請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49906
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 江金倉 | |
dc.contributor.author | Shao-Hsuan Wang | en |
dc.contributor.author | 王紹宣 | zh_TW |
dc.date.accessioned | 2021-06-15T12:25:59Z | - |
dc.date.available | 2016-08-24 | |
dc.date.copyright | 2016-08-24 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-10 | |
dc.identifier.citation | Borisenko, A. A. and Nikolaevskii, Y. A. (1991). Grassmann manifolds and the Grassmann image of submanifolds. Uspekhi Mat. Nauk. 46 41-83.
Box, G. E. P. and Cox, D. R. (1964). An analysis of Transformation. J. Roy. Statist. Soc. B 26 211-252. Buckley, J. and James, I. (1979). Linear regression with censored data. Biometrika. 66 429–436. Cavanagh, C. and Sherman, R. P. (1998). Rank estimators for monotonic index models. J. Econometrics. 84 351-381. Chen, C. H., Li, K. C., and Wang, J. L. (1999). Dimension reduction for censored regression data. Ann. Statist. 27 1-23. Chin-Tsang Chiang, Shao-Hsuan Wang, and Ming-Yueh Huang (2016). Versatile Estimation in Censored Single-index Hazards Regression. Under review. Chin-Tsang Chiang, Ming-Yueh Huang, and Shao-Hsuan Wang (2016). Finite- Sample Bias and Variance Reduction in Nonparametric Estimation of Time-Dependent Accuracy Measures. Under review. Cook, R. D. and Weisberg, S. (1991). Sliced Inverse Regression for Dimension Reduction: Comment. J. Amer. Statist. Assoc. 86 328-332. Cook, R. D. (1994). Using dimension-reduction subspaces to identify important inputs in models of physical systems. In Proceedings of the Section on Physical and Engineering Sciences 18-55. Amer. Statist. Assoc., Alexandra, VA. Cook, R. D. and Li, L. (2009). Dimension reduction in regressions with exponential family predictors. J. Comput. Graph. Statist. 18 774-791. Cortez, P., Cerdeira, A., Almeida, F., Matos, T., and Reis, J. (2009). Modeling wine preferences by data mining from physicochemical properties. Decis. Support syst. 47 547-553. Beaudoin, D., Duchesne, T., and Genest, C. (2007). Improving the estimation of Kendall’s tau when censoring only one of the variables. Comput. Stat. Data Anal. 51 5743-5764. Efron, B. (1967). The two sample problem with censored data. Berkeley Symp. on Math. Statist. and Prob. 4 831-853. Fan, J. and Gijbels, I. (1994). Censored regression: nonparametric techniques and their applications. J. Amer. Statist. Assoc. 89 560-570. Han, A. K. (1987). Nonparametric analysis of a generalized regression model: the Maximum rank correlation estimator. J. Econometrics 35 303-316. Harrell, F. E., Galiff, R. M., Pryor, D. B., Lee, K. L., Rosati, R. A. (1982). Evaluating the yield of medical tests. J. Amer. Med. Assoc. 247 2543-2546. Haung, M. Y. and Chiang, C. T. (2015). An effective semiparametric estimation approach for the sufficient dimension reduction model. Technical Report. Heagerty P. J. and Zheng, Y. (2005). Survival Model Predictive Accuracy and ROC Curves. Biometrics 61 92-105 Hoeffding, W. (1961). The strong law of large numbers for U-statistics. Institute of Statistical Mimeo Series 302, University of North Carolina. Hosmer, D. W., Lemeshow, S., and May, S. (2008). Applied survival analysis: regression modeling of time-to-event data John Wiley & Sons, Inc. Jin, Z., Lin, D. Y., and Ying, Z. (2006). On least -squares regression with censored data. Biometrika 93 147-161. Jones, L. K. (1987). On a conjecture of Huber concerning the convergence of projection pursuit regression. Ann. Statist. 15 880-882. Kass, R. E. and Wasserman, L. (1995). A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion. J. Amer. Statist. Assoc. 90 928-934. Kendall, M. (1938). A new measure of rank correlation. Biometrika. 30 81-93. Kendall, M. (1948). Rank correlation methods. Griffin, London. Khan, S. and Tamer, E. (2007). Partial rank estimation of duration models with general forms of censoring. J. Econometrics 136 251-280. Lee, K. W. J., Hill, J. S., Walley, K. R., and Frohlich, J. J. (2006). Relative value of multiple plasma biomarkers as risk factors for coronary artery disease and death in an angiography cohort. Can. Med. Assoc. J. 174 461-466. Li, G. R., Peng, H., Zhang, J., and Zhu, L. X. (2012). Robust rank correlation based screening. Ann. Statist. 40 1846-1877. Li, K. C. (1991). Sliced inverse regression for dimension reduction. J. Amer. Statist. Assoc. 86 316-327. Li, L. and Li, H. (2004). Dimension reduction methods for microarrays with application to censored survival data. J. Bioinformatics 20 3406-3412. Lu, W. and Li, L. (2011). Sufficient Dimension Reduction for Censored Regressions. J. Bioinformatics 67 513-523. Li, Q., Lin, J., and Racine, J. S. (2013). Optimal bandwidth selection for nonparametric conditional distribution and quantile functions. J. Bus. Econom. Statist. 31 57-65. Li, L., Simonoff, J. S., and Tsai, C. L. (2007). Tobit model estimation and sliced inverse regression. Stat. Modelling 7 107-123. Li, G., Peng, H., Zhang, J., and Zhu, L. (2012). Robust rank correlation based on screening. Ann. Statist. 40 1846-1877. Lin, D. Y. and Zeng, D. (2007). Maximum likelihood estimation in semiparametric regression models with censored data. J. Roy. Statist. Soc. B 69 507-564. Ma, S. and Huang, J. (2005). Regularized ROC method for disease classification and biomarker selection with microarray data. Bioinformatics 21 4356-4362. Ma, S. and Huang, J. (2007). Combining multiple markers for classification using ROC. Biometrics 63 751-757. Nelder, J. A. and Wedderburn, R. W. (1972). Generalized linear models. J. Roy. Statist. Soc. A 3 370-384 Raftery, A. E. (1996). Approximate Bayes factors and accounting for model uncertainty in generalized linear models. Biometrika 83 251-266. Rosenbaum, P. and Rubin, D. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika 70 41-55. Samarov A. M. (1993). Exploring regression structure using nonparametric functional estimation J. Amer. Statist. Assoc. 88 836-847. Sherman, R. P. (1993). The limiting distribution of the maximum rank correlation estimator. Econometrica 61 123-138. Steck, H., Krishnapuram, B., Dehing-oberije, C., Lambin, P., and Raykar, V. C. (2008). On ranking in survival analysis: Bounds on the concordance index. Adv. Neural Inf. Process. Syst. 1209-1216. Tierney, L. and Kadane, J. B. (1986). Accurate approximations for posterior moments and marginal densities. J. Amer. Statist. Assoc. 81 82-86. Volinsky C. T. and Raftery A. E. (2000). Bayesian information criterion for censored survival models. Biometrics 56 256-262. Wang, L. (2009). Wilcoxon-type generalized Bayesian information criterion. Biometrika 96 163-173. Wright, S. J. and Nocedal, J. (2006). Numerical optimization. Springer, New York. Xia, Y., Tong, H., Li, W. K., and Zhu, L. X. (2002). An adaptive estimation of dimension reduction space. J. Roy. Statist. Soc. B 64 363-410. Xia, Y., Zhang, D. and Xu, J. (2010). Dimension reduction and semiparametric estimation of survival models. J. Amer. Statist. Assoc. B 105 278-290. Yin, X. and Li, B. (2011). Sufficient dimension reduction based on an ensemble of minimum average variance estimators. Ann. Statist. 39 3392-3416. Zhao, L. C., Krishnaiah, P. R., and Bai, Z. D. (1986). On detection of the number of signals in presence of white noise. J. Multivariate Anal. 20 1-25. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49906 | - |
dc.description.abstract | 排序指標— 用來評估反應值y 及其對應p 個解釋變數的一致性, 由於它在存活分析的應用層面非常廣泛,所以長期以來一直被關注。傳統上,多個解釋變數的線性結合被用來當作一個分數來看y 關係,在本論文中,我們發展一個新的排序指標,將線性結合延伸至多維多項式結合,並且能充分解釋y 所包含x 的最大訊息。這新的指標幫助我們更容易用圖形來分析迴歸關係。為了引進這樣的概念,一個廣義的遞增模型—描述y 與一個真實多項式分數有遞增關係,是需要的。 而真實多項式分數是由最佳的解釋變數降維子空間所建立出來的最小次數多項式。由這個模型,C 指標被定出來,並且對於這個指標,我們引進了所謂的「最佳SDR 分數」— 具有最大性,唯一性和最佳性。善用多項式可展成廣義性線的特質,我們發展排序基礎的貝式訊息判定,來估計未知的多項式次數以及降維空間的維度。當p 很大的時候,我們也提供顯著性變數選擇法將不重要的變數排除。此外,我們發展一個有效的演算法,來計算這數量不小的廣義線性所對應的係數值。更進一步,利用外積微分法來估計最佳SDR 分數以及C 指標。我們也提出另一個方法— 半母數參數化方式計算C 指標最大值,來得到估計式。存活分析當中,許多資料因為被設限而無法完全觀測到。在這種情況之下,我們發現,用部分排序法的概念,處理完整資料的估計程序可以直接套用。就C 指標來說,利用可觀測資訊來補足不可觀測的二項式計數過程,使我們得到估計式。最後,我們設計一系列的模擬和實務資料來驗證我們方法論在分析上優勢和廣泛應用。 | zh_TW |
dc.description.abstract | Rank-based measures, which is used to access the concordance between the univariate response variable y and a linear composite score of its p-dimensional explanatory variable z, has been studied because of its applicability to a wide variety of survival data. In this article, a new rank-based measure is developed for extending a linear score to a multivariate polynomial one, which captures the most information of z with respect to y. This new measure explores the simplicity of the graphical view of regression; that is, we can regress y against this multivariate polynomial score based on dimension reduction framework. To introduce this concept, a general semiparametric model, which characterizes the dependence of a response on covariates through a multivariate polynomial transformation of the central subspace (CS) directions with unknown structural degree and dimension, is proposed. In light of the monotonic model structure and defined concordance index (C-index) function, such a composite score, which is referred to as the optimal sufficient dimension reduction (SDR) score, is shown to enjoy the existence, optimality, and uniqueness up to scale and location. By means of these properties and the generalized single-index (SI) representation of any multivariate polynomial function, the concordance-based generalized Bayesian information criterion (BIC) is proposed to estimate the optimal SDR score and its corresponding C-index, say Cmax. Meanwhile, effective computational algorithms are offered to carry out the presented estimation procedure. With estimated structural degree and dimension from this BIC, an alternative approach is further developed to estimate the optimal SDR score and Cmax. In addition, we establish the consistency of structural degree and dimension estimators and the asymptotic normality of optimal SDR score and Cmax estimators. As for significant covariates, a variable selection is proposed to retain important confounding variables when p is large. In general, survival data is partially observed due to right-censoring. In this case, a partial rank-based approach allows us to follow the similar estimation procedure with the completed data. Further, we adopt an imputation method to recover unobserved counting process for estimating Cmax. The performance and practicality of our proposal are also investigated by a series of simulations and illustrated examples. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T12:25:59Z (GMT). No. of bitstreams: 1 ntu-105-D00221001-1.pdf: 757043 bytes, checksum: f395f2f2f08bab3209bd9a91f7b89ad3 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | Contents
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract (in Chinese) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract (in English) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 1 Introduction 1 1.1 Illustrated Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Case Study of Vinho Verde Wine Taste Preferences . . . . . . . . 1 1.1.2 Data from Global Registry of Acute Coronary Events . . . . . . 2 1.1.3 Selective Coronary Angiography Data . . . . . . . . . . . . . . . 3 1.2 Rank-based Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Kendall’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Concordance Probability and C-index . . . . . . . . . . . . . . . 4 1.2.3 Rank Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Transformation Regression Models . . . . . . . . . . . . . . . . . . . . . 5 1.3.1 Linear Regression Model . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.2 Box and Cox Transformation Model . . . . . . . . . . . . . . . . 5 1.3.3 Cox Proportional Hazards Model . . . . . . . . . . . . . . . . . . 5 1.3.4 Additive Hazards Model . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.5 Generalized Linear Regression Model . . . . . . . . . . . . . . . . 6 1.3.6 Generalized Regression Model . . . . . . . . . . . . . . . . . . . . 7 1.4 A General Semiparametric Regression Model . . . . . . . . . . . . . . . 7 1.5 The Existing SDR Approaches . . . . . . . . . . . . . . . . . . . . . . . 9 1.5.1 Inverse Regression Approach . . . . . . . . . . . . . . . . . . . . 9 1.5.2 Average Derivative Estimation Approach . . . . . . . . . . . . . 11 1.5.3 Semiparametric Efficient Estimator . . . . . . . . . . . . . . . . . 12 1.6 Survival Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.7 Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 Model Features and General Background 16 2.1 Generalized SI Representation . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 Relation Between C-index and Optimal SDR Score . . . . . . . . . . . . 17 2.3 Rationale for the Gradient Approach . . . . . . . . . . . . . . . . . . . . 20 3 Estimation Procedures and Computational Algorithm 21 3.1 Outer Product of Gradients Estimation via C-index . . . . . . . . . . . 21 3.2 Paramization Estimation Approach . . . . . . . . . . . . . . . . . . . . . 22 3.3 Numerical Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.4 Estimation with Unknown (d0; k0) . . . . . . . . . . . . . . . . . . . . . 25 3.4.1 Outer Product of Gradients Estimation . . . . . . . . . . . . . . 25 3.4.2 Paramization Estimation Approach . . . . . . . . . . . . . . . . . 26 3.5 Variable Selection in Sufficient Dimension Reduction . . . . . . . . . . . 28 4 Extension to Censored Data 29 4.1 Estimation of C-max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5 Asymptotic Properties 31 6 Monte Carlo Simulations 37 6.1 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.2 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.3 A comparison with the Ensemble of MAVE . . . . . . . . . . . . . . . . 43 7 Data analysis 46 7.1 Case Study of Vinho Verde Wine Taste Preferences . . . . . . . . . . . . 46 7.2 Data from Global Registry of Acute Coronary Events . . . . . . . . . . 51 7.3 Selective coronary angiography Data . . . . . . . . . . . . . . . . . . . . 52 8 Conclusion and Discussion 55 APPENDICES 57 A Technical Lemmas 57 B Proofs of the Main Results 64 Bibliography 74 Vita 78 | |
dc.language.iso | en | |
dc.title | 最佳降維分數之估計及其延伸至設限資料 | zh_TW |
dc.title | Estimation of Optimal Sufficient Dimension Reduction Score
and Its Extension to Censored Data | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 張中,黃冠華,廖振鐸,黃禮珊,黃瓊玉 | |
dc.subject.keyword | 排序指標,最佳降維,最佳降維分數,廣義貝式判式,存活分析, | zh_TW |
dc.subject.keyword | Rank-Based Measure,Sufficient Dimesnion Reduction,Optimal Sufficient Dimension Reduction,Concordance-based BIC type criterion,Survival Analysis, | en |
dc.relation.page | 80 | |
dc.identifier.doi | 10.6342/NTU201602206 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-11 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 數學研究所 | zh_TW |
顯示於系所單位: | 數學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 739.3 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。