Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49939
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余佳慧
dc.contributor.authorLi-Ting Wengen
dc.contributor.author翁儷庭zh_TW
dc.date.accessioned2021-06-15T12:26:30Z-
dc.date.available2021-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-10
dc.identifier.citation1. Backhed, F., et al., Host-bacterial mutualism in the human intestine. Science, 2005. 307(5717): p. 1915-20.
2. Fontaine, N., et al., Intestinal mucin distribution in the germ-free rat and in the heteroxenic rat harbouring a human bacterial flora: effect of inulin in the diet. Br J Nutr, 1996. 75(6): p. 881-92.
3. Johansson, M.E., et al., The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A, 2008. 105(39): p. 15064-9.
4. Laukoetter, M.G., M. Bruewer, and A. Nusrat, Regulation of the intestinal epithelial barrier by the apical junctional complex. Curr Opin Gastroenterol, 2006. 22(2): p. 85-9.
5. Niessen, C.M., Tight junctions/adherens junctions: basic structure and function. J Invest Dermatol, 2007. 127(11): p. 2525-32.
6. Farquhar, M.G. and G.E. Palade, Junctional complexes in various epithelia. J Cell Biol, 1963. 17: p. 375-412.
7. Fasano, A. and J.P. Nataro, Intestinal epithelial tight junctions as targets for enteric bacteria-derived toxins. Adv Drug Deliv Rev, 2004. 56(6): p. 795-807.
8. Hossain, Z. and T. Hirata, Molecular mechanism of intestinal permeability: interaction at tight junctions. Mol Biosyst, 2008. 4(12): p. 1181-5.
9. Madara, J.L., R. Moore, and S. Carlson, Alteration of intestinal tight junction structure and permeability by cytoskeletal contraction. Am J Physiol, 1987. 253(6 Pt 1): p. C854-61.
10. Balda, M.S. and K. Matter, Tight junctions. J Cell Sci, 1998. 111 ( Pt 5): p. 541-7.
11. Peterson, M.D. and M.S. Mooseker, Characterization of the enterocyte-like brush border cytoskeleton of the C2BBe clones of the human intestinal cell line, Caco-2. J Cell Sci, 1992. 102 ( Pt 3): p. 581-600.
12. Wu, L.L., et al., Commensal bacterial endocytosis in epithelial cells is dependent on myosin light chain kinase-activated brush border fanning by interferon-gamma. Am J Pathol, 2014. 184(8): p. 2260-74.
13. De Smet, K. and R. Contreras, Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol Lett, 2005. 27(18): p. 1337-47.
14. Ganz, T., Defensins and host defense. Science, 1999. 286(5439): p. 420-1.
15. White, S.H., W.C. Wimley, and M.E. Selsted, Structure, function, and membrane integration of defensins. Curr Opin Struct Biol, 1995. 5(4): p. 521-7.
16. Sahl, H.G., et al., Mammalian defensins: structures and mechanism of antibiotic activity. J Leukoc Biol, 2005. 77(4): p. 466-75.
17. Zhang, P., et al., Innate immunity and pulmonary host defense. Immunol Rev, 2000. 173: p. 39-51.
18. Stadnyk, A.W., Intestinal epithelial cells as a source of inflammatory cytokines and chemokines. Can J Gastroenterol, 2002. 16(4): p. 241-6.
19. Li, C.K., et al., Production of proinflammatory cytokines and inflammatory mediators in human intestinal epithelial cells after invasion by Trichinella spiralis. Infect Immun, 1998. 66(5): p. 2200-6.
20. Jobin, C., et al., TNF receptor-associated factor-2 is involved in both IL-1 beta and TNF-alpha signaling cascades leading to NF-kappa B activation and IL-8 expression in human intestinal epithelial cells. J Immunol, 1999. 162(8): p. 4447-54.
21. Parikh, A.A., et al., Interleukin-6 production in human intestinal epithelial cells increases in association with the heat shock response. J Surg Res, 1998. 77(1): p. 40-4.
22. Fukata, M. and M. Arditi, The role of pattern recognition receptors in intestinal inflammation. Mucosal Immunol, 2013. 6(3): p. 451-63.
23. Ikebe, M., J. Koretz, and D.J. Hartshorne, Effects of phosphorylation of light chain residues threonine 18 and serine 19 on the properties and conformation of smooth muscle myosin. J Biol Chem, 1988. 263(13): p. 6432-7.
24. Somlyo, A.P. and A.V. Somlyo, Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J Physiol, 2000. 522 Pt 2: p. 177-85.
25. Wadgaonkar, R., et al., Intracellular interaction of myosin light chain kinase with macrophage migration inhibition factor (MIF) in endothelium. J Cell Biochem, 2005. 95(4): p. 849-58.
26. Lazar, V. and J.G. Garcia, A single human myosin light chain kinase gene (MLCK; MYLK). Genomics, 1999. 57(2): p. 256-67.
27. Clayburgh, D.R., et al., A differentiation-dependent splice variant of myosin light chain kinase, MLCK1, regulates epithelial tight junction permeability. J Biol Chem, 2004. 279(53): p. 55506-13.
28. Pai, Y.C., Regulatory mechanisms of proinflammatory cytokine induced bacterial endocytosis in intestinal epithelial cells. 2015.
29. Atisook, K., S. Carlson, and J.L. Madara, Effects of phlorizin and sodium on glucose-elicited alterations of cell junctions in intestinal epithelia. Am J Physiol, 1990. 258(1 Pt 1): p. C77-85.
30. Hecht, G., et al., Expression of the catalytic domain of myosin light chain kinase increases paracellular permeability. Am J Physiol, 1996. 271(5 Pt 1): p. C1678-84.
31. Kitamura, T., et al., Extracellular ATP, intracellular calcium and canalicular contraction in rat hepatocyte doublets. Hepatology, 1991. 14(4 Pt 1): p. 640-7.
32. Turner, J.R., et al., Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation. Am J Physiol, 1997. 273(4 Pt 1): p. C1378-85.
33. Weber, C.R., et al., Epithelial myosin light chain kinase activation induces mucosal interleukin-13 expression to alter tight junction ion selectivity. J Biol Chem, 2010. 285(16): p. 12037-46.
34. Shen, L., et al., Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure. J Cell Sci, 2006. 119(Pt 10): p. 2095-106.
35. Dahan, S., et al., Saccharomyces boulardii interferes with enterohemorrhagic Escherichia coli-induced signaling pathways in T84 cells. Infect Immun, 2003. 71(2): p. 766-73.
36. Philpott, D.J., et al., Signal transduction pathways involved in enterohemorrhagic Escherichia coli-induced alterations in T84 epithelial permeability. Infect Immun, 1998. 66(4): p. 1680-7.
37. Scott, K.G., et al., Intestinal infection with Giardia spp. reduces epithelial barrier function in a myosin light chain kinase-dependent fashion. Gastroenterology, 2002. 123(4): p. 1179-90.
38. Hirano, K., B.C. Phan, and D.J. Hartshorne, Interactions of the subunits of smooth muscle myosin phosphatase. J Biol Chem, 1997. 272(6): p. 3683-8.
39. Kimura, K., et al., Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science, 1996. 273(5272): p. 245-8.
40. Hirase, T., et al., Regulation of tight junction permeability and occludin phosphorylation by Rhoa-p160ROCK-dependent and -independent mechanisms. J Biol Chem, 2001. 276(13): p. 10423-31.
41. Walsh, S.V., et al., Rho kinase regulates tight junction function and is necessary for tight junction assembly in polarized intestinal epithelia. Gastroenterology, 2001. 121(3): p. 566-79.
42. Terry, S., et al., Rho signaling and tight junction functions. Physiology (Bethesda), 2010. 25(1): p. 16-26.
43. Gonzalez-Mariscal, L., R. Tapia, and D. Chamorro, Crosstalk of tight junction components with signaling pathways. Biochim Biophys Acta, 2008. 1778(3): p. 729-56.
44. Olivera, D.S., et al., Cellular mechanisms of mainstream cigarette smoke-induced lung epithelial tight junction permeability changes in vitro. Inhal Toxicol, 2007. 19(1): p. 13-22.
45. Kaser, A., S. Zeissig, and R.S. Blumberg, Inflammatory bowel disease. Annu Rev Immunol, 2010. 28: p. 573-621.
46. Cheifetz, A.S., Management of active Crohn disease. JAMA, 2013. 309(20): p. 2150-8.
47. Sartor, R.B., Mechanisms of disease: pathogenesis of Crohn's disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol, 2006. 3(7): p. 390-407.
48. Siakavellas, S.I. and G. Bamias, Role of the IL-23/IL-17 axis in Crohn's disease. Discov Med, 2012. 14(77): p. 253-62.
49. Fuss, I.J., et al., Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn's disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol, 1996. 157(3): p. 1261-70.
50. Monteleone, G., et al., New mediators of immunity and inflammation in inflammatory bowel disease. Curr Opin Gastroenterol, 2006. 22(4): p. 361-4.
51. Fuss, I.J., et al., Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest, 2004. 113(10): p. 1490-7.
52. Zeissig, S., et al., Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease. Gut, 2007. 56(1): p. 61-72.
53. Das, P., et al., Comparative tight junction protein expressions in colonic Crohn's disease, ulcerative colitis, and tuberculosis: a new perspective. Virchows Arch, 2012. 460(3): p. 261-70.
54. Heller, F., et al., Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology, 2005. 129(2): p. 550-64.
55. Oshima, T., H. Miwa, and T. Joh, Changes in the expression of claudins in active ulcerative colitis. J Gastroenterol Hepatol, 2008. 23 Suppl 2: p. S146-50.
56. Okayasu, I., et al., A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology, 1990. 98(3): p. 694-702.
57. Ricketts, C.R., Dextran sulphate--a synthetic analogue of heparin. Biochem J, 1952. 51(1): p. 129-33.
58. Araki, Y., et al., Development of dextran sulphate sodium-induced experimental colitis is suppressed in genetically mast cell-deficient Ws/Ws rats. Clin Exp Immunol, 2000. 119(2): p. 264-9.
59. Alex, P., et al., Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflamm Bowel Dis, 2009. 15(3): p. 341-52.
60. Onderdonk, A.B., J.A. Hermos, and J.G. Bartlett, The role of the intestinal microflora in experimental colitis. Am J Clin Nutr, 1977. 30(11): p. 1819-25.
61. Kitajima, S., S. Takuma, and M. Morimoto, Changes in colonic mucosal permeability in mouse colitis induced with dextran sulfate sodium. Exp Anim, 1999. 48(3): p. 137-43.
62. Poritz, L.S., et al., Loss of the tight junction protein ZO-1 in dextran sulfate sodium induced colitis. J Surg Res, 2007. 140(1): p. 12-9.
63. Chassaing, B., et al., Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol, 2014. 104: p. Unit 15 25.
64. Araki, Y., H. Sugihara, and T. Hattori, In vitro effects of dextran sulfate sodium on a Caco-2 cell line and plausible mechanisms for dextran sulfate sodium-induced colitis. Oncol Rep, 2006. 16(6): p. 1357-62.
65. Li, X., et al., Somatostatin regulates tight junction proteins expression in colitis mice. Int J Clin Exp Pathol, 2014. 7(5): p. 2153-62.
66. Black, R.A., et al., A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature, 1997. 385(6618): p. 729-33.
67. Kriegler, M., et al., A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell, 1988. 53(1): p. 45-53.
68. Boehringer, N., et al., Differential regulation of tumor necrosing factor-alpha (TNF-alpha) and interleukin-10 (IL-10) secretion by protein kinase and phosphatase inhibitors in human alveolar macrophages. Eur Cytokine Netw, 1999. 10(2): p. 211-8.
69. Cavaillon, J.M., [Contribution of cytokines to inflammatory mechanisms]. Pathol Biol (Paris), 1993. 41(8 Pt 2): p. 799-811.
70. Bradley, J.R., TNF-mediated inflammatory disease. J Pathol, 2008. 214(2): p. 149-60.
71. Kim, Y.S., et al., The effects of thalidomide on the stimulation of NF-kappaB activity and TNF-alpha production by lipopolysaccharide in a human colonic epithelial cell line. Mol Cells, 2004. 17(2): p. 210-6.
72. Kure, I., et al., Lipoxin A(4) reduces lipopolysaccharide-induced inflammation in macrophages and intestinal epithelial cells through inhibition of nuclear factor-kappaB activation. J Pharmacol Exp Ther, 2010. 332(2): p. 541-8.
73. Wang, F., et al., Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am J Pathol, 2005. 166(2): p. 409-19.
74. Wang, F., et al., IFN-gamma-induced TNFR2 expression is required for TNF-dependent intestinal epithelial barrier dysfunction. Gastroenterology, 2006. 131(4): p. 1153-63.
75. Schroder, K., et al., Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol, 2004. 75(2): p. 163-89.
76. Bach, E.A., M. Aguet, and R.D. Schreiber, The IFN gamma receptor: a paradigm for cytokine receptor signaling. Annu Rev Immunol, 1997. 15: p. 563-91.
77. Nava, P., et al., Interferon-gamma regulates intestinal epithelial homeostasis through converging beta-catenin signaling pathways. Immunity, 2010. 32(3): p. 392-402.
78. Eder, C., Mechanisms of interleukin-1beta release. Immunobiology, 2009. 214(7): p. 543-53.
79. Siegmund, B., Interleukin-1beta converting enzyme (caspase-1) in intestinal inflammation. Biochem Pharmacol, 2002. 64(1): p. 1-8.
80. Dinarello, C.A., Interleukin-1, interleukin-1 receptors and interleukin-1 receptor antagonist. Int Rev Immunol, 1998. 16(5-6): p. 457-99.
81. Colotta, F., et al., Interleukin-1 type II receptor: a decoy target for IL-1 that is regulated by IL-4. Science, 1993. 261(5120): p. 472-5.
82. Dinarello, C.A., Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol, 2009. 27: p. 519-50.
83. Friedlander, R.M., et al., Functional role of interleukin 1 beta (IL-1 beta) in IL-1 beta-converting enzyme-mediated apoptosis. J Exp Med, 1996. 184(2): p. 717-24.
84. Li, L., et al., Functional imaging of interleukin 1 beta expression in inflammatory process using bioluminescence imaging in transgenic mice. BMC Immunol, 2008. 9: p. 49.
85. Fusunyan, R.D., et al., Butyrate enhances interleukin (IL)-8 secretion by intestinal epithelial cells in response to IL-1beta and lipopolysaccharide. Pediatr Res, 1998. 43(1): p. 84-90.
86. Stadnyk, A.W., Cytokine production by epithelial cells. FASEB J, 1994. 8(13): p. 1041-7.
87. Migone, T.S., et al., TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator. Immunity, 2002. 16(3): p. 479-92.
88. Bamias, G., et al., Expression, localization, and functional activity of TL1A, a novel Th1-polarizing cytokine in inflammatory bowel disease. J Immunol, 2003. 171(9): p. 4868-74.
89. Bamias, G., et al., Role of TL1A and its receptor DR3 in two models of chronic murine ileitis. Proc Natl Acad Sci U S A, 2006. 103(22): p. 8441-6.
90. Papadakis, K.A., et al., TL1A synergizes with IL-12 and IL-18 to enhance IFN-gamma production in human T cells and NK cells. J Immunol, 2004. 172(11): p. 7002-7.
91. Prehn, J.L., et al., The T cell costimulator TL1A is induced by FcgammaR signaling in human monocytes and dendritic cells. J Immunol, 2007. 178(7): p. 4033-8.
92. Zhang, J., et al., Role of TL1A in the pathogenesis of rheumatoid arthritis. J Immunol, 2009. 183(8): p. 5350-7.
93. Cassatella, M.A., et al., Soluble TNF-like cytokine (TL1A) production by immune complexes stimulated monocytes in rheumatoid arthritis. J Immunol, 2007. 178(11): p. 7325-33.
94. Shih, D.Q., et al., Microbial induction of inflammatory bowel disease associated gene TL1A (TNFSF15) in antigen presenting cells. Eur J Immunol, 2009. 39(11): p. 3239-50.
95. Fang, L., et al., Essential role of TNF receptor superfamily 25 (TNFRSF25) in the development of allergic lung inflammation. J Exp Med, 2008. 205(5): p. 1037-48.
96. Screaton, G.R., et al., LARD: a new lymphoid-specific death domain containing receptor regulated by alternative pre-mRNA splicing. Proc Natl Acad Sci U S A, 1997. 94(9): p. 4615-9.
97. Yu, K.Y., et al., A newly identified member of tumor necrosis factor receptor superfamily (TR6) suppresses LIGHT-mediated apoptosis. J Biol Chem, 1999. 274(20): p. 13733-6.
98. Cavallini, C., et al., The TNF-family cytokine TL1A inhibits proliferation of human activated B cells. PLoS One, 2013. 8(4): p. e60136.
99. Papadakis, K.A., et al., Dominant role for TL1A/DR3 pathway in IL-12 plus IL-18-induced IFN-gamma production by peripheral blood and mucosal CCR9+ T lymphocytes. J Immunol, 2005. 174(8): p. 4985-90.
100. Bayry, J., Immunology: TL1A in the inflammatory network in autoimmune diseases. Nat Rev Rheumatol, 2010. 6(2): p. 67-8.
101. Bamias, G., et al., High intestinal and systemic levels of decoy receptor 3 (DcR3) and its ligand TL1A in active ulcerative colitis. Clin Immunol, 2010. 137(2): p. 242-9.
102. Siakavellas, S.I. and G. Bamias, Tumor Necrosis Factor-like Cytokine TL1A and Its Receptors DR3 and DcR3: Important New Factors in Mucosal Homeostasis and Inflammation. Inflamm Bowel Dis, 2015. 21(10): p. 2441-52.
103. Kakuta, Y., et al., TNFSF15 transcripts from risk haplotype for Crohn's disease are overexpressed in stimulated T cells. Hum Mol Genet, 2009. 18(6): p. 1089-98.
104. Saruta, M., et al., Phenotype and effector function of CC chemokine receptor 9-expressing lymphocytes in small intestinal Crohn's disease. J Immunol, 2007. 178(5): p. 3293-300.
105. Kamada, N., et al., TL1A produced by lamina propria macrophages induces Th1 and Th17 immune responses in cooperation with IL-23 in patients with Crohn's disease. Inflamm Bowel Dis, 2010. 16(4): p. 568-75.
106. Uo, M., et al., Mucosal CXCR4+ IgG plasma cells contribute to the pathogenesis of human ulcerative colitis through FcgammaR-mediated CD14 macrophage activation. Gut, 2013. 62(12): p. 1734-44.
107. Jin, S., et al., TL1A/TNFSF15 directly induces proinflammatory cytokines, including TNFalpha, from CD3+CD161+ T cells to exacerbate gut inflammation. Mucosal Immunol, 2013. 6(5): p. 886-99.
108. Reichwald, K., T.Z. Jorgensen, and S. Skov, TL1A increases expression of CD25, LFA-1, CD134 and CD154, and induces IL-22 and GM-CSF production from effector CD4 T-cells. PLoS One, 2014. 9(8): p. e105627.
109. Takedatsu, H., et al., TL1A (TNFSF15) regulates the development of chronic colitis by modulating both T-helper 1 and T-helper 17 activation. Gastroenterology, 2008. 135(2): p. 552-67.
110. Meylan, F., et al., The TNF-family cytokine TL1A drives IL-13-dependent small intestinal inflammation. Mucosal Immunol, 2011. 4(2): p. 172-85.
111. Shih, D.Q., et al., Constitutive TL1A (TNFSF15) expression on lymphoid or myeloid cells leads to mild intestinal inflammation and fibrosis. PLoS One, 2011. 6(1): p. e16090.
112. Zheng, L., et al., Sustained Tl1a Expression on Both Lymphoid and Myeloid Cells Leads to Mild Spontaneous Intestinal Inflammation and Fibrosis. Eur J Microbiol Immunol (Bp), 2013. 3(1): p. 11-20.
113. Yamazaki, K., et al., Single nucleotide polymorphisms in TNFSF15 confer susceptibility to Crohn's disease. Hum Mol Genet, 2005. 14(22): p. 3499-506.
114. Tremelling, M., et al., Contribution of TNFSF15 gene variants to Crohn's disease susceptibility confirmed in UK population. Inflamm Bowel Dis, 2008. 14(6): p. 733-7.
115. Kakuta, Y., et al., Association study of TNFSF15 polymorphisms in Japanese patients with inflammatory bowel disease. Gut, 2006. 55(10): p. 1527-8.
116. Michelsen, K.S., et al., IBD-associated TL1A gene (TNFSF15) haplotypes determine increased expression of TL1A protein. PLoS One, 2009. 4(3): p. e4719.
117. Madara, J.L. and J. Stafford, Interferon-gamma directly affects barrier function of cultured intestinal epithelial monolayers. J Clin Invest, 1989. 83(2): p. 724-7.
118. Utech, M., et al., Mechanism of IFN-gamma-induced endocytosis of tight junction proteins: myosin II-dependent vacuolarization of the apical plasma membrane. Mol Biol Cell, 2005. 16(10): p. 5040-52.
119. Boivin, M.A., et al., Mechanism of interferon-gamma-induced increase in T84 intestinal epithelial tight junction. J Interferon Cytokine Res, 2009. 29(1): p. 45-54.
120. McKay, D.M., et al., Phosphatidylinositol 3'-kinase is a critical mediator of interferon-gamma-induced increases in enteric epithelial permeability. J Pharmacol Exp Ther, 2007. 320(3): p. 1013-22.
121. Clark, E., et al., Interferon gamma induces translocation of commensal Escherichia coli across gut epithelial cells via a lipid raft-mediated process. Gastroenterology, 2005. 128(5): p. 1258-67.
122. Smyth, D., et al., Interferon-gamma signals via an ERK1/2-ARF6 pathway to promote bacterial internalization by gut epithelia. Cell Microbiol, 2012. 14(8): p. 1257-70.
123. Marano, C.W., et al., Tumor necrosis factor-alpha increases sodium and chloride conductance across the tight junction of CACO-2 BBE, a human intestinal epithelial cell line. J Membr Biol, 1998. 161(3): p. 263-74.
124. Ma, T.Y., et al., TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. Am J Physiol Gastrointest Liver Physiol, 2004. 286(3): p. G367-76.
125. Schmitz, H., et al., Tumor necrosis factor-alpha (TNFalpha) regulates the epithelial barrier in the human intestinal cell line HT-29/B6. J Cell Sci, 1999. 112 ( Pt 1): p. 137-46.
126. Graham, W.V., et al., Tumor necrosis factor-induced long myosin light chain kinase transcription is regulated by differentiation-dependent signaling events. Characterization of the human long myosin light chain kinase promoter. J Biol Chem, 2006. 281(36): p. 26205-15.
127. Mankertz, J., et al., TNFalpha up-regulates claudin-2 expression in epithelial HT-29/B6 cells via phosphatidylinositol-3-kinase signaling. Cell Tissue Res, 2009. 336(1): p. 67-77.
128. Gitter, A.H., et al., Leaks in the epithelial barrier caused by spontaneous and TNF-alpha-induced single-cell apoptosis. FASEB J, 2000. 14(12): p. 1749-53.
129. Clark, E.C., et al., Glutamine deprivation facilitates tumour necrosis factor induced bacterial translocation in Caco-2 cells by depletion of enterocyte fuel substrate. Gut, 2003. 52(2): p. 224-30.
130. Bruewer, M., et al., Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J Immunol, 2003. 171(11): p. 6164-72.
131. Al-Sadi, R., et al., Mechanism of IL-1beta-induced increase in intestinal epithelial tight junction permeability. J Immunol, 2008. 180(8): p. 5653-61.
132. Al-Sadi, R., et al., IL-1beta-induced increase in intestinal epithelial tight junction permeability is mediated by MEKK-1 activation of canonical NF-kappaB pathway. Am J Pathol, 2010. 177(5): p. 2310-22.
133. Al-Sadi, R.M. and T.Y. Ma, IL-1beta causes an increase in intestinal epithelial tight junction permeability. J Immunol, 2007. 178(7): p. 4641-9.
134. Clayburgh, D.R., et al., Epithelial myosin light chain kinase-dependent barrier dysfunction mediates T cell activation-induced diarrhea in vivo. J Clin Invest, 2005. 115(10): p. 2702-15.
135. Engel, M.A., et al., Ulcerative colitis in AKR mice is attenuated by intraperitoneally administered anandamide. J Physiol Pharmacol, 2008. 59(4): p. 673-89.
136. Rayudu, V. and A.B. Raju, Effect of Triphala on dextran sulphate sodium-induced colitis in rats. Ayu, 2014. 35(3): p. 333-8.
137. Laroui, H., et al., Dextran sodium sulfate (DSS) induces colitis in mice by forming nano-lipocomplexes with medium-chain-length fatty acids in the colon. PLoS One, 2012. 7(3): p. e32084.
138. Mizushima, T., et al., Inhibition of epithelial cell death by Bcl-2 improved chronic colitis in IL-10 KO mice. Am J Pathol, 2013. 183(6): p. 1936-44.
139. Chinen, T., et al., Prostaglandin E2 and SOCS1 have a role in intestinal immune tolerance. Nat Commun, 2011. 2: p. 190.
140. Bodmer, J.L., et al., TRAMP, a novel apoptosis-mediating receptor with sequence homology to tumor necrosis factor receptor 1 and Fas(Apo-1/CD95). Immunity, 1997. 6(1): p. 79-88.
141. Chinnaiyan, A.M., et al., Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science, 1996. 274(5289): p. 990-2.
142. Cooper, H.S., et al., Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest, 1993. 69(2): p. 238-49.
143. Yazbeck, R., et al., Biochemical and histological changes in the small intestine of mice with dextran sulfate sodium colitis. J Cell Physiol, 2011. 226(12): p. 3219-24.
144. Mar, J.S., et al., Amelioration of DSS-induced murine colitis by VSL#3 supplementation is primarily associated with changes in ileal microbiota composition. Gut Microbes, 2014. 5(4): p. 494-503.
145. Liu, X., et al., Myosin light chain kinase inhibitor inhibits dextran sulfate sodium-induced colitis in mice. Dig Dis Sci, 2013. 58(1): p. 107-14.
146. Lee, S.H., et al., Development and characterization of mouse monoclonal antibodies reactive with chicken TL1A. Vet Immunol Immunopathol, 2014. 159(1-2): p. 103-9.
147. Yang, C.R., et al., Soluble decoy receptor 3 induces angiogenesis by neutralization of TL1A, a cytokine belonging to tumor necrosis factor superfamily and exhibiting angiostatic action. Cancer Res, 2004. 64(3): p. 1122-9.
148. Zheng, L., et al., Sustained Tl1a (Tnfsf15) Expression on Both Lymphoid and Myeloid Cells Leads to Mild Spontaneous Intestinal Inflammation and Fibrosis. Eur J Microbiol Immunol (Bp), 2013. 3(1): p. 11-20.
149. Jia, L.G., et al., A Novel Role for TL1A/DR3 in Protection against Intestinal Injury and Infection. J Immunol, 2016. 197(1): p. 377-86.
150. Su, L., et al., TNFR2 activates MLCK-dependent tight junction dysregulation to cause apoptosis-mediated barrier loss and experimental colitis. Gastroenterology, 2013. 145(2): p. 407-15.
151. Connell, L.E. and D.M. Helfman, Myosin light chain kinase plays a role in the regulation of epithelial cell survival. J Cell Sci, 2006. 119(Pt 11): p. 2269-81.
152. Fazal, F., et al., Inhibiting myosin light chain kinase induces apoptosis in vitro and in vivo. Mol Cell Biol, 2005. 25(14): p. 6259-66.
153. Madsen, K.L., et al., Interleukin-10 gene-deficient mice develop a primary intestinal permeability defect in response to enteric microflora. Inflamm Bowel Dis, 1999. 5(4): p. 262-70.
154. Olson, T.S., et al., The primary defect in experimental ileitis originates from a nonhematopoietic source. J Exp Med, 2006. 203(3): p. 541-52.
155. Resta-Lenert, S., J. Smitham, and K.E. Barrett, Epithelial dysfunction associated with the development of colitis in conventionally housed mdr1a-/- mice. Am J Physiol Gastrointest Liver Physiol, 2005. 289(1): p. G153-62.
156. Xiao, Y.T., et al., Neutralization of IL-6 and TNF-alpha ameliorates intestinal permeability in DSS-induced colitis. Cytokine, 2016. 83: p. 189-92.
157. Noth, R., et al., Anti-TNF-alpha antibodies improve intestinal barrier function in Crohn's disease. J Crohns Colitis, 2012. 6(4): p. 464-9.
158. Fries, W., et al., Experimental colitis increases small intestine permeability in the rat. Lab Invest, 1999. 79(1): p. 49-57.
159. Arrieta, M.C., et al., Reducing small intestinal permeability attenuates colitis in the IL10 gene-deficient mouse. Gut, 2009. 58(1): p. 41-8.
160. Arrieta, M.C., et al., Increasing small intestinal permeability worsens colitis in the IL-10-/- mouse and prevents the induction of oral tolerance to ovalbumin. Inflamm Bowel Dis, 2015. 21(1): p. 8-18.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49939-
dc.description.abstract背景:發炎性腸疾(IBD)之致病原因包含腸道屏障失常和細菌入侵。細菌可藉由穿細胞以及間細胞途徑進入腸道上皮細胞,然而其機制目前不甚了解。葡聚餹硫酸鈉 (DSS)是一種化學物質常用來誘發小鼠產生腸炎,在過去in vitro實驗中高濃度(>3%)之DSS會直接對腸道上皮細胞造成毒殺性,然而低濃度(1~3%)之DSS會造成緊密連結損壞且未有細胞凋亡。近期新發現的促炎性激素TL1A在發炎性腸疾病患的腸道組織表現量上升,而在本實驗室in vitro實驗中發現TL1A會活化腸道上皮細胞之MLCK而促使肌凝蛋白輕鏈磷酸化,導致細菌內吞增加。目的: 探討葡聚餹硫酸鈉誘發腸炎模式中穿細胞和間細胞通透性增加的時間點,以及TL1A和MLCK在穿細胞途徑中扮演的角色。 方法材料: BALB/c小鼠飲用含2.5% DSS水0、1、4和7天。測量組織骨髓過氧化酶活性、組織腸炎評分、細胞凋亡情形和細菌轉移至脾臟和肝臟的數量。利用Ussing chamber測定腸道通透性,及抗硫酸慶大黴素試驗進行腸道上皮細胞中內吞細菌數定量。以螢光原位雜交實驗觀察腸內細菌分布。部分動物組別在飲用DSS前進行腹腔施打MLCK抑制劑(ML-7)和中和性TL1A之抗體。此外,給予long MLCK基因剔除小鼠飲用DSS水進行研究。 結果: 小鼠飲用DSS 7天後,體重減輕且大腸長度縮短。在飲用DSS 4天觀察到組織發炎程度增加、腸炎評分增加和腸道上皮細胞凋亡上升,而細菌轉移至脾臟和肝臟之數量也顯著增加。DSS飲用4天後會造成腸道大分子通透性上升,然而在飲用DSS 1天後即可觀察到腸道上皮細胞會細菌內吞的現象。另外,飲用DSS後也會造成黏膜層中TL1A、磷酸化MLC和切割態occludin蛋白表現量上升,而TL1A、TNFα和IFNγ mRNA表現量也增加。利用腹腔注射中和性TL1A抗體和ML-7後會抑制大腸上皮細胞中細菌內吞,以及MLC、IκB、Akt磷酸化的現象。與野生型小鼠相比,long MLCK基因剔除小鼠在飲用DSS 4天後, 迴腸和大腸中dextran通透性、切割態occludin表現量、細胞凋亡等現象較低,且細菌轉移減少。 結論: 飲用DSS後會造成腸道上皮細胞屏障缺失包含MLCK依賴性的穿細胞和間細胞通透性增加,而後伴隨發炎反應。此外,TL1A有參與MLCK活化引起腸道上皮細胞的細菌內吞作用。zh_TW
dc.description.abstractBackground: Impaired gut barrier function and enteric bacterial influx are involved in the pathogenesis of inflammatory bowel diseases (IBD). Mechanisms of abnormal bacterial influx via transcellular and paracellular pathways across epithelium remain incompletely understood. Dextran sodium sulfate (DSS) is a widely used chemical to induce colitis in mice, of which in vitro studies showed that high dose (>3%) causes epithelial cytotoxicity whereas low dose (1~3%) induces cell death-independent tight junctional disruption. A novel proinflammatory cytokine, TNF-like lA (TL1A), was found to increase in intestinal tissues of IBD patients. Our pilot study in vitro demonstrated that TL1A induced bacterial endocytosis and myosin light chain phosphorylation via a myosin light chain kinase (MLCK)-dependent pathway in epithelial cells. Aim: To investigate the timing of transcellular and paracellular barrier damage, as well as to explore the roles of TL1A and MLCK in regulation of transcellular permeability in DSS-induced enterocolitis model. Methods: BALB/c mice were given 2.5% DSS in drinking water for 0, 1, 4 and 7 days. Intestinal myeloperoxidase (MPO) activity, histopathological score, TUNEL-positive cells, bacterial translocation into spleen and liver tissues were determined. Intestinal permeability was measured on Ussing chamber. Intracellular bacterial counts in isolated epithelial cells were determined using a gentamycin resistance assay. Bacterial presence in mucosal tissues was determined by fluorescent in situ hybridization (FISH). In some groups, mice were intraperitoneally injected with ML-7 (a MLCK inhibitor) or neutralizing anti-TL1A prior to DSS water drinking. Moreover, long MLCK-KO mice were also given DSS water for experiments. Results: Body weight loss and shortened colon length were observed after drinking DSS for 7 days. Increased MPO activity, histopathological damage, epithelial apoptosis, and bacterial translocation were observed after drinking DSS for 4-7 days. Elevated luminal-to-serosal macromolecular dextran flux in gut tissues was found after DSS drinking for 4 days, whereas bacterial endocytosis by epithelial cells was noted after 1 day. Mucosal samples showed increased protein levels of TL1A, phosphorylated MLC, and cleaved occludin, and mRNA levels of TL1A, TNFα and IFNγ after drinking DSS. Increased bacterial endocytosis by colonic epithelial cells and MLC phosphorylation after drinking DSS for 1 day were inhibited by ML-7 or neutralizing anti-TL1A. Compared to wild type mice, long MLCK-KO mice showed less dextran flux, occludin cleavage, and epithelial death in the colon, associated with decreased bacterial translocation after drinking DSS for 4 days. Conclusion: Epithelial barrier dysfunction, including increase in MLCK-dependent transcellular and paracellular permeability, preceded gut mucosal inflammation in DSS-induced enterocolitis model. Moreover, TL1A is also involved in MLCK-dependent bacterial endocytosis by intestinal epithelial cells.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:26:30Z (GMT). No. of bitstreams: 1
ntu-105-R03441004-1.pdf: 4595587 bytes, checksum: d3cfa15225d78c30dbb173d59e6fe4c6 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 I
中文摘要 II
Abstract IV
目錄 VI
圖表目錄 X
一、前言 1
1. 腸道屏障功能 1
1.1物理性屏障 1
1.1.1緊密連結蛋白 (Tight junction proteins) 1
1.1.2刷狀緣 (Brush border) 2
1.2 化學性屏障 2
1.3 免疫性屏障 3
2. 腸道上皮屏障功能失常的病理現象 3
2.1 肌凝蛋白輕鏈激酶 (Myosin light chain kinase, MLCK) 4
2.1.1 肌凝蛋白輕鏈激酶與緊密連結之關係 4
2.1.2肌凝蛋白輕鏈激酶對刷狀緣之調控 5
3. 腸道發炎性疾病 (Inflammatory bowel disease; IBD) 5
3.1 葡聚餹硫酸鈉(Dextran sodium sulfate)誘發腸炎動物模式 6
4. 促炎性激素 7
4.1腫瘤壞死因子α (TNFα) 7
4.2 干擾素γ (IFNγ) 8
4.3 介白素1β (IL-1β) 8
4.4 腫瘤壞死因子激素1A (Tumor necrosis factor-like cytokine 1A,TL1A) 9
5. 促炎性激素對於腸道上皮屏障功能調控 10
5.1 IFNγ對腸道上皮屏障功能之調控 11
5.1.1間細胞途徑 11
5.1.2穿細胞途徑 11
5.2 TNFα對腸道上皮細胞屏障功能之調控 12
5.2.1間細胞途徑 12
5.2.2穿細胞途徑 12
5.3 IFNγ和TNFα共同刺激對腸道上皮屏障功能之調控 12
5.3.1間細胞途徑 12
5.4 IL-1β對腸道上皮屏障功能之調控 12
5.4.1間細胞途徑 12
5.5 TL1A對腸道上皮屏障功能之調控 13
5.5.1間細胞途徑 13
5.5.2穿細胞途徑 13
6. 研究目的和假設 13
二、材料與方法 15
1. 實驗動物 15
2. 葡聚餹硫酸鈉(Dextran Sodium Sulfate)腸炎動物模式 15
3. 抑制劑之藥物投予 15
3.1 肌凝蛋白激酶抑制劑之投予 15
3.2 中和性TL1A抗體之投予 16
4. 小鼠體重(Body weight)分析 16
5. 結腸長度(Colon length)量測 16
6. 腸道組織骨髓過氧化酶(Myeloperoxidase, MPO)活性測定 16
7.組織固定、切片及染色 17
7.1 石蠟包埋檢體的製備 17
7.2蘇木紫-伊紅染色 (Haematoxylin and Eosin Staining) 18
7.3缺口末端標記技術 (TdT-mediated dUTP-biotin nick end labeling, TUNEL) 18
7.4螢光原位雜交(Fluorescence in situ hybridization, FISH) 19
8. 腸炎評估(Colitis scoring) 20
9. 免疫螢光染色(Immunofluorescent Staining) 21
10. 腸道細菌數目變化分析 21
10.1 細菌轉移數量之分析(Bacteria translocation) 21
10.2上皮細胞分離技術與內吞細菌計數(Measurement of endocytosed bacteria by epithelial cells) 22
11. 腸道屏障功能分析 22
11.1 腸道組織離子通透性 (Ion permeability)分析 22
11.2 腸道組織大分子通透性 (Macromolecular permeability)分析 23
12. 細胞蛋白萃取(Protein extraction)暨西方墨點法(Western blotting) 23
12.1 細胞質蛋白質之萃取(Extraction of cytoplasmic proteins) 23
12.2西方墨點法(Western blotting) 24
12.2.1膠體製備 24
12.2.2電泳 24
12.2.3轉漬(Transferring) 25
12.2.4封鎖Blocking、一級抗體與二級抗體免疫結合 25
13. 萃取核糖核酸與反轉錄聚合酶鏈反應(RNA Extraction & Reverse Transcription Polymerase Chain Reaction, RT-PCR) 28
13.1 萃取核醣核酸 28
13.2 反轉錄反應(Reverse Transcription,RT) 28
13.3 聚合酶鏈反應(Polymerase Chain Reaction, PCR) 29
13.3.1 膠體製備(Gel preparation) 30
13.3.2 電泳 (Electrophoresis) 30
13.4 即時聚合酶連鎖反應 (Real-time polymerase chain reaction, Real-time PCR) 30
14. 統計分析方法(Statistical analysis) 31
三、結果 32
1. 飲用葡聚餹硫酸鈉之病理現象 32
1.1 葡聚餹硫酸鈉腸炎模式造成之病理影響 32
1.2 飲用葡聚餹硫酸鈉引起之腸道發炎 32
1.3 葡聚餹硫酸鈉對於腸道上皮細胞凋亡之影響 33
1.4 飲用葡聚餹硫酸鈉對於細菌轉移之影響 33
1.5 飲用葡聚餹硫酸鈉後腸道細菌在組織中分布情形 34
1.6 飲用葡聚餹硫酸鈉引發細胞激素之改變 34
1.6.1 黏膜層的細胞激素表現量 34
1.6.2 腸道上皮細胞的細胞激素表現量 35
2. 飲用葡聚餹硫酸鈉造成上皮細胞屏障功能 35
2.1 飲用葡聚餹硫酸鈉造成肌凝蛋白輕鏈磷酸化 35
2.2 葡聚餹硫酸鈉誘導腸炎模式對於穿細胞途徑通透性之影響 36
2.3 葡聚餹硫酸鈉飲用後對於間細胞途徑通透性之影響 36
3. MLCK在葡聚餹硫酸鈉誘導腸炎模式中扮演之角色 36
3.1 MLCK抑制劑可降低腸道MLC的磷酸化 37
3.2 MLCK抑制劑對於飲用葡聚餹硫酸鈉引起細菌內吞之影響 37
4. TL1A在上皮細胞穿細胞通透性機轉中扮演之角色 38
4.1 中和性TL1A抗體可降低腸道MLC的磷酸化 38
4.2 中和性TL1A抗體對於飲用葡聚餹硫酸鈉引起細菌內吞之影響 38
4.3 中和性TL1A抗體對於黏膜層細胞激素和下游因子之影響 38
5. 利用Long MLCK基因缺陷小鼠研究上皮細胞間細胞通透性機轉 39
5. 1 Long MLCK對於間細胞途徑之影響 39
5.2 Long MLCK對於腸道上皮細胞凋亡之影響 39
5. 3 Long MLCK對於細菌轉移之調控 40
四、討論 41
五、附表與附圖 47
六、文獻參考 80
dc.language.isozh-TW
dc.title葡聚餹硫酸鈉誘發腸炎模式中腸道上皮細胞穿細胞和間細胞通透性的改變zh_TW
dc.titleTranscellular and Paracellular Permeability Changes of Intestinal Epithelium in Dextran Sodium Sulfate-induced Enterocolitisen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林琬琬(Wan-Wan Lin),王錦堂,朱清良
dc.subject.keyword葡聚?硫酸鈉誘發腸炎模式,發炎性腸疾,腸道通透性,腫瘤壞死因子激素1A,肌凝蛋白輕鏈激?,zh_TW
dc.subject.keywordDSS-induced enterocolitis,IBD,Intestinal permeability,TL1A,MLCK,en
dc.relation.page91
dc.identifier.doi10.6342/NTU201602220
dc.rights.note有償授權
dc.date.accepted2016-08-10
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
4.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved