTK,ubiquitination, | en |
dc.relation.page | 74 | |
dc.identifier.doi | 10.6342/NTU201602044 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-10 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
顯示於系所單位: | 分子醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 3.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。