Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49940
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡凱康
dc.contributor.authorYi-Ting Guoen
dc.contributor.author郭奕廷zh_TW
dc.date.accessioned2021-06-15T12:26:31Z-
dc.date.available2016-08-24
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-08-10
dc.identifier.citation林泰佑、黃佳興、潘昶儒、宣大平 (2013) 原鄉部落高營養的紅寶石—水稻花蓮24號之育成與特性簡介。花蓮區農業專訊第八十三期 : 9-12
Berg, E.E., and J.L. Hamrick. 1997. Quantification of genetic diversity at allozyme loci. Can. J. For. Res. 27(3): 415–424.
Beukelaer, H.D., P. Smýkal, G.F. Davenport, and V. Fack. 2012. Core Hunter II: fast core subset selection based on multiple genetic diversity measures using Mixed Replica search. BMC Bioinformatics 13(1): 312.
Brown, A.H.D. 1989. Core collections: a practical approach to genetic resources management. Genome 31(2): 818–824.
Cavalli-Sforza, L.L., and A.W.F. Edwards. 1967. Phylogenetic analysis Models and estimation procedures. Am. J. Hum. Genet. 19(3): 233–257.
Franco, J., J. Crossa, M.L. Warburton, and S. Taba. 2006. Sampling Strategies for Conserving Maize Diversity When Forming Core Subsets Using Genetic Markers. Crop Sci. 46(2): 854–864.
Frankel, O.H., and A.H.D. Brown. 1984. Current plant genetic resources--a critical appraisal. p. 1–11. In: Genetic: New Frontiers. Oxford & IBH Publishing Co., New Delhi.
Frey, K.J. 1981. Capabilities and limitations of conventional plant breeding. p. 15–62. In: Genetic engineering for crop improvement. Rockefeller Foundation, New York.
Garris, A.J., T.H. Tai, J. Coburn, S. Kresovich, and S. McCouch. 2005. Genetic Structure and Diversity in Oryza sativa L. Genetics 169(3): 1631–1638.
Glaszmann, J.C. 1987. Isozymes and classification of Asian rice varieties. Theor. Appl. Genet. 74(1): 21–30.
Gouesnard, B., T.M. Bataillon, G. Decoux, C. Rozale, D.J. Schoen, and J.L. David. 2001. MSTRAT: An Algorithm for Building Germ Plasm Core Collections by Maximizing Allelic or Phenotypic Richness. J. Hered. 92(1): 93–94.
Hintum, T.J.L. van, A.H.D. Brown, C. Spillane, and T. Hodgkin. 2000. Core collections of plant genetic resources. International Plant Genetic Resources Institute, Rome, Italy.
Hu, J., J. Zhu, and H.M. Xu. 2000. Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops. Theor. Appl. Genet. 101(1–2): 264–268.
Jansen, J., and T. van Hintum. 2006. Genetic distance sampling: a novel sampling method for obtaining core collections using genetic distances with an application to cultivated lettuce. Theor. Appl. Genet. 114(3): 421–428.
Jobes, D.V., D.L. Hurley, and L.B. Thien. 1995. Plant DNA Isolation: A Method to Efficiently Remove Polyphenolics, Polysaccharides, and RNA. Taxon 44(3): 379–386.
Kaufman, L., and P.J. Rousseeuw. 1990. Agglomerative Nesting (Program AGNES). p. 199–252. In: Finding Groups in Data: An introdunction to cluster analysis. John Wiley & Sons, Inc.
Khush, G.S. 1997. Origin, dispersal, cultivation and variation of rice. Plant Mol. Biol. 35(1–2): 25–34.
Kim, K.-W., H.-K. Chung, G.-T. Cho, K.-H. Ma, D. Chandrabalan, J.-G. Gwag, T.-S. Kim, E.-G. Cho, and Y.-J. Park. 2007. PowerCore: a program applying the advanced M strategy with a heuristic search for establishing core sets. Bioinformatics 23(16): 2155–2162.
Mammadov, J., R. Aggarwal, R. Buyyarapu, and S. Kumpatla. 2012. SNP Markers and Their Impact on Plant Breeding, SNP Markers and Their Impact on Plant Breeding. Int. J. Plant Genomics 2012: e728398.
Mantegazza, R., M. Biloni, F. Grassi, B. Basso, B.-R. Lu, X.X. Cai, F. Sala, and A. Spada. 2008. Temporal Trends of Variation in Italian Rice Germplasm over the Past Two Centuries Revealed by AFLP and SSR Markers. Crop Sci. 48(5): 1832–1840.
Marita, J.M., J.M. Rodriguez, and J. Nienhuis. 2000. Development of an algorithm identifying maximally diverse core collections. Genet. Resour. Crop Evol. 47(5): 515–526.
Odong, T.L., J. van Heerwaarden, J. Jansen, T.J.L. van Hintum, and F.A. van Eeuwijk. 2011a. Statistical Techniques for Defining Reference Sets of Accessions and Microsatellite Markers. Crop Sci. 51: 2401–2411.
Odong, T.L., J. van Heerwaarden, J. Jansen, T.J.L. van Hintum, and F.A. van Eeuwijk. 2011b. Determination of genetic structure of germplasm collections: are traditional hierarchical clustering methods appropriate for molecular marker data? Theor. Appl. Genet. 123(2): 195–205.
Odong, T.L., J. Jansen, F.A. van Eeuwijk, and T.J.L. van Hintum. 2013. Quality of core collections for effective utilisation of genetic resources review, discussion and interpretation. Theor. Appl. Genet. 126(2): 289–305.
Panaud, O., X. Chen, and S.R. McCouch. 1996. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol. Gen. Genet. 252(5): 597–607.
Peterson, B.K., J.N. Weber, E.H. Kay, H.S. Fisher, and H.E. Hoekstra. 2012. Double Digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7(5): e37135.
Pongpanich, M., P.F. Sullivan, and J.-Y. Tzeng. 2010. A quality control algorithm for filtering SNPs in genome-wide association studies. Bioinforma. Oxf. Engl. 26(14): 1731–1737.
Powell, W., M. Morgante, C. Andre, M. Hanafey, J. Vogel, S. Tingey, and A. Rafalski. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed. 2(3): 225–238.
Price, A.L., N.J. Patterson, R.M. Plenge, M.E. Weinblatt, N.A. Shadick, and D. Reich. 2006. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38(8): 904–909.
Reif, J.C., A.E. Melchinger, and M. Frisch. 2005. Genetical and mathematical properties of similarity and dissimilarity coefficients applied in plant breeding and seed bank management. Crop Sci. 45(1): 1–7.
Rousseeuw, P.J. 1987. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20: 53–65.
Ruiz, M., P. Giraldo, C. Royo, and J.M. Carrillo. 2013. Creation and Validation of the Spanish Durum Wheat Core Collection. Crop Sci. 53(6): 2530–2537.
Schoen, D.J., and A.H. Brown. 1993. Conservation of allelic richness in wild crop relatives is aided by assessment of genetic markers. Proc. Natl. Acad. Sci. U. S. A. 90(22): 10623–10627.
Shannon, C.E. 1948. A Mathematical Theory of Communication. Bell Syst. Tech. J. 27(3): 379–423.
Takita, T. 1983. Breeding of a Rice Line with Extraordinarily Large Grains as a Genetic Source for High Yielding Varieties. Jpn. Agric. Res. Q. 17(2): 93–99.
Thachuk, C., J. Crossa, J. Franco, S. Dreisigacker, M. Warburton, and G.F. Davenport. 2009. Core Hunter: an algorithm for sampling genetic resources based on multiple genetic measures. BMC Bioinformatics 10: 243.
Upadhyaya, H.D., D. Yadav, N. Dronavalli, C.L.L. Gowda, and S. Singh. 2010. Mini core germplasm collections for infusing genetic diversity in plant breeding programs. Electron. J. Plant Breed. 1(4): 1294–1309.
Yan, W., J.N. Rutger, R.J. Bryant, H.E. Bockelman, R.G. Fjellstrom, M.-H. Chen, T.H. Tai, and A.M. McClung. 2007. Development and Evaluation of a Core Subset of the USDA Rice Germplasm Collection. Crop Sci. 47(2): 869–878.
Zhao, K., C.-W. Tung, G.C. Eizenga, M.H. Wright, M.L. Ali, A.H. Price, G.J. Norton, M.R. Islam, A. Reynolds, J. Mezey, A.M. McClung, C.D. Bustamante, and S.R. McCouch. 2011. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat. Commun. 2: 467.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49940-
dc.description.abstract核心收集系為少量、最小重覆,具有代表性的一組收集系。本研究使用96個以台灣栽培種為主的水稻收集系,以雙重限制酶切位相關序列定序 (double digest Restriction Associated DNA sequencing , ddRAD) 產生的1960筆SNP資料,轉換為遺傳距離後以不同的方法建立測試用核心收集系,在具有明確族群結構的水稻比較各個方法的優缺點,並以水稻44K SNP晶片413個收集系的36901筆SNP資料驗證結果。主要使用的方法為隨機取樣法、各種分層取樣法 (stratified sampling) 、以遺傳距離為基礎的Marita法、genetic distance optimization (GDOpt) 法以及以隨機局部搜索法 (stochastic local search) 建立核心收集系的軟體的 Core hunter (version 2.0),使用的主要評量標準為非核心的收集系與最近核心收集系的遺傳距離 (Average distance between each accession and nearest entry, A-NE) 以及核心收集系與其最近核心收集系的遺傳距離 (Average distance between each entry and the nearest neighboring entry, E-NE) ,A-NE在兩筆資料的表現上以GDOpt表現的最好,而E-NE則是以軟體Core hunter表現的最佳。但是E-NE數值容易受到次族群之間可能有基因組混雜的收集系影響,不適合用於具有強烈族群結構的水稻,而以A-NE及主成分分析各個次族群取樣到核心收集系的分佈總結,GDOpt為最適合用於建立水稻核心收集系的方法。zh_TW
dc.description.abstractCore collection is a limited subset of accessions representing the spectrum of the whole collection with minimum repetitiveness. In this study, 96 rice accessions were sequenced by double digest Restriction Associated DNA sequencing (ddRAD) and resulted 1960 Single Nucleotide Polymorphism (SNP) markers. Methods for constructing core collections include random sampling, stratified sampling, Marita’s method, genetic distance sampling (GDOpt) and Core hunter (version 2.0). Average distance between each accession and nearest entry (A-NE) and the average distance between each entry and the nearest neighboring entry (E-NE) are used as criteria for evaluating the effectiveness of the methods tested. The results indicate that while GDOpt performed best in A-NE, Core hunter performed best in E-NE. However, core collections constructed by Core hunter favored accessions that are outbreeds between rice subpopulations and thus E-NE may not be an appropriate criterion when subpopulations were evident in the accessions. As the A-NE being the sole criterion, GDOpt is the method of choice for construction of core collection even when subpopulations exist as in the case of rice. The results of 413 diverse accessions based on the publicly available data of 44K SNP chip study also agree with the conclusion above.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:26:31Z (GMT). No. of bitstreams: 1
ntu-105-R03621120-1.pdf: 1688025 bytes, checksum: b6b81dd2bbd45aa9841c4653d1de3247 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents第一章 前言 1
第二章 前人研究 3
一、核心收集系的基本想法 3
二、以分層取樣法建立核心收集系 3
三、以保存等位基因為目標建立核心收集系 5
四、以遺傳距離建立核心收集系的方法 8
五、以隨機搜索法建立核心收集系 10
六、評估核心收集系的標準 12
七、分子標誌與次世代定序技術的發展 15
第三章 材料與方法 16
一、試驗材料 16
二、SNP分子標誌的開發及篩選 17
三、SNP資料處理 18
四、建立核心收集系 19
五、以不同指數評估整體收集系與核心收集系的分佈 22
第四章 結果與討論 25
一、95個水稻收集系所建立核心收集系的結果 25
二、以44K SNP資料的413個收集系建立核心收集系的結果 38
三、無次族群結構資料的結果 49
第五章 結論與未來展望 56
參考文獻 58
附錄 62
dc.language.isozh-TW
dc.subject水稻zh_TW
dc.subject水稻zh_TW
dc.subject遺傳距離zh_TW
dc.subject核心收集系zh_TW
dc.subject主成分分析zh_TW
dc.subject遺傳距離zh_TW
dc.subject主成分分析zh_TW
dc.subject核心收集系zh_TW
dc.subjectprincipal component analysisen
dc.subjectgenetic distanceen
dc.subjectprincipal component analysisen
dc.subjectcore collectionen
dc.subjectriceen
dc.subjectgenetic distanceen
dc.subjectcore collectionen
dc.subjectriceen
dc.title建立水稻核心收集系的演算法比較zh_TW
dc.titleComparison of Algorithms for Constructing Rice Core Collectionsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳凱儀,劉力瑜,溫英杰
dc.subject.keyword水稻,核心收集系,主成分分析,遺傳距離,zh_TW
dc.subject.keywordrice,core collection,principal component analysis,genetic distance,en
dc.relation.page70
dc.identifier.doi10.6342/NTU201602227
dc.rights.note有償授權
dc.date.accepted2016-08-10
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
1.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved