請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49890完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳岳隆(Yueh-Lung Wu) | |
| dc.contributor.author | Yu-Wei Chen | en |
| dc.contributor.author | 陳昱瑋 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:25:47Z | - |
| dc.date.available | 2018-08-24 | |
| dc.date.copyright | 2016-08-24 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-11 | |
| dc.identifier.citation | Argaud O, Croizier L, Lopez-Ferber M, Croizier G. 1998. Two key mutations in the host-range specificity domain of the p143 gene of Autographa californica nucleopolyhedrovirus are required to kill Bombyx mori larvae. J Gen Virol 79:931-935.
Ariumi Y, Kuroki M, Maki M, Ikeda M, Dansako H, Wakita T, Kato N. 2011. The ESCRT System Is Required for Hepatitis C Virus Production. Plos One 6. Ayres MD, Howard SC, Kuzio J, Lopez-Ferber M, Possee RD. 1994. The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology 202:586-605. Bartel DP. 2004. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116:281-297. Bartel DP. 2009. MicroRNAs: Target Recognition and Regulatory Functions. Cell 136:215-233. Blissard GW, Rohrmann GF. 1990. Baculovirus Diversity and Molecular-Biology. Annu Rev Entomol 35:127-155. Blissard GW, Wenz JR. 1992. Baculovirus Gp64 Envelope Glycoprotein Is Sufficient to Mediate Ph-Dependent Membrane-Fusion. J Virol 66:6829-6835. Brodersen DE, Nissen P. 2005. The social life of ribosomal proteins. Febs J 272:2098-2108. Buck AH, Perot J, Chisholm MA, Kumar DS, Tuddenham L, Cognat V, Marcinowski L, Dolken L, Pfeffer S. 2010. Post-transcriptional regulation of miR-27 in murine cytomegalovirus infection. Rna 16:307-315. Bulet P, Stocklin R. 2005. Insect antimicrobial peptides: Structures, properties and gene regulation. Protein Peptide Lett 12:3-11. Carpentier DCJ, Griffiths CM, King LA. 2008. The baculovirus P10 protein of Autographa californica qucleopolyhedrovirus forms two distinct cytoskeletal-like structures and associates with polyhedral occlusion bodies during infection. Virology 371:278-291. Castillo JA, Castrillon JC, Diosa-Toro M, Betancur JG, St Laurent G, Smit JM, Urcuqui-Inchima S. 2016. Complex interaction between dengue virus replication and expression of miRNA-133a. Bmc Infect Dis 16. Chen CY, Lin CY, Chen GY, Hu YC. 2011. Baculovirus as a gene delivery vector: Recent understandings of molecular alterations in transduced cells and latest applications. Biotechnol Adv 29:618-631. Chen GY, Shiah HC, Su HJ, Chen CY, Chuang YJ, Lo WH, Huang JL, Chuang CK, Hwang SM, Hu YC. 2009. Baculovirus Transduction of Mesenchymal Stem Cells Triggers the Toll-Like Receptor 3 Pathway. J Virol 83:10548-10556. Chen YM, Lu Z, Zhang LZ, Gao L, Wang N, Gao X, Wang YQ, Li K, Gao YL, Cui HY, Gao HL, Liu CJ, Zhang YP, Qi XL, Wang XM. 2016. Ribosomal protein L4 interacts with viral protein VP3 and regulates the replication of infectious bursal disease virus. Virus Res 211:73-78. Chen YR, Zhong SL, Fei ZJ, Gao S, Zhang SY, Li ZF, Wang P, Blissard GW. 2014. Transcriptome Responses of the Host Trichoplusia ni to Infection by the Baculovirus Autographa californica Multiple Nucleopolyhedrovirus. J Virol 88:13781-13797. Cheng TC, Zhao P, Liu C, Xu PZ, Gao ZH, Xia QY, Xiang ZH. 2006. Structures, regulatory regions, and inductive expression patterns of antimicrobial peptide genes in the silkworm Bombyx mori. Genomics 87:356-365. Clem RJ, Miller LK. 1993. Apoptosis Reduces Both the Invitro Replication and the Invivo Infectivity of a Baculovirus. J Virol 67:3730-3738. Condreay JP, Witherspoon SM, Clay WC, Kost TA. 1999. Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector. P Natl Acad Sci USA 96:127-132. Croizier G, Croizier L, Argaud O, Poudevigne D. 1994. Extension of Autographa-Californica Nuclear Polyhedrosis-Virus Host-Range by Interspecific Replacement of a Short DNA-Sequence in the P143 Helicase Gene. P Natl Acad Sci USA 91:48-52. Erzberger JP, Stengel F, Pellarin R, Zhang SY, Schaefer T, Aylett CHS, Cimermancic P, Boehringer D, Sali A, Aebersold R, Ban N. 2014. Molecular Architecture of the 40S center dot eIF1 center dot eIF3 Translation Initiation Complex. Cell 158:1123-1135. Furukawa S, Sagisaka A, Tanaka H, Yamakawa M. 2007. Effect of nucleopolyhedrovirus infection on antibacterial activity and antibacterial peptide production in larvae of the silkworm, Bombyx mori (Lepidoptera : Bombycidae). Appl Entomol Zool 42:55-62. Gomi S, Majima K, Maeda S. 1999. Sequence analysis of the genome of Bombyx mori nucleopolyhedrovirus. J Gen Virol 80:1323-1337. Hefferon KL, Oomens AGP, Monsma SA, Finnerty CM, Blissard GW. 1999. Host cell receptor binding by baculovirus GP64 and kinetics of virion entry. Virology 258:455-468. Hong SM, Kusakabe T, Lee JM, Tatsuke T, Kawaguchi Y, Kang MW, Kang SW, Kim KA, Nho SK. 2008. Structure and expression analysis of the Cecropin-E gene from the silkworm, Bombyx mori. Biosci Biotech Bioch 72:1992-1998. Huh NE, Weaver RF. 1990. Identifying the RNA polymerases that synthesize specific transcripts of the Autographa californica nuclear polyhedrosis virus. J Gen Virol 71 ( Pt 1):195-201. Hurley JH. 2010. The ESCRT complexes. Crit Rev Biochem Mol 45:463-487. Iwanaga M, Takaya K, Katsuma S, Ote M, Tanaka S, Kamita SG, Kang WK, Shimada T, Kobayashi M. 2004. Expression profiling of baculovirus genes in permissive and nonpermissive cell lines. Biochem Bioph Res Co 323:599-614. Jayachandran B, Hussain M, Asgari S. 2013. Regulation of Helicoverpa armigera ecdysone receptor by miR-14 and its potential link to baculovirus infection. J Invertebr Pathol 114:151-157. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. 2004. Human MicroRNA targets. PLoS Biol 2:e363. Katou Y, Ikeda M, Kobayashi M. 2006. Abortive replication of Bombyx mori nucleopolyhedrovirus in Sf9 and High Five cells: Defective nuclear transport of the virions. Virology 347:455-465. Katzmann DJ, Babst M, Emr SD. 2001. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106:145-155. Kelly EJ, Hadac EM, Greiner S, Russell SJ. 2008. Engineering microRNA responsiveness to decrease virus pathogenicity. Nat Med 14:1278-1283. Kenney SP, Meng XJ. 2015. The Lysine Residues within the Human Ribosomal Protein S17 Sequence Naturally Inserted into the Viral Nonstructural Protein of a Unique Strain of Hepatitis E Virus Are Important for Enhanced Virus Replication. J Virol 89:3793-3803. Kost TA, Condreay JP, Jarvis DL. 2005. Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 23:567-575. Kuang E, Tang QY, Maul GG, Zhu FX. 2008. Activation of p90 ribosomal S6 kinase by ORF45 of Kaposi's sarcoma-associated herpesvirus and its role in viral lytic replication. J Virol 82:1838-1850. Kurn N, Chen P, Heath JD, Kopf-Sill A, Stephens KM, Wang S. 2005. Novel isothermal, linear nucleic acid amplification systems for highly multiplexed applications. Clinical chemistry 51:1973-1981. Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C, Saib A, Voinnet O. 2005. A cellular MicroRNA mediates antiviral defense in human cells. Science 308:557-560. Lee E, Jeong KW, Lee J, Shin A, Kim JK, Lee J, Lee DG, Kim Y. 2013. Structure-activity relationships of cecropin-like peptides and their interactions with phospholipid membrane. Bmb Rep 46:282-287. Lemaitre B, Hoffmann J. 2007. The host defense of Drosophila melanogaster. Annual review of immunology 25:697-743. Li X, Li XQ, Cao H, Wang YQ, Zheng SJJ. 2013. Engagement of new castle disease virus (NDV) matrix (M) protein with charged multivesicular body protein (CHMP) 4 facilitates viral replication. Virus Res 171:80-88. Liu YX, Zhou YH, Wu JY, Zheng PM, Li YJ, Zheng XY, Puthiyakunnon S, Tu ZJ, Chen XG. 2015. The expression profile of Aedes albopictus miRNAs is altered by dengue virus serotype-2 infection. Cell Biosci 5. Lo HR, Chao YC. 2004. Rapid titer determination of baculovirus by quantitative real-time polymerase chain reaction. Biotechnol Progr 20:354-360. Lu A, Miller LK. 1995. Differential Requirements for Baculovirus Late Expression Factor Genes in 2 Cell-Lines. J Virol 69:6265-6272. Matanic VCA, Castilla V. 2004. Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. Int J Antimicrob Ag 23:382-389. Mehrabadi M, Hussain M, Asgari S. 2013. MicroRNAome of Spodoptera frugiperda cells (Sf9) and its alteration following baculovirus infection. J Gen Virol 94:1385-1397. Moreno-Habel DA, Biglang-Awa IM, Dulce A, Luu DD, Garcia P, Weers PMM, Haas-Stapleton EJ. 2012. Inactivation of the budded virus of Autographa californica M nucleopolyhedrovirus by gloverin. J Invertebr Pathol 110:92-101. Morris TD, Miller LK. 1992. Promoter influence on baculovirus-mediated gene expression in permissive and nonpermissive insect cell lines. J Virol 66:7397-7405. Nakajima Y, Qu XM, Natori S. 1987. Interaction between Liposomes and Sarcotoxin-Ia, a Potent Antibacterial Protein of Sarcophaga-Peregrina (Flesh Fly). J Biol Chem 262:1665-1669. O'Reilly DR, Miller L, Luckow VA. 1992. Baculovirus expression vectors : a laboratory manual New York: W.H. Freeman. xiii, 347 p. pp. Passmore LA, Schmeing TM, Maag D, Applefield DJ, Acker MG, Algire MA, Lorsch JR, Ramakrishnan V. 2007. The eukaryotic translation initiation factors eIF1 and eIF1A induce an open conformation of the 40S ribosome. Mol Cell 26:41-50. Pathakamuri JA, Theilmann DA. 2002. The acidic activation domain of the baculovirus transactivator IE1 contains a virus-specific domain essential for DNA replication. J Virol 76:5598-5604. Patmanidi AL, Possee RD, King LA. 2003. Formation of P10 tubular structures during AcMNPV infection depends on the integrity of host-cell microtubules. Virology 317:308-320. Ramirez JL, Dimopoulos G. 2010. The Toll immune signaling pathway control conserved anti-dengue defenses across diverse Ae. aegypti strains and against multiple dengue virus serotypes. Developmental and comparative immunology 34:625-629. Rodems SM, Pullen SS, Friesen PD. 1997. DNA-dependent transregulation by IE1 of Autographa californica nuclear polyhedrosis virus: IE1 domains required for transactivation and DNA binding. J Virol 71:9270-9277. Shimomura M, Minami H, Suetsugu Y, Ohyanagi H, Satoh C, Antonio B, Nagamura Y, Kadono-Okuda K, Kajiwara H, Sezutsu H, Nagaraju J, Goldsmith MR, Xia QY, Yamamoto K, Mita K. 2009. KAIKObase: An integrated silkworm genome database and data mining tool. Bmc Genomics 10. Singh CP, Singh J, Nagaraju J. 2012. A Baculovirus-Encoded MicroRNA (miRNA) Suppresses Its Host miRNA Biogenesis by Regulating the Exportin-5 Cofactor Ran. J Virol 86:7867-7879. Singh CP, Singh J, Nagaraju J. 2014. bmnpv-miR-3 facilitates BmNPV infection by modulating the expression of viral P6.9 and other late genes in Bombyx mori. Insect Biochem Molec 49:59-69. Song LP, Liu H, Gao SJ, Jiang W, Huang WL. 2010. Cellular MicroRNAs Inhibit Replication of the H1N1 Influenza A Virus in Infected Cells. J Virol 84:8849-8860. Steiner H, Andreu D, Merrifield RB. 1988. Binding and Action of Cecropin and Cecropin Analogs - Antibacterial Peptides from Insects. Biochim Biophys Acta 939:260-266. Tandon R, AuCoin DP, Mocarski ES. 2009. Human Cytomegalovirus Exploits ESCRT Machinery in the Process of Virion Maturation. J Virol 83:10797-10807. Taniai K, Kato Y, Hirochika H, Yamakawa M. 1992. Isolation and Nucleotide-Sequence of Cecropin-B Cdna Clones from the Silkworm, Bombyx-Mori. Biochim Biophys Acta 1132:203-206. Teterina NL, Liu GP, Maximova OA, Pletnev AG. 2014. Silencing of neurotropic flavivirus replication in the central nervous system by combining multiple microRNA target insertions in two distinct viral genome regions. Virology 456:247-258. Thiem SM, Miller LK. 1989. Identification, Sequence, and Transcriptional Mapping of the Major Capsid Protein Gene of the Baculovirus Autographa-Californica Nuclear Polyhedrosis-Virus. J Virol 63:2008-2018. Tsakas S, Marmaras VJ. 2010. Insect immunity and its signalling: an overview. Isj-Invert Surviv J 7:228-238. Tsetsarkin KA, Liu GP, Kenney H, Bustos-Arriaga J, Hanson CT, Whitehead SS, Pletnev AG. 2015. Dual miRNA Targeting Restricts Host Range and Attenuates Neurovirulence of Flaviviruses. Plos Pathog 11. Umbach JL, Cullen BR. 2010. In-Depth Analysis of Kaposi's Sarcoma-Associated Herpesvirus MicroRNA Expression Provides Insights into the Mammalian MicroRNA-Processing Machinery. J Virol 84:695-703. Voigts-Hoffmann F, Klinge S, Ban N. 2012. Structural insights into eukaryotic ribosomes and the initiation of translation. Curr Opin Struc Biol 22:768-777. Wachinger M, Kleinschmidt A, Winder D, von Pechmann N, Ludvigsen A, Neumann M, Holle R, Salmons B, Erfle V, Brack-Werner R. 1998. Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression. J Gen Virol 79:731-740. Wang XH, Aliyari R, Li WX, Li HW, Kim K, Carthew R, Atkinson P, Ding SW. 2006. RNA interference directs innate immunity against viruses in adult Drosophila. Science 312:452-454. Washburn JO, Kirkpatrick BA, Volkman LE. 1996. Insect protection against viruses. Nature 383:767-767. Wu P, Han SH, Chen T, Qin GX, Li L, Guo XJ. 2013. Involvement of MicroRNAs in Infection of Silkworm with Bombyx mori Cytoplasmic Polyhedrosis Virus (BmCPV). Plos One 8. Wu YL, Liu CY, Wu CP, Wang CH, Lee ST, Chao YC. 2008. Cooperation of ie1 and p35 genes in the activation of baculovirus AcMNPV and HzNV-1 promoters. Virus research 135:247-254. Wu YL, Wu CP, Huang YH, Huang SP, Lo HR, Chang HS, Lin PH, Wu MC, Chang CJ, Chao YC. 2014. Identification of a High-Efficiency Baculovirus DNA Replication Origin That Functions in Insect and Mammalian Cells. J Virol 88:13073-13085. Wu YL, Wu CP, Lee ST, Tang H, Chang CH, Chen HH, Chao YC. 2010. The Early Gene hhi1 Reactivates Heliothis zea Nudivirus 1 in Latently Infected Cells. J Virol 84:1057-1065. Xi ZY, Ramirez JL, Dimopoulos G. 2008. The Aedes aegypti Toll pathway controls dengue virus infection. Plos Pathog 4. Xue J, Qiao N, Zhang W, Cheng RL, Zhang XQ, Bao YY, Xu YP, Gu LZ, Han JDJ, Zhang CX. 2012. Dynamic Interactions between Bombyx mori Nucleopolyhedrovirus and Its Host Cells Revealed by Transcriptome Analysis. J Virol 86:7345-7359. Yagi-Utsumi M, Yamaguchi Y, Boonsri P, Iguchi T, Okemoto K, Natori S, Kato K. 2013. Stable isotope-assisted NMR characterization of interaction between lipid A and sarcotoxin IA, a cecropin-type antibacterial peptide. Biochem Bioph Res Co 431:136-140. Yamano Y, Matsumoto M, Sasahara K, Sakamoto E, Morishima I. 1998. Structure of genes for cecropin A and an inducible nuclear protein that binds to the promoter region of the genes from the silkworm, Bombyx mori. Biosci Biotech Bioch 62:237-241. Yang J, Furukawa S, Sagisaka A, Ishibashi J, Taniai K, Shono T, Yamakawa M. 1999. cDNA cloning and gene expression of cecropin D, an antibacterial protein in the silkworm, Bombyx mori. Comp Biochem Phys B 122:409-414. Yi HY, Chowdhury M, Huang YD, Yu XQ. 2014. Insect antimicrobial peptides and their applications. Appl Microbiol Biot 98:5807-5822. Zhi-sheng LW-CMX-lXJ-pWJLWX. 2006. High-level expression of silkworm antimicrobial peptide and its anti-infection to BmNPV. Virologica Sinica 21:589-593. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49890 | - |
| dc.description.abstract | 桿狀病毒可感染超過六百種無脊椎動物並具有高度的寄主專一性,因桿狀病毒具有高度寄主專一性,而被認為是安全的生物實驗材料,大量應用於生技產業做為外源基因蛋白質表現載體、疫苗生產與蟲害控制生物製劑。加州苜蓿夜蛾核多角體病毒 (AcMNPV) 為商品化且全球廣泛使用的桿狀病毒,在基因體層級上AcMNPV與家蠶核多角體病毒 (BmNPV) 具有極高度的同源性,但寄主範圍沒有重疊的現象。因此我們好奇兩種如此相似的病毒為何在同一寄主上能有如此大的感染差異。本研究將藉由次世代定序剖析病毒與寄主間的交互作用,分析家蠶細胞株 (BmN) 受AcMNPV 與 BmNPV感染後寄主轉錄體的調節模式,篩選可能參與交互作用並影響寄主專一性之因子。而在轉錄體的比較中可發現寄主在面對兩個相似病毒仍表現出不同的反應,且應用小片段核酸干擾 (RNAi) 驗證免疫基因確實抑制AcMNPV在家蠶細胞上的複製。另一方面,小片段核糖核酸 (Small RNA) 在許多研究中證實參與寄主專一性,因此我們掃描家蠶細胞內生性微小核酸 (MicroRNA) 在受病毒感染後表現的上升狀況,並結合次世代定序寄主基因表現,預測病毒誘導之MicroRNA與寄主細胞轉錄體間存在的交互作用。 | zh_TW |
| dc.description.abstract | Baculoviruses are insect-specific DNA viruses with restricted host range, which serve as viral vectors for bioindustry applications such as foreign gene expression, vaccine production, and pest control. As an example, Autographa californica nucleopolyhedrovirus (AcMNPV), a commercially available and widely used baculovirus prototype, can infect 39 species in 13 families. Another example would be Bombyx mori nucleopolyhedrovirus (BmNPV), a major pathogen of silkworms which has developed high host specificity to Bombyx mori. Interestingly, on a genomic level, the AcMNPV and BmNPV are highly homologous, but they share no overlapping host range. These two similar viruses have extremely different infection outcomes in Bombyx mori. We theorize that the determination of host specificity may depend on virus-host interactions, and that several genes may be involved in determining host specificity. Therefore, we used next-generation sequencing (NGS) to analyze transcriptome responses of hosts to these viruses. A transcriptome library was constructed, annotated, and grouped after sequence assembly. A comparison of gene expressions shows several significant differences in the gene expression profiles of BmNPV and AcMNPV, especially in cases where genes involved in immune responses were verified by RNA interference. In addition, studies have shown that small RNA plays a role in virus-host interaction, and further determines host specificity. Therefore, we screened microRNA induced by AcMNPV infection, and then combined NGS data from cellular gens to predict possible regulation networks. The manipulation of virus-host specificity could provide a breakthrough for the application of baculovirus in protein expression systems and in the development of bio-control agents. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:25:47Z (GMT). No. of bitstreams: 1 ntu-105-R03632008-1.pdf: 6090249 bytes, checksum: 8787390a304397b3729bb3c9aa082979 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
Chapter 2 Materials and methods 7 2.1 Cell lines and viruses 7 2.2 Southern blot hybridization 7 2.3 Recombinant virus construction 8 2.4 RNAi experiments and transfection 8 2.5 Quantitation of gene expression 9 2.6 cDNA library construction and Illumina sequencing 10 2.7 Differentially expressed transcripts annotation and quantification 11 2.8 Gene ontology analysis 11 2.9 Cellular miRNA Microarray assay 11 2.10 miRNA target prediction 12 Chapter 3 Results 13 3.1 Cross infection of two closely related viruses demonstrates significant differences in host range 13 3.2 The viral gene expression was inhibited at a later time period in the nonpermissive cells 14 3.3 Assembly and annotation of B. mori cellular transcriptome reveal expression pattern divergence 15 3.4 Gene ontology analysis and host responses to virus infection 16 3.5Knockdown of immune gene facilitates vABhGFP replication in BmN cells 18 3.6 MicroRNA expression profile and interaction network against cellular genes 19 Chapter 4 Discussion21 References 29LIST OF FIGURE Figure 1. AcMNPV replication is strongly suppressed in BmN cells. 37 Figure 2. Late and very late gene expression was abolished by vABhGFP infected BmN cells. 38 Figure 3. Mapping rate and differentially expressed transcripts analysis of transcriptome. 39 Figure 4. Gene ontology analysis of differentially expressed gene among different molecule function (MF) at 48 hpi. 40 Figure 5. Knockdown of silkworm immune genes increase vABhGFP infection in BmN cells.42 Figure 6. Cellular miRNA expression profile analysis upon vABhGFP or BmNPV infected BmN cells. 44 Figure 7. Interaction network between cellular gene repressed by vABhGFP and miRNA induced by vABhGFP. 45 LIST OF TABLE Table 1. Modestly expressed genes are up-regulated by both vABhGFP and vBBhGFP. 46 Table 2. Top 20 genes are up-regulated by vBBhGFP.47 Table 3. Top 20 genes are down-regulated by vABhGFP.48 Table 4. Top 20 genes are up-regulated by vABhGFP.49 Table 5. Top 20 genes are down-regulated by vABhGFP.50 Table 6. Differentially expressed genes are up-regulated by vABhGFP as well as down-regulated by vBBhGFP. 51 | |
| dc.language.iso | en | |
| dc.subject | 寄主專一性 | zh_TW |
| dc.subject | 次世代定序 | zh_TW |
| dc.subject | 桿狀病毒 | zh_TW |
| dc.subject | host specificity | en |
| dc.subject | Baculoviruses | en |
| dc.subject | Next generation sequencing | en |
| dc.title | 昆蟲與桿狀病毒基因表現的互動與競爭分析 | zh_TW |
| dc.title | Analyses of Integrations and competitions between genes expressed from host and baculovirus | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張麗冠(Li-Kwan Chang),趙裕展(Yu-Chan Chao),乃育昕(Yu-Shin Nai),吳宗遠(Tzong-Yuan Wu) | |
| dc.subject.keyword | 桿狀病毒,次世代定序,寄主專一性, | zh_TW |
| dc.subject.keyword | Baculoviruses,Next generation sequencing,host specificity, | en |
| dc.relation.page | 51 | |
| dc.identifier.doi | 10.6342/NTU201602101 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-11 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 昆蟲學研究所 | zh_TW |
| 顯示於系所單位: | 昆蟲學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 5.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
